
Using the Bio::TraDIS pipeline 
Lars Barquist (contact: lars.barquist@uni-wuerzburg.de) 
 
For installation instructions see the README file in the root directory of the distribution. This 
tutorial provides an example of mapping a library with the Bio:TraDIS pipeline, along with 
troubleshooting and quality control advice. It will take 2 - 3 hours to complete, and requires ~3 
gigabytes of hard disk space. 

Introduction 
The Bio::TraDIS pipeline provides software utilities for the processing, mapping, and analysis of 
transposon insertion sequencing data. The pipeline was designed with the data from the 
TraDIS sequencing protocol in mind (described in Barquist et al., 20XX), but should work with a 
variety of transposon insertion sequencing protocols as long as they produce data in the 
expected format. 
 
The core of the pipeline is implemented in the bacteria_tradis script, which performs read 
mapping using smalt and insertion quantification. This script assumes that your data is in 
(possibly gzipped) fastq format, with transposon tags attached. E.g. the sequence of your 
reads should look like: 
 
TTTTTTTTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
 
Where T’s represent transposon sequence, and C’s represent flanking chromosomal 
sequence. If you have used the TraDIS dark cycle protocol, your “transposon tag” and 
chromosomal read will be in separate reads. These can be concatenated by running the 
add_tradis_tags script on an unaligned BAM file. The Picard tools may be helpful in 
performing any necessary file conversion operations: http://broadinstitute.github.io/picard/ 
 
bacteria_tradis outputs so-called plot files in addition to aligned bam files, containing one 
row per nucleotide in the reference genomic sequence with two columns, one for each strand. 
These can then be processed to provide gene-level statistics that can be used for further 
analysis. 
 
As an example this tutorial will use a sequencing run of a Salmonella enterica serovar 
Typhimurium SL1344 mutant library containing an estimated 1 million mutants that we 
generated in optimizing the TraDIS protocol, which is publicly available from the European 
Nucleotide Archive (ENA) at http://www.ebi.ac.uk/ena/data/view/ERR541286.  



Downloading and preprocessing the data 
First we will need the reference genome and annotation for S. Typhimurium SL1344. This strain 
contains four replicons consisting of one chromosome (ENA accession FQ312003) and three 
plasmids (HE654724, HE654725, HE654726). We will need both embl format annotations and 
the fasta sequence files for analysis. These can be retrieved through the ENA web interface. 
Alternatively, they can be downloaded at the command-line using curl with the following 
commands (note I use $> to refer to the command prompt throughout): 
 
$> curl 
"http://www.ebi.ac.uk/ena/data/view/FQ312003&display=txt&expanded=true
" > FQ312003.embl 
$> curl 
"http://www.ebi.ac.uk/ena/data/view/HE654724&display=txt&expanded=true
" > HE654724.embl 
$> curl 
"http://www.ebi.ac.uk/ena/data/view/HE654725&display=txt&expanded=true
" > HE654725.embl 
$> curl 
"http://www.ebi.ac.uk/ena/data/view/HE654726&display=txt&expanded=true
" > HE654726.embl 
 
$> curl "http://www.ebi.ac.uk/ena/data/view/FQ312003&display=fasta" > 
FQ312003.fasta 
$> curl "http://www.ebi.ac.uk/ena/data/view/HE654724&display=fasta" > 
HE654724.fasta 
$> curl "http://www.ebi.ac.uk/ena/data/view/HE654725&display=fasta" > 
HE654725.fasta 
$> curl "http://www.ebi.ac.uk/ena/data/view/HE654726&display=fasta" > 
HE654726.fasta 
 
The fasta files can then be concatenated into one reference fasta file using the command: 
 
$> cat *.fasta > ref.fasta 
 
We will use TraDIS samples from one lane of sequencing of an “input” library for the  
purposes of this tutorial, accession number ERR541286. This can be downloaded from  
 
http://www.ebi.ac.uk/ena/data/view/ERR541286 
 
The file we require are the submitted BAM files under the column “Submitted files (ftp)”. This 
will result in the download of two files, 12418_1#10.bam. Alternatively, this can be directly 
downloaded at the command line using curl: 
 



$> curl 
ftp://ftp.sra.ebi.ac.uk/vol1/ERA320/ERA320707/bam/12418_1%2310.bam > 
12418_1#10.bam 
 
The BAM file downloaded from the ENA has both transposon tags and chromosomal reads for 
each sequence, however these are stored as two separate reads. For further processing we 
need to concatenate these reads. This can be done with the script add_tradis_tags: 
 
$> add_tradis_tags -b 12418_1#10.bam -o 12418_1#10.tr.bam 
 
-b specifies the input BAM file, and -o the output BAM file. We then convert these to gzipped 
FastQ files for further processing and mapping using samtools: 
 
$> samtools bam2fq 12418_1#10.tr.bam | gzip > 12418_1#10.fq.gz 

A note on QC and read trimming 
While we will not go into detail on this here, normally one would want to perform quality control 
if this were newly produced data, to get a first look at whether the sequencing has worked 
properly. For this purpose we recommend FastQC: 
 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/  
 
It is well worth spending time to read through the detailed documentation provided with 
FastQC. Note that due to the nature of TraDIS libraries they will always fail many of the 
standard sequencing quality checks (e.g. per base sequence content, kmer content, sequence 
duplication levels), but the per base sequence quality and reports on adapter contamination 
can be valuable.  
 
If there is evidence for declining read quality towards the end of reads, or if there is significant 
adapter contamination, read trimming may help to rescue a low quality run. PRINSEQ 
(http://prinseq.sourceforge.net/) is well suited to this purpose, as it allows for trimming 
selectively from the right end of the read; this is important, as we want to keep the transposon 
tag at the left end intact. 
 

Read processing and mapping 
Now that our sequencing runs are in FastQ format, we are ready to run the bacteria_tradis 
mapping pipeline. Running bacteria_tradis on the command line with no options will give 
a list of parameters that you can set. The only required options are -f, which specifies a file 
containing a list of fastq files; -t, the transposon tag to search for; and -r, the reference fasta 
file. To produce the file containing our fastq file, run: 



 
$> ls *.fq.gz > fastqs.txt 
 
Note that you can specify any number of fastq files here, and these will be run serially. The 
transposon tag for this sample is TAAGAGACAG. So a complete command to run 
bacteria_tradis on this sample is: 
 
$> bacteria_tradis -v --smalt_r 0 -m 0 -f fastqs.txt -t TAAGAGACAG -r 
ref.fasta 
 
Adding the -v option makes bacteria_tradis report its progress while it runs, and can be 
particularly useful in the case something goes wrong. The --smalt_r 0 and -m 0 options specify 
that we want to map reads with multiple best mappings to a random position and use these in 
our downstream analyses; by default these reads are left unmapped (the reasons for this are 
discussed below under “Advanced mapping options”). Mapping and processing this library 
will take about 30 minutes to an hour on a typical desktop computer. 
 
On completion, bacteria_tradis produces a number of files. These include: 
 
(input list name).stats : Mapping statistics file. This is comma delimited, and includes one line 
for each library mapped along with a header. It can be easily opened in e.g. Excel or R. 
 
(library_name.replicon_name).insert_site_plot.gz : Plot files, one for each replicon and 
library. These contain insertion counts on each strand for every nucleotide position in the 
replicon. They can be opened as “user plots” in the Artemis genome browser, and will be used 
for further analysis. 
 
(library_name).mapped.bam : BAM file containing mapped reads. 
 
If the mapping of 12418_1#10.fq.gz succeeded, you should now have a file 
fastqs.stats containing one line with mapping statistics for this library. The below 
screenshot shows this file opened in excel: 

 



Close to 97% of reads had a perfectly matched transposon tag, with 96% of these mapping to 
the reference replicons, meaning around 93% of sequencing reads in this library are providing 
useful information. The gzipped plot files can also be opened directly in Artemis 
(http://www.sanger.ac.uk/science/tools/artemis for download and tutorials). Below is a 
screenshot showing insertion density over a region of the Salmonella chromosome including 
two apparently essential genes, rep, encoding a DNA helicase, and rho, encoding a 
transcription termination factor: 

  

Advanced mapping options 
By default, the bacteria_tradis pipeline determines appropriate read mapping parameters 
automatically from the length of the first read in the fastq file. It should be noted that the 
default parameters have been tested using the optimized TraDIS protocol of Barquist et al., 
20XX in the hands of an experienced sequencing specialist; these will need to be tuned for 
other protocols, or for pilot runs, etc. There are various other scenarios in which it would be 
appropriate to reduce the stringency of these parameters: in the case that read trimming has 
been applied, if there are quality issues in the library, for certain types of studies (particularly 
gene essentiality studies as above), or if the quality of the reference genome is low (or of a 
different strain). 
 
The -mm option specifies the number of mismatches allowed when matching the transposon 
tag; by default none are allowed. We sometimes observe one or two positions within the 
transposon tag that seem to have generally low quality. If there is evidence for low-quality 



bases in the transposon tag (from FastQC, for instance), setting this to 1 or 2 may result in 
higher recovery of insertion sites. Higher than 2 is not advisable with the typical transposon tag 
lengths (10 - 12 bases) produced by TraDIS protocols, but may be appropriate with protocols 
that produce significantly longer transposon tags. 
 
The -m option sets the minimum mapping quality score to use an alignment in downstream 
analysis (e.g. plot files); defaults to 30. Multi-mapping reads have a quality score of 0 by 
definition, so this parameter needs to be set to 0 for these reads to be properly processed. Can 
be lowered without dramatically affecting results in most cases, particularly if --smalt_y is set 
reasonably. 
 
The other options specify parameters for the smalt mapper, which are discussed in more detail 
in the smalt manual (ftp.sanger.ac.uk/pub/resources/software/smalt/smalt-manual-0.7.4.pdf). 
We will discuss their effects on TraDIS mapping briefly here: 
 
--smalt_k: length of kmers hashed; roughly, the minimum length of an exact match between a 
read and the genome needed to trigger an alignment attempt. Appropriate values are between 
~10 and 20 for bacterial genomes depending on read length. Lower values lead to increased 
sensitivity at the expense of runtime. 
 
--smalt_s: step size for smalt kmers: distance between the start of hashed kmers. Appropriate 
values are between 1 and ~15, but should be less than --smalt_k to ensure kmers overlap. 
Lower values lead to increased sensitivity at the expense of runtime. 
 
--smalt_y: minimum percentage of identical bases between read and reference, defaults to .96 
- 96% identity, or 4 mismatches allowed in a 100 base read. May be lowered to improve 
sensitivity in the case of low quality or short reads. 
 
--smalt_r: specifies what to do with reads that map equally well in multiple locations. By default 
this is set to -1, meaning that multi-mapping reads are left unmapped. This is appropriate in 
studies comparing insertion frequency in the same library passaged through multiple 
conditions, as in this case a change in frequency of one repetitive gene could lead to many 
genes appearing to be selected artifactually. For studies of gene essentiality in a newly created 
library, this should be set to 0 (randomly assign a position) to avoid repetitive elements 
(particularly insertion sequences and the like) artificially appearing to be essential. 

Troubleshooting read mapping 
Low mapping yields can occur for a number of reasons. 
 

● Low numbers of tagged reads: First check in FastQC if there are low quality bases in 
the transposon tag. If there are, changing -m to 1 or 2 may help. If there is not a quality 



issue, and many reads truly lack transposon tags, the sequencing protocol used may 
not have adequately enriched for transposon-chromosome junctions. 

● Low numbers of mapped reads: There are several reasons this could occur: 
○ Quality issues or adapter contaminator: confirm with FastQC, this can often 

be fixed by trimming and cleaning the reads then relaxing mapping parameters 
slightly. 

○ Missing replicons: Does your reference include all replicons for your bacterium, 
including plasmids? Even small plasmids can eat up a surprising fraction of the 
read-space if they have high copy numbers; for instance, around 30% of the 
Salmonella reads in our example library originate from plasmids. 

○ Mutant library contamination: This can happen if multiple transposon libraries 
are being generated at the same time in the same lab with the same transposon, 
particularly if batches are being mixed to attain high insertion density. Try 
mapping against a “meta-reference” containing all the organisms you are 
working with; if a significant fraction of reads have a best map to a bacterium 
other than the one you expect, it is likely the sequenced mutant library was 
contaminated. 

Post-processing and analyzing data 
For further analysis, we generally process plot files into tab files containing gene-level 
statistics, which can then be used to perform further analyses, or loading directly into R or 
Excel. Running: 
 
$> tradis_gene_insert_sites -trim3 0.1 FQ312003.embl 
12418_1#10.fq.gz.ENA_FQ312003_FQ312003.1.insert_site_plot.gz 
 
Will produce a file 
12418_1#10.fq.gz.ENA_FQ312003_FQ312003.1.tradis_gene_insert_sites.csv 
containing locus tags, gene names, read counts and unique insertion sites per gene, among 
other useful bits of data. The -trim3 option trims reads in the 3′ end of genes, we often use this 
as many essential genes appear to tolerate insertions towards the end of the coding sequence. 
 
Predicting gene essentiality 
To produce an initial prediction of gene essentiality, we can run tradis_essentiality.R on 
the output table: 
 
$> tradis_essentiality.R 
12418_1#10.fq.gz.ENA_FQ312003_FQ312003.1.tradis_gene_insert_sites.csv 
 
This script attempts to fit distributions to the two modes often seen in insertion indexes (that is, 
insertion sites divided by gene length) in gene essentiality data, see Barquist et al., NAR 2013 
for more details. This produces tables of putative essential and ambiguous genes, along with 



plots that can used to evaluate the predictions. Below is a plot showing the automated fit, 
along with thresholds for essentiality and ambiguity: 

 
This method predicts 421 genes as essential in our test library, which is comparable to our 
previous work (Barquist et al., 2013; using hand-fit curves in a closely-related strain) which 
predicted ~350. 
 
Note that in cases where a library is not sufficiently saturated, the two distributions will 
collapse to the left, preventing a reasonable prediction of essential genes. An example of this 
can be seen in the analysis of a Clostridium difficile 630 library in Dembek et al., mBio 2015. In 
this case, the best that can be done is to report genes completely lacking insertion sites, with 
the understanding that some of these will certainly be “false positive”. 



 
Comparing fitness effects 
 
In the case you wish to compare control and test libraries (for instance, a library exposed to an 
antibiotic as compared to one grown in rich medium), we provide a script 
tradis_comparison.R that uses EdgeR to identify genes with differences in mutant 
frequency between two conditions, similar to that used in Dembek et al., mBio 2015 for the 
analysis of C. difficile sporulation data. Similar to bacteria_tradis, it expects files 
containing lists of tabfiles output by tradis_gene_insert_sites for both the control and 
experimental library. It outputs a number of diagnostic plots, including an MDS plot (similar to a 
PCA), which can be used to verify that samples cluster on experimental condition rather than 
some other feature, and volcano plots showing fold-change and -log10(p-values) for every 
gene. Details on the command-line options available can be found by running it with no 
arguments. 


