GCL TK Manual

Chapter 1: General 3

1 General

1.1 Introduction

GCL-TK is a windowing interface for GNU Common Lisp. It provides the functionality of
the TK widget set, which in turn implements a widget set which has the look and feel of
Motif.

The interface allows the user to draw graphics, get input from menus, make regions
mouse sensitive, and bind lisp commands to regions. It communicates over a socket with a
gcltksrv process, which speaks to the display via the TK library. The displaying process
may run on a machine which is closer to the display, and so involves less communication.
It also may remain active even though the lisp is involved in a separate user computation.
The display server can, however, interrupt the lisp at will, to inquire about variables and
run commands.

The user may also interface with existing TCL/TK programs, binding some buttons, or
tracking some objects.

The size of the program is moderate. In its current form it adds only about 45K bytes
to the lisp image, and the gcltksrv program uses shared libraries, and is on the order of
150Kbytes on a sparc.

This chapter describes some of the common features of the command structure of widgets,
and of control functions. The actual functions for construction of windows are discussed
in (undefined) [Widgets|, page (undefined), and more general functions for making them
appear, lowering them, querying about them in (undefined) [Control], page (undefined).

1.2 Getting Started

Once GCL has been properly installed you should be able to do the following simple example:
(in-package "TK")
(tkconnect)
(button ’.hello :text "Hello World" :command ’(print "hi"))
==>_HELLO
(pack ’.hello)

We first switched to the "TK" package, so that functions like button and pack would be
found. After doing the tkconnect, a window should appear on your screen, see See (unde-
fined) [tkconnect]|, page (undefined). The invocation of the function button creates a new
function called .hello which is a widget function. It is then made visible in the window by
using the pack function.

You may now click on the little window, and you should see the command executed in
your lisp. Thus "hi" should be printed in the lisp window. This will happen whether or
not you have a job running in the lisp, that is lisp will be interrupted and your command
will run, and then return the control to your program.

The function button is called a widget constructor, and the function .hello is called
a widget. If you have managed to accomplish the above, then GCL is probably installed
correctly, and you can graduate to the next section! If you dont like reading but prefer to
look at demos and code, then you should look in the demos directory, where you will find a

4 No Title

number of examples. A monitor for the garbage collector (mkgcmonitor), a demonstration
of canvas widgets (mkitems), a sample listbox with scrolling (mklistbox).

1.3 Common Features of Widgets

A widget is a lisp symbol which has a function binding. The first argument is always
a keyword and is called the option. The argument pattern for the remaining arguments
depends on the option. The most common option is : configure in which case the remaining
arguments are alternating keyword/value pairs, with the same keywords being permitted
as at the creation of the widget.

A widget is created by means of a widget constructor, of which there are currently 15,
each of them appearing as the title of a section in (undefined) [Widgets|, page (undefined).
They live in the "TK" package, and for the moment we will assume we have switched to this
package. Thus for example button is such a widget constructor function. Of course this is
lisp, and you can make your own widget constructors, but when you do so it is a good idea
to follow the standard argument patterns that are outlined in this section.

(button ’.hello)
==> _HELLO

creates a widget whose name is .hello. There is a parent child hierarchy among widgets
which is implicit in the name used for the widget. This is much like the pathname structure
on a Unix or Dos file system, except that >.’ is used as the separator rather than a / or
\. For this reason the widget instances are sometimes referred to as pathnames. A child
of the parent widget .hello might be called .hello. joe, and a child of this last might
be .hello.joe.bar. The parent of everyone is called . . Multiple top level windows are
created using the toplevel command (see (undefined) [toplevel], page (undefined)).

The widget constructor functions take keyword and value pairs, which allow you to
specify attributes at the time of creation:
(button ’.hello :text "Hello World" :width 20)
==>_HELLO

indicating that we want the text in the button window to be Hello World and the width
of the window to be 20 characters wide. Other types of windows allow specification in
centimeters 2c, or in inches (2i) or in millimeters 2m or in pixels 2. But text windows
usually have their dimensions specified as multiples of a character width and height. This
latter concept is called a grid.

Once the window has been created, if you want to change the text you do NOT do:
(button ’.hello :text "Bye World" :width 20)

This would be in error, because the window .hello already exists. You would either have
to first call

(destroy ’.hello)

But usually you just want to change an attribute. .hello is actually a function, as we
mentioned earlier, and it is this function that you use:

(.hello :configure :text "Bye World")

This would simply change the text, and not change where the window had been placed
on the screen (if it had), or how it had been packed into the window hierarchy. Here the

Chapter 1: General 5

argument :configure is called an option, and it specifies which types of keywords can
follow it. For example

(.hello :flash)

is also valid, but in this case the :text keyword is not permitted after flash. If it were, then
it would mean something else besides what it means in the above. For example one might

have defined
(.hello :flash :text "PUSH ME")

so here the same keyword :text would mean something else, eg to flash a subliminal message
on the screen.

We often refer to calls to the widget functions as messages. One reason for this is that
they actually turn into messages to the graphics process gcltksrv. To actually see these
messages you can do

(debugging t).

1.4 Return Values

1.4.1 Widget Constructor Return Values

On successful completion, the widget constructor functions return the symbol passed in as
the first argument. It will now have a functional binding. It is an error to pass in a symbol
which already corresponds to a widget, without first calling the destroy command. On
failure, an error is signalled.

1.4.2 Widget Return Values

The widget functions themselves, do not normally return any value. Indeed the lisp process
does not wait for them to return, but merely dispatches the commands, such as to change
the text in themselves. Sometimes however you either wish to wait, in order to synchronize,
or you wish to see if your command fails or succeeds. You request values by passing the
keyword :return and a value indicating the type.

(.hello :configure :text "Bye World" :return ’string)

==> nn

=>T
the empty string is returned as first value, and the second value T indicates that the new
text value was successfully set. LISP will not continue until the tkclsrv process indicates
back that the function call has succeeded. While waiting of course LISP will continue to
process other graphics events which arrive, since otherwise a deadlock would arise: the user
for instance might click on a mouse, just after we had decided to wait for a return value
from the .hello function. More generally a user program may be running in GCL and be
interrupted to receive and act on communications from the gcltksrv process. If an error
occurred then the second return value of the lisp function will be NIL. In this case the first
value, the string is usually an informative message about the type of error.

A special variable tk: :*break-on-errors* which if not nil, requests that that LISP
signal an error when a message is received indicating a function failed. Whenever a command
fails, whether a return value was requested or not, gcltksrv returns a message indicating
failure. The default is to not go into the debugger. When debugging your windows it may
be convenient however to set this variable to T to track down incorrect messages.

6 No Title

The gcltksrv process always returns strings as values. If :return type is specified, then
conversion to type is accomplished by calling

(coerce-result return-string type)

Here type must be a symbol with a coercion-functions property. The builtin return
types which may be requested are:

T in which case the string passed back from the gcltksrv process, will be read
by the lisp reader.

number the string is converted to a number using the current *read-base*

list-strings
(coerce-result "a b {c d} e" ’list-strings)
==> ("a" "b" "C d" ||e||)

boolean (coerce-result "1" ’boolean) ==> T (coerce-result "0" ’boolean) ==> NIL

The above symbols are in the TK or LISP package. It would be possible to add new types
just as the :return t is done:

(setf (get ’t ’coercion-functions)
(cons #’(lambda (x) (our-read-from-string x 0))
#’ (lambda (x) (format nil "“s" x))))

The coercion-functions property of a symbol, is a cons whose car is the coercion
form from a string to some possibly different lisp object, and whose cdr is a function which
builds a string to send to the graphics server. Often the two functions are inverse functions
one of the other up to equal.

1.4.3 Control Function Return Values

The control funcions (see (undefined) [Control], page (undefined)) do not return a value
or wait unless requested to do so, using the :return keyword. The types and method of
specification are the same as for the Widget Functions in the previous section.

(winfo :width ’.hello :return ’number)

==> 120
indicates that the .hello button is actually 120 pixels wide.

1.5 Argument Lists

1.5.1 Widget Functions

The rule is that the first argument for a widget function is a keyword, called the option.
The pattern of the remaining arguments depends completely on the option argument. Thus

(.hello option 7argl? 7arg2? ...)

One option which is permitted for every widget function is :configure. The argument
pattern following it is the same keyword/value pair list which is used in widget creation.
For a button widget, the other valid options are :deactivate, :flash, and :invoke. To
find these, since .hello was constructed with the button constructor, you should see See
(undefined) [button|, page (undefined). The argument pattern for other options depends
completely on the option and the widget function. For example if .scrollbar is a scroll

Chapter 1: General 7

bar window, then the option :set must be followed by 4 numeric arguments, which indicate
how the scrollbar should be displayed, see See (undefined) [scrollbar|, page (undefined).
(.scrollbar :set al a2 a3 a4)
If on the other hand .scale is a scale (see (undefined) [scale], page (undefined)), then
we have
(.scale :set al)

only one numeric argument should be supplied, in order to position the scale.

1.5.2 Widget Constructor Argument Lists

These are
(widget-constructor pathname :keywordl valuel :keyword2 value2 ...)

to create the widget whose name is pathname. The possible keywords allowed are specified
in the corresponding section of See (undefined) [Widgets|, page (undefined).

1.5.3 Concatenation Using ‘:’ in Argument List

What has been said so far about arguments is not quite true. A special string concatena-
tion construction is allowed in argument lists for widgets, widget constructors and control
functions.

First we introduce the function tk-conc which takes an arbitrary number of arguments,
which may be symbols, strings or numbers, and concatenates these into a string. The print
names of symbols are converted to lower case, and package names are ignored.

(tk-conc "a" 1 :b ’cd "e") ==> "albcde"

One could use tk-conc to construct arguments for widget functions. But even though
tk-conc has been made quite efficient, it still would involve the creation of a string. The
: construct avoids this. In a call to a widget function, a widget constructor, or a control
function you may remove the call to tk-conc and place : in between each of its arguments.
Those functions are able to understand this and treat the extra arguments as if they were
glued together in one string, but without the extra cost of actually forming that string.

(tk-concabc .. w)<==>a:b:c: ... w
(setq i 10)

(.hello :configure :text i : " pies")

(.hello :configure :text (tk-conc i " pies"))

(.hello :configure :text (format nil "“a pies" i))

The last three examples would all result in the text string being "10 pies", but the first
method is the most efficient. That call will be made with no string or cons creation. The
GC Monitor example, is written in such a way that there is no creation of cons or string
types during normal operation. This is particularly useful in that case, since one is trying
to monitor usage of conses by other programs, not its own usage.

1.6 Lisp Functions Invoked from Graphics

It is possible to make certain areas of a window mouse sensitive, or to run commands on
reception of certain events such as keystrokes, while the focus is in a certain window. This
is done by having a lisp function invoked or some lisp form evaluated. We shall refer to
such a lisp function or form as a command.

8 No Title

For example

(button °’.button :text "Hello" :command ’(print "hi"))
(button ’.jim :text "Call Jim" :command ’call-jim)
In the first case when the window .button is clicked on, the word "hi" will be printed
in the lisp to standard output. In the second case call-jim will be funcalled with no
arguments.

A command must be one of the following three types. What happens depends on which
type it is:

‘function’
If the value satisfies functionp then it will be called with a number of arguments
which is dependent on the way it was bound, to graphics.

‘string’ If the command is a string, then it is passed directly to TCL/TK for evaluation
on that side. Lisp will not be required for the evaluation when the command
is invoked.

‘lisp form’
Any other lisp object is regarded as a lisp form to be eval’d, and this will be
done when the command is invoked.

The following keywords accept as their value a command:

:command

:yscroll :yscrollcommand
:xscroll :xscrollcommand
:scrollcommand

:bind

and in addition bind takes a command as its third argument, see See (undefined) [bind],
page (undefined).

Below we give three different examples using the 3 possibilities for a command: functionp,
string, and lisp form. They all accomplish exactly the same thing. For given a frame . frame
we could construct a listbox in it as:

(1istbox ’.frame.listbox :yscroll ’joe)

Then whenever the listbox view position changes, or text is inserted, so that something
changes, the function joe will be invoked with 4 arguments giving the totalsize of the text,
maximum number of units the window can display, the index of the top unit, and finally
the index of the bottom unit. What these arguments are is specific to the widget listbox
and is documented See (undefined) [listbox|, page (undefined).

joe might be used to do anything, but a common usage is to have joe alter the position
of some other window, such as a scroll bar window. Indeed if .scrollbar is a scrollbar
then the function

(defun joe (a b c d)
(.scrollbar :set a b c d))
would look after sizing the scrollbar appropriately for the percentage of the window visible,
and positioning it.

A second method of accomplishing this identical, using a string (the second type of

command),

Chapter 1: General 9

(listbox ’.frame.listbox :yscroll ".scrollbar set")

and this will not involve a call back to lisp. It uses the fact that the TK graphics side
understands the window name .scrollbar and that it takes the option set. Note that it
does not get the : before the keyword in this case.

In the case of a command which is a lisp form but is not installed via bind or :bind,
then the form will be installed as

#’ (lambda (&rest *arglist*) lisp-form)

where the lisp-form might wish to access the elements of the special variable *arglist*.
Most often this list will be empty, but for example if the command was setup for .scale
which is a scale, then the command will be supplied one argument which is the new numeric
value which is the scale position. A third way of accomplishing the scrollbar setting using
a lisp form is:

(listbox ’.frame.listbox :yscroll ’(apply ’.scrollbar :set *arglistx))

The bind command and :bind keyword, have an additional wrinkle, see See (undefined)
[bind], page (undefined). These are associated to an event in a particular window, and the
lisp function or form to be evaled must have access to that information. For example the x
y position, the window name, the key pressed, etc. This is done via percent symbols which
are specified, see See (undefined) [bind], page (undefined).

(bind "Entry" "<Control-KeyPress>" ’(emacs-move %W %A))

will cause the function emacs-move to be be invoked whenever a control key is pressed
(unless there are more key specific or window specific bindings of said key). It will be
invoked with two arguments, the first %W indicating the window in which it was invoked,
and the second being a string which is the ascii keysym which was pressed at the same time
as the control key.

These percent constructs are only permitted in commands which are invoked via bind
or :bind. The lisp form which is passed as the command, is searched for the percent
constructs, and then a function

#’ (lambda (%W %A) (emacs-move %W %A))
will be invoked with two arguments, which will be supplied by the TK graphics server,

at the time the command is invoked. The *arglist* construct is not available for these
commands.

1.7 Linked Variables

It is possible to link lisp variables to TK variables. In general when the TK variable is
changed, by for instance clicking on a radiobutton, the linked lisp variable will be changed.
Conversely changing the lisp variable will be noticed by the TK graphics side, if one does
the assignment in lisp using setk instead of setq.

(button °’.hello :textvariable ’#*message* :text "hi there")
(pack ’.hello)

This causes linking of the global variable *message* in lisp to a corresponding variable
in TK. Moreover the message that is in the button .hello will be whatever the value of
this global variable is (so long as the TK side is notified of the change!).

Thus if one does

10 No Title

(setk *message* "good bye")
then the button will change to have good bye as its text. The lisp macro setk expands into
(progl (setf *message* "good bye") (notice-text-variables))

which does the assignment, and then goes thru the linked variables checking for those that
have changed, and updating the TK side should there be any. Thus if you have a more
complex program which might have done the assignment of your global variable, you may
include the call to notice-text-variables at the end, to assure that the graphics side
knows about the changes.

A variable which is linked using the keyword :textvariable is always a variable con-
taining a string.
However it is possible to have other types of variables.

(checkbutton ’.checkbuttonl :text "A button" :variable ’(boolean *joex))

(checkbutton ’.checkbutton2 :text "A button" :variable ’*joex*)

(checkbutton ’.checkbutton3 :text "Debugging" :variable ’(t *debugk)
:onvalue 100 :offvalue -1)

The first two examples are the same in that the default variable type for a checkbutton is
boolean. Notice that the specification of a variable type is by (type variable). The types
which are permissible are those which have coercion-fucntions, See (undefined) [Return
Values|, page (undefined). In the first example a variable *joe* will be linked, and its
default initial value will be set to nil, since the default initial state of the check button is
off, and the default off value is nil. Actually on the TK side, the corresponding boolean
values are "1" and "0", but the boolean type makes these become t and nil.

In the third example the variable *debug® may have any lisp value (here type is t). The
initial value will be made to be -1, since the checkbutton is off. Clicking on .checkbutton3
will result in the value of *debug* being changed to 100, and the light in the button will be
toggled to on, See (undefined) [checkbutton], page (undefined). You may set the variable
to be another value besides 100.

You may also call
(link-text-variable ’*joe* ’boolean)

to cause the linking of a variable named *joe*. This is done automatically whenever the
variable is specified after one of the keys
:variable :textvariable.

Just as one must be cautious about using global variables in lisp, one must be cautious in
making such linked variables. In particular note that the TK side, uses variables for various
purposes. If you make a checkbutton with pathname .a.b.c then unless you specify a
:variable option, the variable ¢ will become associated to the TK value of the checkbutton.
We do NOT link this variable by default, feeling that one might inadvertently alter global
variables, and that they would not typically use the lisp convention of being of the form
c. You must specify the :variable option, or call link-variable.

1.8 tkconnect

tkconnect &key host display can-rsh gcltksrv

This function provides a connection to a graphics server process, which in turn connects
to possibly several graphics display screens. The graphics server process, called gcltksrv

Chapter 1: General 11

may or may not run on the same machine as the lisp to which it is attached. display
indicates the name of the default display to connect to, and this in turn defaults to the
value of the environment variable DISPLAY.

When tkconnect is invoked, a socket is opened and it waits for a graphics process to
connect to it. If the host argument is not supplied, then a process will be spawned which
will connect back to the lisp process. The name of the command for invoking the process is
the value of the gcltksrv argument, which defaults to the value of the environment variable
GCL_TK_SERVER. If that variable is not set, then the lisp *1lib-directory* is searched for
an entry gcl-tk/gcltksrv.

If host is supplied, then a command to run on the remote machine will be printed on
standard output. If can-rsh is not nil, then the command will not be printed, but rather
an attempt will be made to rsh to the machine, and to run the command.

Thus
(tkconnect)

would start the process on the local machine, and use for display the value of the environ-
ment variable DISPLAY.

(tkconnect :host "max.ma.utexas.edu" :can-rsh t)

would cause an attempt to rsh to max and to run the command there, to connect back to
the appropriate port on the localhost.
You may indicate that different toplevel windows be on different displays, by using the
:display argument when creating the window, See (undefined) [toplevel], page (undefined).
Clearly you must have a copy of the program gcltksrv and TK libraries installed on
the machine where you wish to run the server.

Chapter 2: Widgets 13

2 Widgets

2.1 button

button \- Create and manipulate button widgets

Synopsis

button pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY

See (undefined) [options|, page (undefined), for more information.

Arguments for Button

:command

:height

:state

:width

Name="command" Class="Command"

Specifies a Tcl command to associate with the button. This command is typi-
cally invoked when mouse button 1 is released over the button window.

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="state" Class="State"

Specifies one of three states for the button: normal, active, or disabled. In
normal state the button is displayed using the foreground and background op-
tions. The active state is typically used when the pointer is over the button.
In active state the button is displayed using the activeForeground and active-
Background options. Disabled state means that the button is insensitive: it
doesn’t activate and doesn’t respond to mouse button presses. In this state
the disabledForeground and background options determine how the button is
displayed.

14 No Title

Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The button command creates a new window (given by the pathName argument) and makes
it into a button widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the button such as its
colors, font, text, and initial relief. The button command returns its pathName argument.
At the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A button is a widget that displays a textual string or bitmap. It can display itself in
either of three different ways, according to the state option; it can be made to appear raised,
sunken, or flat; and it can be made to flash. When a user invokes the button (by pressing
mouse button 1 with the cursor over the button), then the Tcl command specified in the
:command option is invoked.

A Button Widget’s Arguments

The button command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for button widgets:

pathName :activate
Change the button’s state to active and redisplay the button using its active
foreground and background colors instead of normal colors. This command is
ignored if the button’s state is disabled. This command is obsolete and will
eventually be removed; use “pathName :configure :state active” instead.

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the button command.

pathName :deactivate
Change the button’s state to normal and redisplay the button using its normal
foreground and background colors. This command is ignored if the button’s

Chapter 2: Widgets 15

state is disabled. This command is obsolete and will eventually be removed;
use “pathName :configure :state normal” instead.

pathName :flash
Flash the button. This is accomplished by redisplaying the button several
times, alternating between active and normal colors. At the end of the flash
the button is left in the same normal/active state as when the command was
invoked. This command is ignored if the button’s state is disabled.

pathName :invoke
Invoke the Tcl command associated with the button, if there is one. The return
value is the return value from the Tcl command, or an empty string if there
is no command associated with the button. This command is ignored if the
button’s state is disabled.

"Default Bindings"
Tk automatically creates class bindings for buttons that give them the following default
behavior:

[1] The button activates whenever the mouse passes over it and deactivates whenever
the mouse leaves the button.

[2] The button’s relief is changed to sunken whenever mouse button 1 is pressed over
the button, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the button and later released over the button,
the button is invoked. However, if the mouse is not over the button when button 1 is
released, then no invocation occurs.

If the button’s state is disabled then none of the above actions occur: the button is
completely non-responsive.

The behavior of buttons can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Keywords

button, widget
2.2 listbox
listbox \- Create and manipulate listbox widgets

Synopsis

listbox pathName ?options?

Standard Options

background foreground selectBackground xScrollCommand
borderWidth font selectBorderWidth yScrollCommand
cursor geometry selectForeground

exportSelection relief setGrid

See (undefined) [options], page (undefined), for more information.

16 No Title

Arguments for Listbox

None.

Description

The listbox command creates a new window (given by the pathName argument) and makes
it into a listbox widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the listbox such as its
colors, font, text, and relief. The listbox command returns its pathName argument. At
the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A listbox is a widget that displays a list of strings, one per line. When first created,
a new listbox has no elements in its list. Elements may be added or deleted using widget
commands described below. In addition, one or more elements may be selected as described
below. If a listbox is exporting its selection (see exportSelection option), then it will observe
the standard X11 protocols for handling the selection; listbox selections are available as type
STRING, consisting of a Tcl list with one entry for each selected element.

For large lists only a subset of the list elements will be displayed in the listbox window at
once; commands described below may be used to change the view in the window. Listboxes
allow scrolling in both directions using the standard xScrollCommand and yScrollCommand
options. They also support scanning, as described below.

A Listbox’s Arguments

The listbox command creates a new T'cl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for listbox widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the listbox command.

pathName :curselection
Returns a list containing the indices of all of the elements in the listbox that
are currently selected. If there are no elements selected in the listbox then an
empty string is returned.

pathName :delete first ?last?
Delete one or more elements of the listbox. First and last give the integer
indices of the first and last elements in the range to be deleted. If last isn’t

Chapter 2:

pathName

pathName

pathName

pathName

pathName

Widgets 17

specified it defaults to first, i.e. a single element is deleted. An index of 0
corresponds to the first element in the listbox. Either first or last may be
specified as end, in which case it refers to the last element of the listbox. This
command returns an empty string

:get index

Return the contents of the listbox element indicated by index. Index must be
a non-negative integer (0 corresponds to the first element in the listbox), or it
may also be specified as end to indicate the last element in the listbox.

:dinsert index 7element element ...7

Insert zero or more new elements in the list just before the element given by
index. If index is specified as end then the new elements are added to the end
of the list. Returns an empty string.

:nearest y
Given a y-coordinate within the listbox window, this command returns the
index of the (visible) listbox element nearest to that y-coordinate.

iscan option args

This command is used to implement scanning on listboxes. It has two forms,
depending on option:

pathName :scan :mark z y
Records z and y and the current view in the listbox window; used
in conjunction with later scan dragto commands. Typically this
command is associated with a mouse button press in the widget.
It returns an empty string.

pathName :scan :dragto z y.

This command computes the difference between its z and y argu-
ments and the z and y arguments to the last scan mark command
for the widget. It then adjusts the view by 10 times the difference
in coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the
list at high speed through the window. The return value is an
empty string.

:select option arg

This command is used to adjust the selection within a listbox. It has several
forms, depending on option. In all of the forms the index end refers to the last
element in the listbox.

pathName :select :adjust index
Locate the end of the selection nearest to the element given by
indez, and adjust that end of the selection to be at index (i.e in-
cluding but not going beyond indezx). The other end of the selection
is made the anchor point for future select to commands. If the se-
lection isn’t currently in the listbox, then this command is identical
to the select from widget command. Returns an empty string.

18 No Title

pathName :select :clear
If the selection is in this listbox then it is cleared so that none of
the listbox’s elements are selected anymore.

pathName :select :from index
Set the selection to consist of element index, and make index the
anchor point for future select to widget commands. Returns an
empty string.

pathName :select :to index
Set the selection to consist of the elements from the anchor point
to element index, inclusive. The anchor point is determined by the
most recent select from or select adjust command in this widget.
If the selection isn’t in this widget, this command is identical to
select from. Returns an empty string.

pathName :size
Returns a decimal string indicating the total number of elements in the listbox.

pathName :xview index
Adjust the view in the listbox so that character position index is displayed at
the left edge of the widget. Returns an empty string.

pathName :yview index
Adjust the view in the listbox so that element indez is displayed at the top
of the widget. If index is specified as end it indicates the last element of the
listbox. Returns an empty string.

"Default Bindings"

Tk automatically creates class bindings for listboxes that give them the following default
behavior:

[1] When button 1 is pressed over a listbox, the element underneath the mouse cursor
is selected. The mouse can be dragged to select a range of elements.

[2] The ends of the selection can be adjusted by dragging with mouse button 1 while
the shift key is down; this will adjust the end of the selection that was nearest to the
mouse cursor when button 1 was pressed.

[3] The view in the listbox can be adjusted by dragging with mouse button 2.

The behavior of listboxes can be changed by defining new bindings for individual widgets
or by redefining the class bindings. In addition, the procedure tk_listboxSingleSelect may
be invoked to change listbox behavior so that only a single element may be selected at once.

Keywords

listbox, widget

2.3 scale

scale \- Create and manipulate scale widgets

Chapter 2: Widgets 19

Synopsis

scale pathName ?options?

Standard Options

activeForeground borderWidth font orient
background cursor foreground relief

See (undefined) [options|, page (undefined), for more information.

Arguments for Scale

:command

Name="command" Class="Command"

Specifies the prefix of a T'cl command to invoke whenever the value of the scale
is changed interactively. The actual command consists of this option followed
by a space and a number. The number indicates the new value of the scale.

:from
Name="from" Class="From"
Specifies the value corresponding to the left or top end of the scale. Must be
an integer.
:label
Name="1abel" Class="Label"
Specifies a string to displayed as a label for the scale. For vertical scales the
label is displayed just to the right of the top end of the scale. For horizontal
scales the label is displayed just above the left end of the scale.
:length
Name="length" Class="Length"
Specifies the desired long dimension of the scale in screen units, that is in any
of the forms acceptable to Tk_GetPixels. For vertical scales this is the scale’s
height; for horizontal scales it is the scale’s width.
:showvalue
Name="showValue" Class="ShowValue"
Specifies a boolean value indicating whether or not the current value of the
scale is to be displayed.
:sliderforeground

Name="sliderForeground" Class="sliderForeground"

Specifies the color to use for drawing the slider under normal conditions. When
the mouse is in the slider window then the slider’s color is determined by the
activeForeground option.

20 No Title

:sliderlength
Name="sliderLength" Class="SliderLength"

Specfies the size of the slider, measured in screen units along the slider’s long
dimension. The value may be specified in any of the forms acceptable to
Tk_GetPixels.

:state

Name="state" Class="State"

Specifies one of two states for the scale: normal or disabled. If the scale is
disabled then the value may not be changed and the scale won’t activate when
the mouse enters it.

:tickinterval
Name="tickInterval" Class="TickInterval"

Must be an integer value. Determines the spacing between numerical tick-marks
displayed below or to the left of the slider. If specified as 0, then no tick-marks
will be displayed.

:to

Name="to" Class="To"

Specifies the value corresponding to the right or bottom end of the scale. Must
be an integer. This value may be either less than or greater than the from
option.

:width
Name="width" Class="Width"

Specifies the desired narrow dimension of the scale in screen units (i.e. any of
the forms acceptable to Tk_GetPixels). For vertical scales this is the scale’s
width; for horizontal scales this is the scale’s height.

Description

The scale command creates a new window (given by the pathName argument) and makes it
into a scale widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the scale such as its colors, orientation,
and relief. The scale command returns its pathName argument. At the time this command
is invoked, there must not exist a window named pathName, but pathName’s parent must
exist,.

A scale is a widget that displays a rectangular region and a small slider. The rectangular
region corresponds to a range of integer values (determined by the from and to options), and
the position of the slider selects a particular integer value. The slider’s position (and hence
the scale’s value) may be adjusted by clicking or dragging with the mouse as described in

Chapter 2: Widgets 21

the BINDINGS section below. Whenever the scale’s value is changed, a Tcl command is
invoked (using the command option) to notify other interested widgets of the change.

Three annotations may be displayed in a scale widget: a label appearing at the top-left
of the widget (top-right for vertical scales), a number displayed just underneath the slider
(just to the left of the slider for vertical scales), and a collection of numerical tick-marks just
underneath the current value (just to the left of the current value for vertical scales). Each
of these three annotations may be selectively enabled or disabled using the configuration
options.

A Scale’s" Argumentsommand"

The scale command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for scale widgets:

pathName :configure ?option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the scale command.

pathName :get
Returns a decimal string giving the current value of the scale.

pathName :set value
This command is invoked to change the current value of the scale, and hence
the position at which the slider is displayed. Value gives the new value for the
scale.

Bindings

When a new scale is created, it is given the following initial behavior by default:

<Enter> Change the slider display to use activeForeground instead of sliderForeground.
<Leave> Reset the slider display to use sliderForeground instead of activeForeground.

<ButtonPress-1>
Change the slider display so that the slider appears sunken rather than raised.
Move the slider (and adjust the scale’s value) to correspond to the current
mouse position.

<Buttonl-Motion>
Move the slider (and adjust the scale’s value) to correspond to the current
mouse position.

22 No Title

<ButtonRelease-1>
Reset the slider display so that the slider appears raised again.

Keywords

scale, widget

2.4 canvas

canvas \- Create and manipulate canvas widgets
Synopsis

canvas pathName ?options?

Standard Options

background insertBorderWidth relief xScrollCommand
borderWidth insertOffTime selectBackground yScrollCommand
cursor insertOnTime selectBorderWidth
insertBackground insertWidth selectForeground

See (undefined) [options|, page (undefined), for more information.

Arguments for Canvas

:closeenough
Name="closeEnough" Class="CloseEnough"

Specifies a floating-point value indicating how close the mouse cursor must be
to an item before it is considered to be “inside” the item. Defaults to 1.0.
:confine

Name="confine" Class="Confine"

Specifies a boolean value that indicates whether or not it should be allowable to
set the canvas’s view outside the region defined by the scrollRegion argument.
Defaults to true, which means that the view will be constrained within the
scroll region.

:height
Name="height" Class="Height"

Specifies a desired window height that the canvas widget should request from
its geometry manager. The value may be specified in any of the forms described
in the COORDINATES section below.

:scrollincrement
Name="scrollIncrement" Class="Scrolllncrement"

Specifies a distance used as increment during scrolling: when one of the arrow
buttons on an associated scrollbar is pressed, the picture will shift by this

Chapter 2: Widgets 23

distance. The distance may be specified in any of the forms described in the
COORDINATES section below.

:scrollregion
Name="scrollRegion" Class="ScrollRegion"

Specifies a list with four coordinates describing the left, top, right, and bottom
coordinates of a rectangular region. This region is used for scrolling purposes
and is considered to be the boundary of the information in the canvas. Each
of the coordinates may be specified in any of the forms given in the COORDI-
NATES section below.

:width
Name="width" Class="width"
Specifies a desired window width that the canvas widget should request from its
geometry manager. The value may be specified in any of the forms described
in the COORDINATES section below.
Introduction

The canvas command creates a new window (given by the pathName argument) and makes
it into a canvas widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the canvas such as its colors
and 3-D relief. The canvas command returns its pathName argument. At the time this
command is invoked, there must not exist a window named pathName, but pathName’s
parent must exist.

Canvas widgets implement structured graphics. A canvas displays any number of items,
which may be things like rectangles, circles, lines, and text. Items may be manipulated
(e.g. moved or re-colored) and commands may be associated with items in much the same
way that the bind command allows commands to be bound to widgets. For example, a
particular command may be associated with the <Button-1> event so that the command is
invoked whenever button 1 is pressed with the mouse cursor over an item. This means that
items in a canvas can have behaviors defined by the Tcl scripts bound to them.

Display List

The items in a canvas are ordered for purposes of display, with the first item in the display
list being displayed first, followed by the next item in the list, and so on. Items later in
the display list obscure those that are earlier in the display list and are sometimes referred
to as being “on top” of earlier items. When a new item is created it is placed at the end
of the display list, on top of everything else. Widget commands may be used to re-arrange
the order of the display list.

Item Ids And Tags

Items in a canvas widget may be named in either of two ways: by id or by tag. Each item
has a unique identifying number which is assigned to that item when it is created. The id
of an item never changes and id numbers are never re-used within the lifetime of a canvas
widget.

24 No Title

Each item may also have any number of tags associated with it. A tag is just a string
of characters, and it may take any form except that of an integer. For example, “x123” is
OK but “123” isn’t. The same tag may be associated with many different items. This is
commonly done to group items in various interesting ways; for example, all selected items
might be given the tag “selected”.

The tag all is implicitly associated with every item in the canvas; it may be used to
invoke operations on all the items in the canvas.

The tag current is managed automatically by Tk; it applies to the current item, which
is the topmost item whose drawn area covers the position of the mouse cursor. If the mouse
is not in the canvas widget or is not over an item, then no item has the current tag.

When specifying items in canvas widget commands, if the specifier is an integer then it
is assumed to refer to the single item with that id. If the specifier is not an integer, then it
is assumed to refer to all of the items in the canvas that have a tag matching the specifier.
The symbol tagOrld is used below to indicate that an argument specifies either an id that
selects a single item or a tag that selects zero or more items. Some widget commands only
operate on a single item at a time; if tagOrld is specified in a way that names multiple
items, then the normal behavior is for the command to use the first (lowest) of these items
in the display list that is suitable for the command. Exceptions are noted in the widget
command descriptions below.

Coordinates

All coordinates related to canvases are stored as floating-point numbers. Coordinates and
distances are specified in screen units, which are floating-point numbers optionally followed
by one of several letters. If no letter is supplied then the distance is in pixels. If the letter
is m then the distance is in millimeters on the screen; if it is ¢ then the distance is in
centimeters; i means inches, and p means printers points (1/72 inch). Larger y-coordinates
refer to points lower on the screen; larger x-coordinates refer to points farther to the right.

Transformations

Normally the origin of the canvas coordinate system is at the upper-left corner of the window
containing the canvas. It is possible to adjust the origin of the canvas coordinate system
relative to the origin of the window using the xview and yview widget commands; this
is typically used for scrolling. Canvases do not support scaling or rotation of the canvas
coordinate system relative to the window coordinate system.

Indidividual items may be moved or scaled using widget commands described below, but
they may not be rotated.

Indices

Text items support the notion of an index for identifying particular positions within the
item. Indices are used for commands such as inserting text, deleting a range of characters,
and setting the insertion cursor position. An index may be specified in any of a number of
ways, and different types of items may support different forms for specifying indices. Text
items support the following forms for an index; if you define new types of text-like items, it
would be advisable to support as many of these forms as practical. Note that it is possible
to refer to the character just after the last one in the text item; this is necessary for such
tasks as inserting new text at the end of the item.

Chapter 2:

number

end

insert

sel.first

sel.last

Qz,y

Widgets 25

A decimal number giving the position of the desired character within the text
item. O refers to the first character, 1 to the next character, and so on. A
number less than 0 is treated as if it were zero, and a number greater than the
length of the text item is treated as if it were equal to the length of the text
item.

Refers to the character just after the last one in the item (same as the number
of characters in the item).

Refers to the character just before which the insertion cursor is drawn in this
item.

Refers to the first selected character in the item. If the selection isn’t in this
item then this form is illegal.

Refers to the last selected character in the item. If the selection isn’t in this
item then this form is illegal.

Refers to the character at the point given by z and y, where x and y are specified
in the coordinate system of the canvas. If z and y lie outside the coordinates
covered by the text item, then they refer to the first or last character in the
line that is closest to the given point.

A Canvas Widget’s Arguments

The canvas command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option ?arg arg ...7

Option and the args determine the exact behavior of the command. The following widget
commands are possible for canvas widgets:

pathName :addtag tag searchSpec Targ arg ...7

For each item that meets the constraints specified by searchSpec and the args,
add tag to the list of tags associated with the item if it isn’t already present
on that list. It is possible that no items will satisfy the constraints given by
searchSpec and args, in which case the command has no effect. This command
returns an empty string as result. SearchSpec and arg’s may take any of the
following forms:

above tagOrld
Selects the item just after (above) the one given by tagOrld in the
display list. If tagOrld denotes more than one item, then the last
(topmost) of these items in the display list is used.

all Selects all the items in the canvas.

below tagOrld
Selects the item just before (below) the one given by tagOrld in
the display list. If tagOrld denotes more than one item, then the
first (lowest) of these items in the display list is used.

closest = y Thalo? ?start?
Selects the item closest to the point given by x and y. If more than
one item is at the same closest distance (e.g. two items overlap

26

No Title

the point), then the top-most of these items (the last one in the
display list) is used. If halo is specified, then it must be a non-
negative value. Any item closer than halo to the point is considered
to overlap it. The start argument may be used to step circularly
through all the closest items. If start is specified, it names an item
using a tag or id (if by tag, it selects the first item in the display list
with the given tag). Instead of selecting the topmost closest item,
this form will select the topmost closest item that is below start in
the display list; if no such item exists, then the selection behaves
as if the start argument had not been specified.

enclosed z1 yI z2 y2
Selects all the items completely enclosed within the rectangular
region given by z1, y1, 2, and y2. X1 must be no greater then z2
and yI must be no greater than y2.

overlapping =1 y1 z2 y2
Selects all the items that overlap or are enclosed within the rectan-

gular region given by z1, y1, 2, and y2. XI must be no greater
then z2 and yI must be no greater than y2.

withtag tagOrld
Selects all the items given by tagOrld.

pathName :bbox tagOrld ?tagOrld tagOrld ...7

Returns a list with four elements giving an approximate bounding box for all
the items named by the tagOrld arguments. The list has the form “x! yi1 z2
y2” such that the drawn areas of all the named elements are within the region
bounded by zI on the left, 22 on the right, y7 on the top, and y2 on the
bottom. The return value may overestimate the actual bounding box by a few
pixels. If no items match any of the tagOrld arguments then an empty string
is returned.

pathName :bind tagOrld ?sequence? ?command?

This command associates command with all the items given by tagOrld such
that whenever the event sequence given by sequence occurs for one of the items
the command will be invoked. This widget command is similar to the bind com-
mand except that it operates on items in a canvas rather than entire widgets.
See the bind manual entry for complete details on the syntax of sequence and
the substitutions performed on command before invoking it. If all arguments
are specified then a new binding is created, replacing any existing binding for
the same sequence and tagOrld (if the first character of command is “+” then
command augments an existing binding rather than replacing it). In this case
the return value is an empty string. If command is omitted then the command
returns the command associated with tagOrld and sequence (an error occurs
if there is no such binding). If both command and sequence are omitted then
the command returns a list of all the sequences for which bindings have been
defined for tagOrld.

The only events for which bindings may be specified are those related to the mouse and

keyboard, such as Enter, Leave, ButtonPress, Motion, and KeyPress. The handling of

Chapter 2: Widgets 27

events in canvases uses the current item defined in ITEM IDS AND TAGS above. Enter
and Leave events trigger for an item when it becomes the current item or ceases to be the
current item; note that these events are different than Enter and Leave events for windows.
Mouse-related events are directed to the current item, if any. Keyboard-related events are
directed to the focus item, if any (see the focus widget command below for more on this).

It is possible for multiple commands to be bound to a single event sequence for a single
object. This occurs, for example, if one command is associated with the item’s id and
another is associated with one of the item’s tags. When this occurs, the first matching
binding is used. A binding for the item’s id has highest priority, followed by the oldest tag
for the item and proceeding through all of the item’s tags up through the most-recently-
added one. If a binding is associated with the tag all, the binding will have lower priority
than all other bindings associated with the item.

pathName :canvasx screenx ?gridspacing?
Given a screen x-coordinate screenz this command returns the canvas
x-coordinate that is displayed at that location. If gridspacing is specified, then
the canvas coordinate is rounded to the nearest multiple of gridspacing units.

pathName :canvasy screeny ?gridspacing?
Given a screen y-coordinate screeny this command returns the canvas
y-coordinate that is displayed at that location. If gridspacing is specified, then
the canvas coordinate is rounded to the nearest multiple of gridspacing units.

pathName :configure ?option? ?wvalue? ?option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the canvas command.

pathName :coords tagOrld 7z0 y0 ...7
Query or modify the coordinates that define an item. If no coordinates are
specified, this command returns a list whose elements are the coordinates of
the item named by tagOrld. If coordinates are specified, then they replace the
current coordinates for the named item. If tagOrld refers to multiple items,
then the first one in the display list is used.

pathName :create type x y 7z y ...7 Toption value ...7
Create a new item in pathName of type type. The exact format of the arguments
after type depends on type, but usually they consist of the coordinates for one
or more points, followed by specifications for zero or more item options. See
the subsections on individual item types below for more on the syntax of this
command. This command returns the id for the new item.

pathName :dchars tagOrld first ?last?
For each item given by tagOrld, delete the characters in the range given by
first and last, inclusive. If some of the items given by tagOrld don’t support

28 No Title

text operations, then they are ignored. First and last are indices of characters
within the item(s) as described in INDICES above. If last is omitted, it defaults
to first. This command returns an empty string.

pathName :delete 7tagOrld tagOrld ...7
Delete each of the items given by each tagOrld, and return an empty string.

pathName :dtag tagOrld 7tagToDelete?
For each of the items given by tagOrld, delete the tag given by tagToDelete
from the list of those associated with the item. If an item doesn’t have the
tag tagToDelete then the item is unaffected by the command. If tagToDelete is
omitted then it defaults to tagOrld. This command returns an empty string.

pathName :find searchCommand ?arg arg ...7
This command returns a list consisting of all the items that meet the constraints
specified by searchCommand and arg’s. SearchCommand and args have any of
the forms accepted by the addtag command.

pathName :focus 7tagOrid?

Set the keyboard focus for the canvas widget to the item given by tagOrld. If
tagOrld refers to several items, then the focus is set to the first such item in
the display list that supports the insertion cursor. If tagOrld doesn’t refer to
any items, or if none of them support the insertion cursor, then the focus isn’t
changed. If tagOrld is an empty string, then the focus item is reset so that no
item has the focus. If tagOrld is not specified then the command returns the
id for the item that currently has the focus, or an empty string if no item has
the focus.

Once the focus has been set to an item, the item will display the insertion cursor and
all keyboard events will be directed to that item. The focus item within a canvas and the
focus window on the screen (set with the focus command) are totally independent: a given
item doesn’t actually have the input focus unless (a) its canvas is the focus window and
(b) the item is the focus item within the canvas. In most cases it is advisable to follow the
focus widget command with the focus command to set the focus window to the canvas (if
it wasn’t there already).

pathName :gettags tagOrld
Return a list whose elements are the tags associated with the item given by
tagOrld. If tagOrld refers to more than one item, then the tags are returned
from the first such item in the display list. If tagOrld doesn’t refer to any items,
or if the item contains no tags, then an empty string is returned.

pathName :icursor tagOrld index

Set the position of the insertion cursor for the item(s) given by tagOrld to just
before the character whose position is given by index. If some or all of the
items given by tagOrld don’t support an insertion cursor then this command
has no effect on them. See INDICES above for a description of the legal forms
for index. Note: the insertion cursor is only displayed in an item if that item
currently has the keyboard focus (see the widget command focus, below), but
the cursor position may be set even when the item doesn’t have the focus. This
command returns an empty string.

Chapter 2:

pathName :

pathName :

pathName :

pathName :

pathName :

pathName :

Widgets 29

index tagOrld index

This command returns a decimal string giving the numerical index within
tagOrld corresponding to indexr. Index gives a textual description of the desired
position as described in INDICES above. The return value is guaranteed to lie
between 0 and the number of characters within the item, inclusive. If tagOrld
refers to multiple items, then the index is processed in the first of these items
that supports indexing operations (in display list order).

insert tagOrld beforeThis string

For each of the items given by tagOrld, if the item supports text insertion then
string is inserted into the item’s text just before the character whose index is
beforeThis. See INDICES above for information about the forms allowed for
beforeThis. This command returns an empty string.

itemconfigure tagOrld ?option? Tvalue? Toption value ...7

This command is similar to the configure widget command except that it mod-
ifies item-specific options for the items given by tagOrld instead of modifying
options for the overall canvas widget. If no option is specified, returns a list
describing all of the available options for the first item given by tagOrld (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no value, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s) in each of the items given by tagOrld; in this case the command returns
an empty string. The options and values are the same as those permissible in
the create widget command when the item(s) were created; see the sections
describing individual item types below for details on the legal options.

lower tagOrld ?belowThis?

Move all of the items given by tagOrld to a new position in the display list
just before the item given by belowThis. If tagOrld refers to more than one
item then all are moved but the relative order of the moved items will not be
changed. BelowThis is a tag or id; if it refers to more than one item then the
first (lowest) of these items in the display list is used as the destination location
for the moved items. This command returns an empty string.

move tagOrld ztAmount yAmount

Move each of the items given by tagOrld in the canvas coordinate space by
adding zAmount to the x-coordinate of each point associated with the item
and yAmount to the y-coordinate of each point associated with the item. This
command returns an empty string.

postscript ?option value option value ...7

Generate a Postscript representation for part or all of the canvas. If the :file
option is specified then the Postscript is written to a file and an empty string
is returned; otherwise the Postscript is returned as the result of the command.
The Postscript is created in Encapsulated Postscript form using version 3.0
of the Document Structuring Conventions. The option\-value argument pairs

30

No Title

provide additional information to control the generation of Postscript. The
following options are supported:

:colormap varName

VarName must be the name of a global array variable that specifies
a color mapping to use in the Postscript. Each element of varName
must consist of Postscript code to set a particular color value (e.g.
“1.0 1.0 0.0 setrgbcolor”). When outputting color information in
the Postscript, Tk checks to see if there is an element of varName
with the same name as the color. If so, Tk uses the value of the
element as the Postscript command to set the color. If this option
hasn’t been specified, or if there isn’t an entry in varName for a
given color, then Tk uses the red, green, and blue intensities from
the X color.

:colormode mode

Specifies how to output color information. Mode must be either
color (for full color output), gray (convert all colors to their gray-
scale equivalents) or mono (convert all colors to black or white).

file fileName

Specifies the name of the file in which to write the Postscript. If
this option isn’t specified then the Postscript is returned as the
result of the command instead of being written to a file.

:fontmap varName

:height size

VarName must be the name of a global array variable that specifies
a font mapping to use in the Postscript. Each element of varName
must consist of a Tcl list with two elements, which are the name
and point size of a Postscript font. When outputting Postscript
commands for a particular font, Tk checks to see if varName con-
tains an element with the same name as the font. If there is such an
element, then the font information contained in that element is used
in the Postscript. Otherwise Tk attempts to guess what Postscript
font to use. Tk’s guesses generally only work for well-known fonts
such as Times and Helvetica and Courier, and only if the X font
name does not omit any dashes up through the point size. For ex-
ample, \fB\-*\-Courier\-Bold\-R\-Normal\-\-*\-120\-* will work
but \fB*Courier\-Bold\-R\-Normal*120* will not; Tk needs the
dashes to parse the font name).

Specifies the height of the area of the canvas to print. Defaults to
the height of the canvas window.

:pageanchor anchor

Specifies which point of the printed area should be appear over
the positioning point on the page (which is given by the :pagex
and :pagey options). For example, :pageanchor n means that the
top center of the printed area should be over the positioning point.
Defaults to center.

Chapter 2: Widgets

31

:pageheight size

Specifies that the Postscript should be scaled in both x and y so that
the printed area is size high on the Postscript page. Size consists of
a floating-point number followed by ¢ for centimeters, i for inches,
m for millimeters, or p or nothing for printer’s points (1/72 inch).
Defaults to the height of the printed area on the screen. If both
:pageheight and :pagewidth are specified then the scale factor from
the later option is used (non-uniform scaling is not implemented).

:pagewidth size

Specifies that the Postscript should be scaled in both x and y so
that the printed area is size wide on the Postscript page. Size has
the same form as for :pageheight. Defaults to the width of the
printed area on the screen. If both :pageheight and :pagewidth are
specified then the scale factor from the later option is used (non-
uniform scaling is not implemented).

:pagex position

Position gives the x-coordinate of the positioning point on the Post-
script page, using any of the forms allowed for :pageheight. Used in
conjunction with the :pagey and :pageanchor options to determine
where the printed area appears on the Postscript page. Defaults to
the center of the page.

:pagey position

Position gives the y-coordinate of the positioning point on the Post-
script page, using any of the forms allowed for :pageheight. Used in
conjunction with the :pagex and :pageanchor options to determine
where the printed area appears on the Postscript page. Defaults to
the center of the page.

:rotate boolean

:width size

X position

y position

Boolean specifies whether the printed area is to be rotated 90 de-
grees. In non-rotated output the x-axis of the printed area runs
along the short dimension of the page (“portrait” orientation); in
rotated output the x-axis runs along the long dimension of the page
(“landscape” orientation). Defaults to non-rotated.

Specifies the width of the area of the canvas to print. Defaults to
the width of the canvas window.

Specifies the x-coordinate of the left edge of the area of the canvas
that is to be printed, in canvas coordinates, not window coordi-
nates. Defaults to the coordinate of the left edge of the window.

Specifies the y-coordinate of the top edge of the area of the canvas
that is to be printed, in canvas coordinates, not window coordi-
nates. Defaults to the coordinate of the top edge of the window.

32 No Title

pathName :raise tagOrld ?aboveThis?
Move all of the items given by tagOrld to a new position in the display list
just after the item given by aboveThis. If tagOrld refers to more than one
item then all are moved but the relative order of the moved items will not be
changed. AboveThis is a tag or id; if it refers to more than one item then
the last (topmost) of these items in the display list is used as the destination
location for the moved items. This command returns an empty string.

pathName :scale tagOrld xOrigin yOrigin xScale yScale

Rescale all of the items given by tagOrld in canvas coordinate space. XOrigin
and yOrigin identify the origin for the scaling operation and xScale and yScale
identify the scale factors for x- and y-coordinates, respectively (a scale factor of
1.0 implies no change to that coordinate). For each of the points defining each
item, the x-coordinate is adjusted to change the distance from zOrigin by a
factor of zScale. Similarly, each y-coordinate is adjusted to change the distance
from yOrigin by a factor of yScale. This command returns an empty string.

pathName :scan option args
This command is used to implement scanning on canvases. It has two forms,
depending on option:

pathName :scan :mark z y
Records z and y and the canvas’s current view; used in conjunc-
tion with later scan dragto commands. Typically this command is
associated with a mouse button press in the widget and z and y
are the coordinates of the mouse. It returns an empty string.

pathName :scan :dragto z y.

This command computes the difference between its z and y ar-
guments (which are typically mouse coordinates) and the z and y
arguments to the last scan mark command for the widget. It then
adjusts the view by 10 times the difference in coordinates. This
command is typically associated with mouse motion events in the
widget, to produce the effect of dragging the canvas at high speed
through its window. The return value is an empty string.

pathName :select option ?tagOrld arg?
Manipulates the selection in one of several ways, depending on option. The
command may take any of the forms described below. In all of the descriptions
below, tagOrld must refer to an item that supports indexing and selection; if it
refers to multiple items then the first of these that supports indexing and the
selection is used. Index gives a textual description of a position within tagOrld,
as described in INDICES above.

pathName :select :adjust tagOrld index
Locate the end of the selection in tagOrld nearest to the character
given by inder, and adjust that end of the selection to be at index
(i.e. including but not going beyond index). The other end of the
selection is made the anchor point for future select to commands. If
the selection isn’t currently in tagOrld then this command behaves

Chapter 2: Widgets 33

the same as the select to widget command. Returns an empty
string.

pathName :select :clear
Clear the selection if it is in this widget. If the selection isn’t in this
widget then the command has no effect. Returns an empty string.

pathName :select :from tagOrld index
Set the selection anchor point for the widget to be just before the
character given by index in the item given by tagOrld. This com-
mand doesn’t change the selection; it just sets the fixed end of the
selection for future select to commands. Returns an empty string.

pathName :select :item
Returns the id of the selected item, if the selection is in an item
in this canvas. If the selection is not in this canvas then an empty
string is returned.

pathName :select :to tagOrld index

Set the selection to consist of those characters of tagOrld between
the selection anchor point and index. The new selection will include
the character given by index; it will include the character given by
the anchor point only if indez is greater than or equal to the anchor
point. The anchor point is determined by the most recent select
adjust or select from command for this widget. If the selection
anchor point for the widget isn’t currently in tagOrld, then it is set
to the same character given by indexr. Returns an empty string.

pathName :type tagOrld
Returns the type of the item given by tagOrld, such as rectangle or text. If
tagOrld refers to more than one item, then the type of the first item in the
display list is returned. If tagOrld doesn’t refer to any items at all then an
empty string is returned.

pathName :xview indez
Change the view in the canvas so that the canvas position given by index ap-
pears at the left edge of the window. This command is typically used by scroll-
bars to scroll the canvas. Index counts in units of scroll increments (the value
of the scrolllncrement option): a value of 0 corresponds to the left edge of the
scroll region (as defined by the scrollRegion option), a value of 1 means one
scroll unit to the right of this, and so on. The return value is an empty string.

pathName :yview inder
Change the view in the canvas so that the canvas position given by index ap-
pears at the top edge of the window. This command is typically used by scroll-
bars to scroll the canvas. Index counts in units of scroll increments (the value
of the scrolllncrement option): a value of 0 corresponds to the top edge of the
scroll region (as defined by the scrollRegion option), a value of 1 means one
scroll unit below this, and so on. The return value is an empty string.

34 No Title

Overview Of Item Types

The sections below describe the various types of items supported by canvas widgets. Each
item type is characterized by two things: first, the form of the create command used to
create instances of the type; and second, a set of configuration options for items of that
type, which may be used in the create and itemconfigure widget commands. Most items
don’t support indexing or selection or the commands related to them, such as index and
insert. Where items do support these facilities, it is noted explicitly in the descriptions
below (at present, only text items provide this support).

Arc Items

Items of type arc appear on the display as arc-shaped regions. An arc is a section of an oval
delimited by two angles (specified by the :start and :extent options) and displayed in one
of several ways (specified by the :style option). Arcs are created with widget commands of
the following form:

pathName :create arc x1 yI1 z2 y2 ?option value option value ...7
The arguments =1, y1, 2, and y2 give the coordinates of two diagonally oppo-
site corners of a rectangular region enclosing the oval that defines the arc. After
the coordinates there may be any number of option-value pairs, each of which
sets one of the configuration options for the item. These same option\-value
pairs may be used in itemconfigure widget commands to change the item’s
configuration. The following options are supported for arcs:

:extent degrees
Specifies the size of the angular range occupied by the arc. The
arc’s range extends for degrees degrees counter-clockwise from the
starting angle given by the :start option. Degrees may be negative.

fill color Fill the region of the arc with color. Color may have any of the
forms accepted by Tk_GetColor. If color is an empty string (the
default), then then the arc will not be filled.

:outline color
Color specifies a color to use for drawing the arc’s outline; it may
have any of the forms accepted by Tk_GetColor. This option de-
faults to black. If the arc’s style is arc then this option is ignored
(the section of perimeter is filled using the :fill option). If color is
specified as an empty string then no outline is drawn for the arc.

istart degrees
Specifies the beginning of the angular range occupied by the arc.
Degrees is given in units of degrees measured counter-clockwise
from the 3-o’clock position; it may be either positive or negative.

:stipple bitmap
Indicates that the arc should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted by
Tk_GetBitmap. If the :fill option hasn’t been specified then this
option has no effect. If bitmap is an empty string (the default),
then filling is done in a solid fashion.

Chapter 2: Widgets 35

:style type Specifies how to draw the arc. If type is pieslice (the default) then
the arc’s region is defined by a section of the oval’s perimeter plus
two line segments, one between the center of the oval and each end
of the perimeter section. If type is chord then the arc’s region is
defined by a section of the oval’s perimeter plus a single line segment
connecting the two end points of the perimeter section. If type is arc
then the arc’s region consists of a section of the perimeter alone. In
this last case there is no outline for the arc and the :outline option
is ignored.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width
Specifies the width of the outline to be drawn around the arc’s
region, in any of the forms described in the COORDINATES section
above. If the :outline option has been specified as an empty string
then this option has no effect. Wide outlines will be drawn centered
on the edges of the arc’s region. This option defaults to 1.0.

Bitmap Items

Items of type bitmap appear on the display as images with two colors, foreground and
background. Bitmaps are created with widget commands of the following form:

pathName :create bitmap z y 7option value option value ...7

The arguments z and y specify the coordinates of a point used to position the
bitmap on the display (see the :anchor option below for more information on
how bitmaps are displayed). After the coordinates there may be any number
of option-value pairs, each of which sets one of the configuration options for
the item. These same option\-value pairs may be used in itemconfigure wid-
get commands to change the item’s configuration. The following options are
supported for bitmaps:

:anchor anchorPos
AnchorPos tells how to position the bitmap relative to the posi-
tioning point for the item; it may have any of the forms accepted
by Tk_GetAnchor. For example, if anchorPos is center then the
bitmap is centered on the point; if anchorPos is n then the bitmap
will be drawn so that its top center point is at the positioning point.
This option defaults to center.

:background color
Specifies a color to use for each of the bitmap pixels whose value
is 0. Color may have any of the forms accepted by Tk_GetColor.
If this option isn’t specified, or if it is specified as an empty string,
then the background color for the canvas is used.

36 No Title

:bitmap bitmap
Specifies the bitmap to display in the item. Bitmap may have any
of the forms accepted by Tk_GetBitmap.

:foreground color
Specifies a color to use for each of the bitmap pixels whose value is
1. Color may have any of the forms accepted by Tk_GetColor and
defaults to black.

:tags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

Line Items

Items of type line appear on the display as one or more connected line segments or curves.
Lines are created with widget commands of the following form:

pathName :create line z1 y1... xn yn 7option value option value ...7
The arguments z1 through yn give the coordinates for a series of two or more
points that describe a series of connected line segments. After the coordinates
there may be any number of option-value pairs, each of which sets one of the
configuration options for the item. These same option\-value pairs may be
used in itemconfigure widget commands to change the item’s configuration.
The following options are supported for lines:

:arrow where
Indicates whether or not arrowheads are to be drawn at one or both
ends of the line. Where must have one of the values none (for no
arrowheads), first (for an arrowhead at the first point of the line),
last (for an arrowhead at the last point of the line), or both (for
arrowheads at both ends). This option defaults to none.

:arrowshape shape

This option indicates how to draw arrowheads. The shape argument
must be a list with three elements, each specifying a distance in any
of the forms described in the COORDINATES section above. The
first element of the list gives the distance along the line from the
neck of the arrowhead to its tip. The second element gives the
distance along the line from the trailing points of the arrowhead to
the tip, and the third element gives the distance from the outside
edge of the line to the trailing points. If this option isn’t specified
then Tk picks a “reasonable” shape.

:capstyle style
Specifies the ways in which caps are to be drawn at the end-
points of the line. Style may have any of the forms accepted by
Tk_GetCapStyle (butt, projecting, or round). If this option isn’t
specified then it defaults to butt. Where arrowheads are drawn the
cap style is ignored.

Chapter 2: Widgets 37

fill color Color specifies a color to use for drawing the line; it may have
any of the forms acceptable to Tk_GetColor. It may also be an
empty string, in which case the line will be transparent. This option
defaults to black.

:joinstyle style
Specifies the ways in which joints are to be drawn at the ver-
tices of the line. Style may have any of the forms accepted by
Tk_GetCapStyle (bevel, miter, or round). If this option isn’t spec-
ified then it defaults to miter. If the line only contains two points
then this option is irrelevant.

:smooth boolean
Boolean must have one of the forms accepted by Tk_GetBoolean.
It indicates whether or not the line should be drawn as a curve. If
so, the line is rendered as a set of Bezier splines: one spline is drawn
for the first and second line segments, one for the second and third,
and so on. Straight-line segments can be generated within a curve
by duplicating the end-points of the desired line segment.

:splinesteps number
Specifies the degree of smoothness desired for curves: each spline
will be approximated with number line segments. This option is
ignored unless the :smooth option is true.

:stipple bitmap
Indicates that the line should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted
by Tk_GetBitmap. If bitmap is an empty string (the default), then
filling is done in a solid fashion.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width line Width
LineWidth specifies the width of the line, in any of the forms de-
scribed in the COORDINATES section above. Wide lines will be
drawn centered on the path specified by the points. If this option
isn’t specified then it defaults to 1.0.

Oval Items

Items of type oval appear as circular or oval regions on the display. Each oval may have an
outline, a fill, or both. Ovals are created with widget commands of the following form:

pathName :create oval x1 y1 2 y2 7option value option value ...7
The arguments z1, yI, 2, and y2 give the coordinates of two diagonally op-
posite corners of a rectangular region enclosing the oval. The oval will include
the top and left edges of the rectangle not the lower or right edges. If the
region is square then the resulting oval is circular; otherwise it is elongated in

38

No Title

shape. After the coordinates there may be any number of option-value pairs,
each of which sets one of the configuration options for the item. These same
option\-value pairs may be used in itemconfigure widget commands to change
the item’s configuration. The following options are supported for ovals:

fill color Fill the area of the oval with color. Color may have any of the
forms accepted by Tk_GetColor. If color is an empty string (the
default), then then the oval will not be filled.

:outline color
Color specifies a color to use for drawing the oval’s outline; it may
have any of the forms accepted by Tk_GetColor. This option de-
faults to black. If color is an empty string then no outline will be
drawn for the oval.

:stipple bitmap
Indicates that the oval should be filled in a stipple pattern; bitmap
specifies the stipple pattern to use, in any of the forms accepted by
Tk_GetBitmap. If the :fill option hasn’t been specified then this
option has no effect. If bitmap is an empty string (the default),
then filling is done in a solid fashion.

:itags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width
outline Width specifies the width of the outline to be drawn around
the oval, in any of the forms described in the COORDINATES
section above. If the :outline option hasn’t been specified then this
option has no effect. Wide outlines are drawn centered on the oval
path defined by z1, y1, 2, and y2. This option defaults to 1.0.

Polygon Items

Items of type polygon appear as polygonal or curved filled regions on the display. Polygons
are created with widget commands of the following form:

pathName :create polygon z1 yI ... xn yn 7option value option value ...7

The arguments z1 through yn specify the coordinates for three or more points
that define a closed polygon. The first and last points may be the same; whether
they are or not, Tk will draw the polygon as a closed polygon. After the
coordinates there may be any number of option-value pairs, each of which
sets one of the configuration options for the item. These same option\-value
pairs may be used in itemconfigure widget commands to change the item’s
configuration. The following options are supported for polygons:

fill color Color specifies a color to use for filling the area of the polygon; it
may have any of the forms acceptable to Tk_GetColor. If color is
an empty string then the polygon will be transparent. This option
defaults to black.

Chapter 2: Widgets 39

:smooth boolean

Boolean must have one of the forms accepted by Tk_GetBoolean
It indicates whether or not the polygon should be drawn with a
curved perimeter. If so, the outline of the polygon becomes a set
of Bezier splines, one spline for the first and second line segments,
one for the second and third, and so on. Straight-line segments can
be generated in a smoothed polygon by duplicating the end-points
of the desired line segment.

:splinesteps number
Specifies the degree of smoothness desired for curves: each spline
will be approximated with number line segments. This option is
ignored unless the :smooth option is true.

:stipple bitmap
Indicates that the polygon should be filled in a stipple pattern; bit-
map specifies the stipple pattern to use, in any of the forms accepted
by Tk_GetBitmap. If bitmap is an empty string (the default), then
filling is done in a solid fashion.

:tags tagList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

Rectangle Items

Items of type rectangle appear as rectangular regions on the display. Each rectangle may
have an outline, a fill, or both. Rectangles are created with widget commands of the
following form:

pathName :create rectangle x1 yI z2 y2 ?option value option value ...7

The arguments =1, y1, 2, and y2 give the coordinates of two diagonally oppo-
site corners of the rectangle (the rectangle will include its upper and left edges
but not its lower or right edges). After the coordinates there may be any num-
ber of option-value pairs, each of which sets one of the configuration options
for the item. These same option\-value pairs may be used in itemconfigure
widget commands to change the item’s configuration. The following options
are supported for rectangles:

fill color Fill the area of the rectangle with color, which may be specified in
any of the forms accepted by Tk_GetColor. If color is an empty
string (the default), then then the rectangle will not be filled.

:outline color
Draw an outline around the edge of the rectangle in color. Color
may have any of the forms accepted by Tk_GetColor. This option
defaults to black. If color is an empty string then no outline will
be drawn for the rectangle.

40

No Title

:stipple bitmap

Indicates that the rectangle should be filled in a stipple pattern;
bitmap specifies the stipple pattern to use, in any of the forms
accepted by Tk_GetBitmap. If the :fill option hasn’t been specified
then this option has no effect. If bitmap is an empty string (the
default), then filling is done in a solid fashion.

itags taglList

Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

:width outline Width

Text Items

Outline Width specifies the width of the outline to be drawn around
the rectangle, in any of the forms described in the COORDINATES
section above. If the :outline option hasn’t been specified then
this option has no effect. Wide outlines are drawn centered on
the rectangular path defined by z1, yI, 2, and y2. This option
defaults to 1.0.

A text item displays a string of characters on the screen in one or more lines. Text items
support indexing and selection, along with the following text-related canvas widget com-
mands: dchars, focus, icursor, index, insert, select. Text items are created with widget
commands of the following form:

pathName :create text x y ?option value option value ...7
The arguments z and y specify the coordinates of a point used to position the
text on the display (see the options below for more information on how text
is displayed). After the coordinates there may be any number of option-value
pairs, each of which sets one of the configuration options for the item. These
same option\-value pairs may be used in itemconfigure widget commands to
change the item’s configuration. The following options are supported for text

items:

:anchor anchorPos

Aill color

AnchorPos tells how to position the text relative to the position-
ing point for the text; it may have any of the forms accepted by
Tk_GetAnchor. For example, if anchorPos is center then the text
is centered on the point; if anchorPos is n then the text will be
drawn such that the top center point of the rectangular region oc-
cupied by the text will be at the positioning point. This option
defaults to center.

Color specifies a color to use for filling the text characters; it may
have any of the forms accepted by Tk_GetColor. If this option isn’t
specified then it defaults to black.

Chapter 2: Widgets 41

:font fontName
Specifies the font to use for the text item. FontName may be
any string acceptable to Tk_GetFontStruct. If this option isn’t
specified, it defaults to a system-dependent font.

sjustify how
Specifies how to justify the text within its bounding region. How
must be one of the values left, right, or center. This option will
only matter if the text is displayed as multiple lines. If the option
is omitted, it defaults to left.

:stipple bitmap
Indicates that the text should be drawn in a stippled pattern rather
than solid; bitmap specifies the stipple pattern to use, in any of the
forms accepted by Tk_GetBitmap. If bitmap is an empty string
(the default) then the text is drawn in a solid fashion.

itags taglList
Specifies a set of tags to apply to the item. TagList consists of a list
of tag names, which replace any existing tags for the item. TagList
may be an empty list.

itext string
String specifies the characters to be displayed in the text item.
Newline characters cause line breaks. The characters in the item
may also be changed with the insert and delete widget commands.
This option defaults to an empty string.

:width lineLength

Specifies a maximum line length for the text, in any of the forms
described in the COORDINATES section abov. If this option is
zero (the default) the text is broken into lines only at newline char-
acters. However, if this option is non-zero then any line that would
be longer than lineLength is broken just before a space character
to make the line shorter than lineLength; the space character is
treated as if it were a newline character.

Window Items

Items of type window cause a particular window to be displayed at a given position on the
canvas. Window items are created with widget commands of the following form:

pathName :create window x y 7option value option value ...7

The arguments z and y specify the coordinates of a point used to position the window
on the display (see the :anchor option below for more information on how bitmaps are
displayed). After the coordinates there may be any number of option-value pairs, each of
which sets one of the configuration options for the item. These same option\-value pairs
may be used in itemconfigure widget commands to change the item’s configuration. The
following options are supported for window items:

42 No Title

:anchor anchorPos
AnchorPos tells how to position the window relative to the positioning point
for the item; it may have any of the forms accepted by Tk_GetAnchor. For
example, if anchorPos is center then the window is centered on the point; if
anchorPos is n then the window will be drawn so that its top center point is
at the positioning point. This option defaults to center.

:height pixels
Specifies the height to assign to the item’s window. Pizels may have any of
the forms described in the COORDINATES section above. If this option isn’t
specified, or if it is specified as an empty string, then the window is given
whatever height it requests internally.

:itags tagList
Specifies a set of tags to apply to the item. TagList consists of a list of tag
names, which replace any existing tags for the item. TagList may be an empty
list.

:width pizels
Specifies the width to assign to the item’s window. Pizels may have any of
the forms described in the COORDINATES section above. If this option isn’t
specified, or if it is specified as an empty string, then the window is given
whatever width it requests internally.

:window pathName
Specifies the window to associate with this item. The window specified by
pathName must either be a child of the canvas widget or a child of some ancestor
of the canvas widget. PathName may not refer to a top-level window.

Application-Defined Item Types

It is possible for individual applications to define new item types for canvas widgets using
C code. The interfaces for this mechanism are not presently documented, and it’s possible
they may change, but you should be able to see how they work by examining the code for
some of the existing item types.

Bindings

In the current implementation, new canvases are not given any default behavior: you’ll have
to execute explicit Tcl commands to give the canvas its behavior.

Credits

Tk’s canvas widget is a blatant ripoff of ideas from Joel Bartlett’s ezd program. Fzd provides
structured graphics in a Scheme environment and preceded canvases by a year or two. Its
simple mechanisms for placing and animating graphical objects inspired the functions of
canvases.

Keywords

canvas, widget

Chapter 2: Widgets 43

2.5 menu
menu \- Create and manipulate menu widgets
Synopsis

menu pathName ?options?

Standard Options

activeBackground background disabledForeground
activeBorderWidth borderWidth font
activeForeground cursor foreground

See (undefined) [options|, page (undefined), for more information.

Arguments for Menu

:postcommand
Name="postCommand" Class="Command"

If this option is specified then it provides a Tcl command to execute each time
the menu is posted. The command is invoked by the post widget command
before posting the menu.

:selector
Name="selector" Class="Foreground"
For menu entries that are check buttons or radio buttons, this option specifies
the color to display in the selector when the check button or radio button is
selected.
Introduction

The menu command creates a new top-level window (given by the pathName argument) and
makes it into a menu widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the menu such as its colors
and font. The menu command returns its pathName argument. At the time this command
is invoked, there must not exist a window named pathName, but pathName’s parent must
exist.

A menu is a widget that displays a collection of one-line entries arranged in a column.
There exist several different types of entries, each with different properties. Entries of
different types may be combined in a single menu. Menu entries are not the same as entry
widgets. In fact, menu entries are not even distinct widgets; the entire menu is one widget.

Menu entries are displayed with up to three separate fields. The main field is a label
in the form of text or a bitmap, which is determined by the :label or :bitmap option for
the entry. If the :accelerator option is specified for an entry then a second textual field is
displayed to the right of the label. The accelerator typically describes a keystroke sequence
that may be typed in the application to cause the same result as invoking the menu entry.
The third field is a selector. The selector is present only for check-button or radio-button

44 No Title

entries. It indicates whether the entry is selected or not, and is displayed to the left of the
entry’s string.

In normal use, an entry becomes active (displays itself differently) whenever the mouse
pointer is over the entry. If a mouse button is released over the entry then the entry
is invoked. The effect of invocation is different for each type of entry; these effects are
described below in the sections on individual entries.

Entries may be disabled, which causes their labels and accelerators to be displayed with
dimmer colors. A disabled entry cannot be activated or invoked. Disabled entries may be
re-enabled, at which point it becomes possible to activate and invoke them again.

Command Entries

The most common kind of menu entry is a command entry, which behaves much like a
button widget. When a command entry is invoked, a Tcl command is executed. The Tcl
command is specified with the :command option.

Separator Entries

A separator is an entry that is displayed as a horizontal dividing line. A separator may not
be activated or invoked, and it has no behavior other than its display appearance.

Check-Button Entries

A check-button menu entry behaves much like a check-button widget. When it is invoked
it toggles back and forth between the selected and deselected states. When the entry is
selected, a particular value is stored in a particular global variable (as determined by the
:onvalue and :variable options for the entry); when the entry is deselected another value
(determined by the :offvalue option) is stored in the global variable. A selector box is
displayed to the left of the label in a check-button entry. If the entry is selected then the
box’s center is displayed in the color given by the selector option for the menu; otherwise
the box’s center is displayed in the background color for the menu. If a :command option is
specified for a check-button entry, then its value is evaluated as a Tcl command each time
the entry is invoked; this happens after toggling the entry’s selected state.

Radio-Button Entries

A radio-button menu entry behaves much like a radio-button widget. Radio-button entries
are organized in groups of which only one entry may be selected at a time. Whenever a
particular entry becomes selected it stores a particular value into a particular global variable
(as determined by the :value and :variable options for the entry). This action causes any
previously-selected entry in the same group to deselect itself. Once an entry has become
selected, any change to the entry’s associated variable will cause the entry to deselect itself.
Grouping of radio-button entries is determined by their associated variables: if two entries
have the same associated variable then they are in the same group. A selector diamond is
displayed to the left of the label in each radio-button entry. If the entry is selected then
the diamond’s center is displayed in the color given by the selector option for the menu;
otherwise the diamond’s center is displayed in the background color for the menu. If a
:command option is specified for a radio-button entry, then its value is evaluated as a Tcl
command each time the entry is invoked; this happens after selecting the entry.

Chapter 2: Widgets 45

Cascade Entries

A cascade entry is one with an associated menu (determined by the :menu option). Cas-
cade entries allow the construction of cascading menus. When the entry is activated, the
associated menu is posted just to the right of the entry; that menu remains posted until
the higher-level menu is unposted or until some other entry is activated in the higher-level
menu. The associated menu should normally be a child of the menu containing the cascade
entry, in order for menu traversal to work correctly.

A cascade entry posts its associated menu by invoking a Tcl command of the form

menu :post T y
where menu is the path name of the associated menu, z and y are the root-
window coordinates of the upper-right corner of the cascade entry, and group is
the name of the menu’s group (as determined in its last post widget command).
The lower-level menu is unposted by executing a Tcl command with the form

menu:unpost
where menu is the name of the associated menu.

If a :command option is specified for a cascade entry then it is evaluated as a Tcl
command each time the associated menu is posted (the evaluation occurs before the menu
is posted).

A Menu Widget’s Arguments

The menu command creates a new Tcl command whose name is pathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option Targ arg ...7
Option and the args determine the exact behavior of the command.

Many of the widget commands for a menu take as one argument an indicator of which
entry of the menu to operate on. These indicators are called indexes and may be specified
in any of the following forms:

number Specifies the entry numerically, where 0 corresponds to the top-most entry of
the menu, 1 to the entry below it, and so on.

active Indicates the entry that is currently active. If no entry is active then this form
is equivalent to none. This form may not be abbreviated.

last Indicates the bottommost entry in the menu. If there are no entries in the menu
then this form is equivalent to none. This form may not be abbreviated.

none Indicates “no entry at all”; this is used most commonly with the activate option
to deactivate all the entries in the menu. In most cases the specification of
none causes nothing to happen in the widget command. This form may not be
abbreviated.

@number In this form, number is treated as a y-coordinate in the menu’s window; the
entry spanning that y-coordinate is used. For example, “@0” indicates the top-
most entry in the window. If number is outside the range of the window then
this form is equivalent to none.

46

pattern

No Title

If the index doesn’t satisfy one of the above forms then this form is used. Pattern
is pattern-matched against the label of each entry in the menu, in order from
the top down, until a matching entry is found. The rules of Tcl_StringMatch
are used.

The following widget commands are possible for menu widgets:

pathName :activate index

Change the state of the entry indicated by index to active and redisplay it
using its active colors. Any previously-active entry is deactivated. If index is
specified as none, or if the specified entry is disabled, then the menu ends up
with no active entry. Returns an empty string.

pathName :add type ?option value option value ...7

Add a new entry to the bottom of the menu. The new entry’s type is given
by type and must be one of cascade, checkbutton, command, radiobutton, or
separator, or a unique abbreviation of one of the above. If additional arguments
are present, they specify any of the following options:

:activebackground value
Specifies a background color to use for displaying this entry when it
is active. If this option is specified as an empty string (the default),
then the activeBackground option for the overall menu is used. This
option is not available for separator entries.

:accelerator value
Specifies a string to display at the right side of the menu entry.
Normally describes an accelerator keystroke sequence that may be
typed to invoke the same function as the menu entry. This option
is not available for separator entries.

:background value
Specifies a background color to use for displaying this entry when
it is in the normal state (neither active nor disabled). If this option
is specified as an empty string (the default), then the background
option for the overall menu is used. This option is not available for
separator entries.

:bitmap value
Specifies a bitmap to display in the menu instead of a textual la-
bel, in any of the forms accepted by Tk_GetBitmap. This option
overrides the :label option but may be reset to an empty string to
enable a textual label to be displayed. This option is not available
for separator entries.

:command value
For command, checkbutton, and radiobutton entries, specifies a
Tcl command to execute when the menu entry is invoked. For
cascade entries, specifies a Tcl command to execute when the entry
is activated (i.e. just before its submenu is posted). Not available
for separator entries.

Chapter 2: Widgets 47

:font value
Specifies the font to use when drawing the label or accelerator string
in this entry. If this option is specified as an empty string (the
default) then the font option for the overall menu is used. This
option is not available for separator entries.

:label value
Specifies a string to display as an identifying label in the menu
entry. Not available for separator entries.

:menu value
Available only for cascade entries. Specifies the path name of the
menu associated with this entry.

:offvalue value
Available only for check-button entries. Specifies the value to store
in the entry’s associated variable when the entry is deselected.

:onvalue value
Available only for check-button entries. Specifies the value to store
in the entry’s associated variable when the entry is selected.

:state value

Specifies one of three states for the entry: normal, active, or dis-
abled. In normal state the entry is displayed using the foreground
option for the menu and the background option from the entry or
the menu. The active state is typically used when the pointer is over
the entry. In active state the entry is displayed using the active-
Foreground option for the menu along with the activebackground
option from the entry. Disabled state means that the entry is in-
sensitive: it doesn’t activate and doesn’t respond to mouse button
presses or releases. In this state the entry is displayed according to
the disabledForeground option for the menu and the background
option from the entry. This option is not available for separator
entries.

:underline value
Specifies the integer index of a character to underline in the entry.
This option is typically used to indicate keyboard traversal char-
acters. 0 corresponds to the first character of the text displayed
in the entry, 1 to the next character, and so on. If a bitmap is
displayed in the entry then this option is ignored. This option is
not available for separator entries.

:value value
Available only for radio-button entries. Specifies the value to store
in the entry’s associated variable when the entry is selected.

:variable value
Available only for check-button and radio-button entries. Specifies
the name of a global value to set when the entry is selected. For

48

No Title

check-button entries the variable is also set when the entry is des-
elected. For radio-button entries, changing the variable causes the
currently-selected entry to deselect itself.

The add widget command returns an empty string.

pathName

pathName

pathName

pathName

pathName

pathName

pathName

:configure 7option? Tvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_ConfigureInfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the menu command.

:delete index1 ?index2?
Delete all of the menu entries between indez! and indezx2 inclusive. If index2
is omitted then it defaults to indexl. Returns an empty string.

:disable index
Change the state of the entry given by index to disabled and redisplay the entry
using its disabled colors. Returns an empty string. This command is obsolete
and will eventually be removed; use “pathName :entryconfigure indexr :state
disabled” instead.

:enable index
Change the state of the entry given by index to normal and redisplay the entry
using its normal colors. Returns an empty string. This command is obsolete
and will eventually be removed; use “pathName :entryconfigure indexr :state
normal” instead.

:entryconfigure index 7options?

This command is similar to the configure command, except that it applies to
the options for an individual entry, whereas configure applies to the options for
the menu as a whole. Options may have any of the values accepted by the add
widget command. If options are specified, options are modified as indicated
in the command and the command returns an empty string. If no options
are specified, returns a list describing the current options for entry index (see
Tk_Configurelnfo for information on the format of this list).

sindex index
Returns the numerical index corresponding to indez, or none if index was spec-
ified as none.

:invoke index
Invoke the action of the menu entry. See the sections on the individual entries
above for details on what happens. If the menu entry is disabled then nothing
happens. If the entry has a command associated with it then the result of that
command is returned as the result of the invoke widget command. Otherwise

Chapter 2: Widgets 49

the result is an empty string. Note: invoking a menu entry does not automati-
cally unpost the menu. Normally the associated menubutton will take care of
unposting the menu.

pathName :post = y
Arrange for the menu to be displayed on the screen at the root-window coordi-
nates given by x and y. These coordinates are adjusted if necessary to guarantee
that the entire menu is visible on the screen. This command normally returns
an empty string. If the :postcommand option has been specified, then its value
is executed as a Tcl script before posting the menu and the result of that script
is returned as the result of the post widget command. If an error returns while
executing the command, then the error is returned without posting the menu.

pathName :unpost
Unmap the window so that it is no longer displayed. If a lower-level cascaded
menu is posted, unpost that menu. Returns an empty string.

pathName :yposition index
Returns a decimal string giving the y-coordinate within the menu window of
the topmost pixel in the entry specified by index.

Default Bindings

Tk automatically creates class bindings for menus that give them the following default
behavior:

[1] When the mouse cursor enters a menu, the entry underneath the mouse cursor is
activated; as the mouse moves around the menu, the active entry changes to track the
mouse.

[2] When button 1 is released over a menu, the active entry (if any) is invoked.
[3] A menu can be repositioned on the screen by dragging it with mouse button 2.

[4] A number of other bindings are created to support keyboard menu traversal. See
the manual entry for tk_bindForTraversal for details on these bindings.

Disabled menu entries are non-responsive: they don’t activate and ignore mouse button
presses and releases.

The behavior of menus can be changed by defining new bindings for individual widgets
or by redefining the class bindings.

Bugs

At present it isn’t possible to use the option database to specify values for the options to
individual entries.

Keywords

menu, widget

2.6 scrollbar

scrollbar \- Create and manipulate scrollbar widgets

50 No Title

Synopsis

scrollbar pathName ?options?

Standard Options

activeForeground cursor relief
background foreground repeatDelay
borderWidth orient repeatInterval

See (undefined) [options|, page (undefined), for more information.

Arguments for Scrollbar

:command

Name="command" Class="Command"

Specifies the prefix of a Tcl command to invoke to change the view in the
widget associated with the scrollbar. When a user requests a view change by
manipulating the scrollbar, a Tcl command is invoked. The actual command
consists of this option followed by a space and a number. The number indicates
the logical unit that should appear at the top of the associated window.

:width
Name="width" Class="Width"
Specifies the desired narrow dimension of the scrollbar window, not including
3-D border, if any. For vertical scrollbars this will be the width and for hori-
zontal scrollbars this will be the height. The value may have any of the forms
acceptable to Tk_GetPixels.
Description

The scrollbar command creates a new window (given by the pathName argument) and
makes it into a scrollbar widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the scrollbar such as its
colors, orientation, and relief. The scrollbar command returns its pathName argument. At
the time this command is invoked, there must not exist a window named pathName, but
pathName’s parent must exist.

A scrollbar is a widget that displays two arrows, one at each end of the scrollbar, and
a slider in the middle portion of the scrollbar. A scrollbar is used to provide information
about what is visible in an associated window that displays an object of some sort (such
as a file being edited or a drawing). The position and size of the slider indicate which
portion of the object is visible in the associated window. For example, if the slider in a
vertical scrollbar covers the top third of the area between the two arrows, it means that the
associated window displays the top third of its object.

Scrollbars can be used to adjust the view in the associated window by clicking or dragging
with the mouse. See the BINDINGS section below for details.

Chapter 2: Widgets 51

A Scrollbar Widget’s Arguments

The scrollbar command creates a new Tcl command whose name is pathName. This com-
mand may be used to invoke various operations on the widget. It has the following general
form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for scrollbar widgets:

pathName :configure ?option? ?wvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the scrollbar command.

pathName :get
Returns a Tcl list containing four decimal values, which are the current totalU-
nits, widnowUnits, firstUnit, and lastUnit values for the scrollbar. These are
the values from the most recent set widget command on the scrollbar.

pathName :set totalUnits windowUnits firstUnit lastUnit

This command is invoked to give the scrollbar information about the widget
associated with the scrollbar. TotalUnits is an integer value giving the total size
of the object being displayed in the associated widget. The meaning of one unit
depends on the associated widget; for example, in a text editor widget units
might correspond to lines of text. WindowUnits indicates the total number of
units that can fit in the associated window at one time. FirstUnit and lastUnit
give the indices of the first and last units currently visible in the associated
window (zero corresponds to the first unit of the object). This command should
be invoked by the associated widget whenever its object or window changes size
and whenever it changes the view in its window.

Bindings
The description below assumes a vertically-oriented scrollbar. For a horizontally-oriented
scrollbar replace the words “up”, “down”, “top”, and “bottom” with “left”, “right”, “left”,
and “right”, respectively

A scrollbar widget is divided into five distinct areas. From top to bottom, they are: the
top arrow, the top gap (the empty space between the arrow and the slider), the slider, the

bottom gap, and the bottom arrow. Pressing mouse button 1 in each area has a different
effect:

top arrow Causes the view in the associated window to shift up by one unit (i.e. the object
appears to move down one unit in its window). If the button is held down the
action will auto-repeat.

52

top gap

slider

bottom gap

No Title

Causes the view in the associated window to shift up by one less than the
number of units in the window (i.e. the portion of the object that used to
appear at the very top of the window will now appear at the very bottom). If
the button is held down the action will auto-repeat.

Pressing button 1 in this area has no immediate effect except to cause the slider
to appear sunken rather than raised. However, if the mouse is moved with the
button down then the slider will be dragged, adjusting the view as the mouse
is moved.

Causes the view in the associated window to shift down by one less than the
number of units in the window (i.e. the portion of the object that used to
appear at the very bottom of the window will now appear at the very top). If
the button is held down the action will auto-repeat.

bottom arrow

Causes the view in the associated window to shift down by one unit (i.e. the
object appears to move up one unit in its window). If the button is held down
the action will auto-repeat.

Note: none of the actions described above has an immediate impact on the
position of the slider in the scrollbar. It simply invokes the command specified
in the command option to notify the associated widget that a change in view is
desired. If the view is actually changed then the associated widget must invoke
the scrollbar’s set widget command to change what is displayed in the scrollbar.

Keywords

scrollbar, widget

2.7 checkbutton

checkbutton \- Create and manipulate check-button widgets

Synopsis

checkbutton pathName ?options?

Standard Options

activeBackground bitmap font relief
activeForeground borderWidth foreground text

anchor cursor padX textVariable
background disabledForeground padY

See (undefined) [options|, page (undefined), for more information.

Arguments for Checkbutton

:command

Name="command" Class="Command"

Chapter 2:

:height

:offvalue

:onvalue

:selector

:state

:variable

Widgets 53

Specifies a Tcl command to associate with the button. This command is typ-
ically invoked when mouse button 1 is released over the button window. The
button’s global variable (:variable option) will be updated before the command
is invoked.

Name="height" Class="Height"

Specifies a desired height for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in lines of text. If this option isn’t specified, the
button’s desired height is computed from the size of the bitmap or text being
displayed in it.

Name="off Value" Class="Value"

Specifies value to store in the button’s associated variable whenever this button
is deselected. Defaults to “0”.

Name="onValue" Class="Value"

Specifies value to store in the button’s associated variable whenever this button
is selected. Defaults to “17.

Name="selector" Class="Foreground"

Specifies the color to draw in the selector when this button is selected. If
specified as an empty string then no selector is drawn for the button.

Name="state" Class="State"

Specifies one of three states for the check button: normal, active, or disabled. In
normal state the check button is displayed using the foreground and background
options. The active state is typically used when the pointer is over the check
button. In active state the check button is displayed using the activeForeground
and activeBackground options. Disabled state means that the check button is
insensitive: it doesn’t activate and doesn’t respond to mouse button presses. In
this state the disabledForeground and background options determine how the
check button is displayed.

Name="variable" Class="Variable"

54 No Title

Specifies name of global variable to set to indicate whether or not this button
is selected. Defaults to the name of the button within its parent (i.e. the last
element of the button window’s path name).

:width
Name="width" Class="Width"

Specifies a desired width for the button. If a bitmap is being displayed in the
button then the value is in screen units (i.e. any of the forms acceptable to
Tk_GetPixels); for text it is in characters. If this option isn’t specified, the
button’s desired width is computed from the size of the bitmap or text being
displayed in it.

Description

The checkbutton command creates a new window (given by the pathName argument) and
makes it into a check-button widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the check button such
as its colors, font, text, and initial relief. The checkbutton command returns its pathName
argument. At the time this command is invoked, there must not exist a window named
pathName, but pathName’s parent must exist.

A check button is a widget that displays a textual string or bitmap and a square called a
selector. A check button has all of the behavior of a simple button, including the following:
it can display itself in either of three different ways, according to the state option; it can
be made to appear raised, sunken, or flat; it can be made to flash; and it invokes a Tcl
command whenever mouse button 1 is clicked over the check button.

In addition, check buttons can be selected. If a check button is selected then a special
highlight appears in the selector, and a Tcl variable associated with the check button is set
to a particular value (normally 1). If the check button is not selected, then the selector is
drawn in a different fashion and the associated variable is set to a different value (typically
0). By default, the name of the variable associated with a check button is the same as the
name used to create the check button. The variable name, and the “on” and “off” values
stored in it, may be modified with options on the command line or in the option database.
By default a check button is configured to select and deselect itself on alternate button
clicks. In addition, each check button monitors its associated variable and automatically
selects and deselects itself when the variables value changes to and from the button’s “on”
value.

A Checkbutton Widget’s Arguments

The checkbutton command creates a new Tcl command whose name is pathName. This
command may be used to invoke various operations on the widget. It has the following
general form:

pathName option Targ arg ...7

Option and the args determine the exact behavior of the command. The following
commands are possible for check button widgets:

Chapter 2:

pathName

pathName

pathName

pathName

pathName

pathName

pathName

pathName

Widgets 55

:activate

Change the check button’s state to active and redisplay the button using its ac-
tive foreground and background colors instead of normal colors. This command
is ignored if the check button’s state is disabled. This command is obsolete and
will eventually be removed; use “pathName :configure :state active” instead.

:configure ?option? Twvalue option value ...7

Query or modify the configuration options of the widget. If no option is spec-
ified, returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is speci-
fied with no wvalue, then the command returns a list describing the one named
option (this list will be identical to the corresponding sublist of the value re-
turned if no option is specified). If one or more option:value pairs are speci-
fied, then the command modifies the given widget option(s) to have the given
value(s); in this case the command returns an empty string. Option may have
any of the values accepted by the checkbutton command.

:deactivate

Change the check button’s state to normal and redisplay the button using its
normal foreground and background colors. This command is ignored if the
check button’s state is disabled. This command is obsolete and will eventually
be removed; use “pathName :configure :state normal” instead.

:deselect

Deselect the check button: redisplay it without a highlight in the selector and
set the associated variable to its “off” value.

:flash

Flash the check button. This is accomplished by redisplaying the check button
several times, alternating between active and normal colors. At the end of
the flash the check button is left in the same normal/active state as when the
command was invoked. This command is ignored if the check button’s state is
disabled.

:invoke

Does just what would have happened if the user invoked the check button
with the mouse: toggle the selection state of the button and invoke the Tcl
command associated with the check button, if there is one. The return value
is the return value from the Tcl command, or an empty string if there is no
command associated with the check button. This command is ignored if the
check button’s state is disabled.

:select

Select the check button: display it with a highlighted selector and set the
associated variable to its “on” value.

:toggle

Toggle the selection state of the button, redisplaying it and modifying its asso-
ciated variable to reflect the new state.

56 No Title

Bindings
Tk automatically creates class bindings for check buttons that give them the following
default behavior:

[1] The check button activates whenever the mouse passes over it and deactivates
whenever the mouse leaves the check button.

[2] The check button’s relief is changed to sunken whenever mouse button 1 is pressed
over it, and the relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over the check button and later released over the check
button, the check button is invoked (i.e. its selection state toggles and the command
associat