
Jack OS X
- an OS X implementation of Jack -

version 0.76
February 7, 2008

2

Contents
o What’s New? N
o What’s Jack?
o What’s Jack OS X?
o Jack OS X - System Architecture U
o System Requirements U
o Installing Jack OS X U
o What gets installed where? U
o Uninstalling Jack OS X
o How do I use Jack?

o Starting JackPilot
o Setting Preferences U
o Special Intel Mac instructions U
o Starting the Jack Server
o Jack-enabling Applications U
o Making Connections U
o Saving & Loading Jack Studio Setups
o Stopping the Jack Server
o Quitting JackPilot

o Using the Jack Plugins
o NetJack

o Overview
o Using NetJack

o Miscellaneous Features
o Automatic Connection Restoration
o About Jack
o Dock Menu
o Audio MIDI Setup and Sound Preferences quick access N

o Step-by-Step Examples
o iTunes to Logic Express U
o iTunes and Real Player to Logic Express (using four virtual inputs) U
o Cubase SX, Jack VST plugin, and Max/MSP as “insert effect”

o Developer Information
o FAQ U

o How is Jack different than Propellerhead’s ReWire?
o How is Jack different than Cycling 74’s Soundflower?
o How is NetJack different than other network-enabled audio communication

tools, like apulsoft’s WormHole, FX-Max’s FX Teleport, Steinberg’s VST
System Link, or Emagic/Apple’s Logic 7 “distributed audio processing”?

o Does Jack OS X work with “aggregate audio devices”? U
o Can Jack OS X work with Qjackctl, instead of JackPilot?
o Why doesn’t iTunes appear in my JackPilot Connections Manager?
o Does NetJack send MIDI data over a network?
o How do I find a machine’s IP address?
o How should one select the buffer size within JackPilot?
o What is the difference between the Jack Server and the JackRouter?

3

o How do I use inter-application MIDI communication, when I’m using Jack for
inter-application audio communication?

o What does the CPU meter in JackPilot represent?
o Known Issues & Limitations U
o Contacts
o Links
o License
o Copyrights and Trademarks
o Version History U

U = Updated
N = New

4

What’s New? N
Version 0.76 fixes a flaw in how Jack OS X supported certain specific audio device state
changes. In version 0.75 Jack OS X handled these cases in a way that was too
“sensitive”. Examples of times this would happen are when putting the computer to
sleep, or when using Ardour in export mode. The new strategy is more robust: basically
when an audio device state change occurs (e.g. changing the sample rate) the Jack
coreaudio driver is completely stopped and restarted, hoping a "viable" state can be
restored.

Starting with version 0.75, Jack OS X now uses a completely new Jack server
infrastructure, called “Jackdmp.” This new Jack server allows for better and more
efficient use of multiple processors on multi-processor machines.

Version 0.75 introduced Mac OS 10.5.x (Leopard) compatibility for Jack OS X. Because
of changes in Max OS 10.5, we’ve had to remove the functionality that previously
allowed JackPilot to automatically change the Mac’s default input and/or output device
to the JackRouter driver, when one chose to have it do so in the preferences. One must
therefore now manually open either the Sound control panel or the Audio MIDI Setup
utility (starting in version 0.76, these are both quickly available within the JackPilot
menu) and select the JackRouter driver there. This is important for those applications
which do not allow you to select an audio driver themselves, and instead rely on the
default system driver (e.g. iTunes, Quicktime Player, DVD Player, etc…).

The Jack OS X VST plugin is now VST 2.4-compatible.

Jack OS X remains a Universal Binary application, and so continues to support both
PowerPC and Intel Macintosh hardware.

Because of lack of developer time, we’ve not yet been able to fix the NetJack
component, and so it has not been restored back to the Jack OS X package yet.

The full change log is listed in the Version History section at the end of this document.
Enjoy!

What’s Jack?
Jack is a low-latency audio server, written originally for the GNU/Linux operating
system, and now with OS X support. It can connect a number of different applications to
a single hardware audio device; it also allows applications to send and receive audio
among one another. Its clients can run in their own processes (ie. as normal
applications), or they can run within the Jack server (ie. as a "plugin").

Jack is different from other audio server efforts in that it has been designed from the
ground up to be suitable for professional audio work. This means that it focuses on two
key areas: synchronous execution of all clients, and low latency operation.

5

Jack is the brainchild of Paul Davis; it now has developers from all over the world
actively working on improving this open source project.

What’s Jack OS X?
Jack OS X is an OS X implementation of Jack, and it installs everything necessary to
take full advantage of Jack on OS X. (Jack OS X was originally called Jack Tools prior
to being renamed). It includes:

• The Jack Server
o The infrastructure you need in place to use Jack.

• The JackRouter *
o The JackRouter is a CoreAudio “user space” driver that allows any OS X

CoreAudio application to become a Jack client. (This was previously known
as the JAS (Jack Audio Server) in the first release of Jack OS X, but was
renamed to avoid confusion with the Jack server). It is also occasionally still
referred to as the JAR in some parts of the documentation.

• The Jack Plugins *
o Both AU and VST “Jack-aware” audio plugins are provided, which can further

expand the limitless audio routing possibilities when using Jack.
• The JackPilot Application *

o JackPilot offers an easy to use GUI interface that allows you to control the
Jack server, and manage the audio connections between applications and/or
plugins.

• The NetJack Module * (this modules is temporarily not installed, until it is fixed)
o NetJack is a JackPilot module that allows for low latency transmission of

audio streams over a network, and incorporates these streams into the Jack
environment.

* OS X-specific Jack development efforts

Jack OS X - System Architecture U
It is important to understand some of the basic architectural principles of how Jack
works within OS X.

The “core” of Jack revolves around the Jack Server. It sends and receives audio data
between “Jack-enabled” applications, as well as with a hardware audio device. This
hardware device can be either the built-in Mac audio, or any OS X-compatible audio
interface. Jack can (currently) only communicate with a single hardware audio device,
though it is important to note that Jack can “share” that device with other applications.
More on this in a moment.

There are three distinct types of “Jack-enabled” applications:

1. Native Jack applications. These have built in support for interfacing with a Jack
server. There are relatively few of these applications currently available – an

6

example is Pd (also known as Pure Data) or Ardour.

2. Jack-enabled Core Audio applications. These applications use the JackRouter
driver, or JAR, to communicate with the Jack Server. This is as simple as selecting
the JackRouter driver in the application’s audio I/O setup window (or for applications
that just use the default OS X audio device, by selecting the JackRouter as that
default “device”). Examples might include Cubase SX, Logic, Digital Performer,
Reason, Live, Max/MSP, Peak, Spark, iTunes, RealPlayer, etc…

3. Jack plugins used in any AU- or VST-compatible audio application. You can
use the Jack AU and/or VST plugins within any application that supports these
plugin formats, to communicate with the Jack Server. This greatly expands the
routing capabilities within Jack on OS X – for example, one could route the main
audio from one application to a second application using Jack, but then route an
insert feed on one channel to a third application, using a Jack plugin.

See the figure below for a graphical illustration of how these three types of Jack-
enabled applications interact with the Jack Server and the JackRouter (JAR):

Understanding how Jack works at an even more fundamental level may be helpful for
some users. Warning, the next three paragraphs are fairly technical and low level,
and are not necessary to understand in order to use Jack OS X! They’re provided
purely for those who are interested.

The Jack system is built around several components: a server, a driver and several
clients. Since Jack clients will typically be separate applications, the system has to be

CoreAudio Applications
(with plugin support)

Cubase SX, Logic, Max/MSP ...

JackVST or JackAU
channel insert …

CoreAudio Applications
(with plugin support)

Cubase SX, Logic, Max/MSP ...

JackVST or JackAU
channel insert …

Audio Hardware
Built-In, MOTU 828 …

CoreAudio Applications
(without plugin support)

Reason, iTunes, Quicktime ...

Native Jack Clients
Pure Data

Jack Server
JAR

JAR

7

able to transfer data (like audio buffers) between different processes, activate them
when needed, and possibly notify them when global state changes occur.

The Jack server is the center of the system. It interacts with the driver, and
communicates with all registered clients. Triggered by the driver, the server activates
the client graph, a set of connected "nodes", each of which must be "executed" on a
periodic basis. In the case of Jack, the graph is made up of Jack clients, and each one
has its own "audio process" function to be called in a specific order. The connections
between each node may take any configuration whatsoever. Jack has to serialize the
execution of each client so that the connections represented by the graph are honored
(e.g. client A sends data to client B, so client A should execute before client B). In the
event of feedback loops, there is no "correct" ordering of the graph, so Jack just picks
one of the legal possibilities.

The whole graph is executed synchronously by a driver that interacts with the hardware,
waking the server at regular intervals that are determined by its buffer size. The server
then "distributes" this audio interrupt to all running clients. The basic requirement for the
system’s proper functioning is that the server and all clients do their jobs, including
server / client communications, audio data transfer and processing, between two
consecutive audio interrupts.

Beginning with version 0.75, Jack OS X uses a new version of the Jack server, called
Jackdmp. With the emergence of multi-core machines, the question of optimizing the
use of available processors becomes more and more important. When several audio
applications are running together in a Jack-like system, data dependencies between
applications impose an activation order between them. If A is connected to B, and B
connected to C, then A must be run first, then B and C. If on the contrary A is connected
to B and C, A must be run first but then B and C could be run at the same time on two
available processors. Depending of the connection topologies between applications,
Jackdmp allows this kind of optimization by using a "data-flow" model that guarantees
that applications are activated as soon as possible on any available processor. The
global result is that available CPU is better used. Jackdmp also improves other part of
the system like avoiding audio glitches when connecting/disconnecting applications.

System Requirements U
• OS X 10.3.9 or greater (including Leopard, 10.5.x).

Installing Jack OS X U
If you have already have a previous version of Jack OS X installed on your computer,
the version 0.76 installer will automatically remove the older version before installing the
new one.

• Download the Jack OS X version 0.76 compressed file to your hard drive.
• Double clicking this file should automatically decompress, and you should see a

8

resulting file called JackOSX.pkg.
• Double click this file to start the installer.
• As part of the install process, you will be presented with a password dialog, in

which you will need to provide the Administrator password for your Mac – enter it
and click OK.

• Follow the instructions in the installer to install Jack OS X.
• You will need to restart your computer after the installer finishes its work, to

complete the installation.

What gets installed where? U
• /usr/local/bin

o jack_connect
o jack_disconnect
o jack_lsp
o jack_metro
o jackd
o jackdmp

• /usr/local/include/jack
o intclient.h
o jack.h
o midiport.h
o ringbuffer.h
o statistics.h
o thread.h
o transport.h
o types.h

• /usr/local/lib
o libjack.0.dylib
o libjack.dylib

• /usr/local/lib/jackmp
o jack_coreaudio.so

• /usr/local/lib/pkgconfig
o jack.pc

• /Library/Application Support/JackPilot/Modules
o NetJack.jpmodule (this file temporarily not installed)

• /Library/Audio/Plug-ins/HAL
o JackRouter.plugin

• /Library/Audio/Plug-ins/Components
o JACK-insert.component

• /Library/Audio/Plug-ins/VST
o JACK-insert.vst

• /Library/Frameworks
o Jackdmp.framework
o Jackmp.framework
o Panda.framework

• /Applications/Jack
o JackPilot.app

9

o Documentation.pdf (this document)
o Uninstall JackOSX.command

• /Applications/Jack/Extras/Developer
o ReadMe.rtf
o example-clients.xcodeproj

• /Applications/Jack/Extras/Developer/example-clients
o connect.c
o lsp.c
o makefile
o metro.c

Uninstalling Jack OS X
To uninstall Jack OS X version 0.76, double click the “Uninstall JackOSX” file located in
the Jack folder, in your main Applications folder. A Terminal window will be displayed,
and it will prompt you for your Mac’s Administrator password. Type it, press return, and
all components of Jack OS X will be removed from your system.

If you’d like to uninstall a previous version of Jack OS X, this is done automatically for
you when installing version 0.76.

How do I use Jack?

• Starting JackPilot
You startup and control Jack using the JackPilot application. Navigate to the Jack folder
in your Applications directory, and double click the JackPilot application:

10

• Setting Preferences U
If it’s the first time you’ve run JackPilot, and/or if you’ve not yet saved your Jack
preferences, the Preferences dialog will open automatically, so that you can set up your
Jack environment:

11

The settings in the Preferences window are:

• Jack Server

o Driver – the physical audio driver. Choose “coreaudio”, the only option currently
available.

o Interface – select the physical audio device that you would like the Jack server to
communicate with. Currently, Jack can only communicate with one hardware
audio device at a time. For machines that have 2 separated coreaudio devices
for input and output, you’ll have to use an “aggregate” device for proper full-
duplex use. (see the explanation concerning “aggregated” devices later in the
documentation). USB audio interfaces also behave this way, as do Intel Macs.

o Sample Rate – choose your desired sample rate for the Jack server. Only sample
rates supported by the selected Interface will be displayed.

o Buffer Size – choose your desired audio buffer size (in samples). Only buffer sizes

12

supported by the selected Interface will be displayed.
o Interface Output / Input Channels – choose your desired number of Output / Input

audio channels for Jack to communicate with your physical audio interface. The
maximum number of channels is limited by the number of output / input channels
supported by your physical audio device. For example, in the screenshot above,
Interface Input Channels has no option other than “0”, as the Mac used to make
the screenshot is an “input-less” Quicksilver PowerMac G4, with no input devices
available for the Built-in Audio.

• JackRouter

o Virtual Input Channels – the number of virtual input channels Jack will provide for
each application. Typically this should be set to 2, for stereo operation. However,
using values greater than 2 is useful if your applications can manage multiple
concurrent input channels (as most digital audio workstation applications can). In
this case, you could set this field as high as you’d like for your particular purpose.
See the second example in the Step-By-Step tutorial section below for an
illustration of how this can be useful.

o Virtual Output Channels – the number of virtual output channels Jack will provide
for each application. Same explanation as above, for Virtual Input Channels.

o Auto-Connect with physical ports – check to allow JackPilot to automatically
connect the Virtual Input and Output Channels to your physical audio device
input and output ports, respectively.

o Verbose logging for debug purposes – check to allow Jack OS X to write more
complete log messages to the Console, useful for debugging in problem cases

Please note that the Default Input, Default Output, and System Default Output
options are no longer available in the JackRouter Preferences as of Jack OS X
version 0.75. This was required because of changes in Mac OS X 10.5. You must
manually change the Mac OS’s default Input/Output/System Output options to
JackRouter (using either the Sound control panel or the Audio MIDI Setup
application) if you want to use applications that use the Mac’s default
input/output device together with Jack.

If you don’t choose to save your Preferences at this time, or if you need to change them
later, you can always return to the Preferences window by selecting the Preferences…
option in the JackPilot menu. Please note that you cannot make changes to the Jack
Server preferences when the Jack Server is running. Also, any changes made to the
JackRouter preferences will only affect new Jack-connected applications. So in general,
it’s best to make Preference changes when the Jack Server is not running.

• Special Intel Mac instructions U
The Intel-based Macs present the Built-in Audio device to software applications as two
distinct half-duplex devices: an input device and an output device. For proper
functioning within Jack OS X on Intel Macs, these two devices must be

13

aggregated into a single one, using the Mac’s Aggregate Device Editor, which is
housed within the Audio MIDI Setup application.

Aggregate audio devices can be used like any "native" device in Jack OS X; the device
will appear in the JackPilot Preferences Interface selection dropdown:

For a more complete overview of how to create an Aggregate Device using the Audio
MIDI Setup application, see Apple’s documentation at:

http://www.apple.com/ca/pro/techniques/aggregateaudio/

• Starting the Jack Server
Click the Start Jack button to start the Jack server:

14

You’ll briefly see a dialog telling you that the Jack server is starting up, and then you’ll
see the CPU Load display show a slight increase. The “Start” button also converts to a
“Stop” button. The Jack Server is now running! The number of current Jack connections
is also displayed (more on connections later).

• Jack-enabling Applications U
Some applications, which always use the “default” Mac OS X audio device, will be
“Jack-enabled” when you select Jack Router as the Default Input and/or Output device
in the Audio MIDI Setup application. Examples of this type of application are Apple
iTunes, Quicktime and DVD Player, Real Networks RealOne Player, or Five 12
Numerology.

Other applications allow you to select which CoreAudio device to connect to – examples
include Steinberg Cubase SX, Apple Logic, MOTU Digital Performer, Ableton Live,
BIAS Peak, Cycling ‘74 Max/MSP, etc… In most instances, this will be specified in the
application’s audio driver or I/O setup screen. To use Jack, select the Jack Router
option on this setup screen. If you don’t see this option, be sure that the Jack Server is
on; if it wasn’t, you might need to restart your CoreAudio compliant application before
you will see the Jack Router option available to select.

The following are two visual examples, from Live 4.01 and Logic Audio Platinum 6.3.3:

15

Fully CoreAudio compliant applications are supposed to only display the sample rate
and audio buffer sizes supported by the currently selected CoreAudio driver. So when
using the Jack Router driver, these applications should only offer one possible choice
for sample rate and audio buffer size values, the ones chosen in the JackPilot
Preferences window. This is not always the case however, as many applications offer
sample rates and audio buffer values that are not supported by the driver. Therefore, it

16

is best to confirm that the CoreAudio compliant application has the same sample
rate and audio buffer size values selected as those you specified in the JackPilot
Preferences. Failure to do so may degrade overall Jack performance, and may cause
crashes as well.

• Making Connections U
Once you have Jack-enabled your various applications, Jack allows you to essentially
connect any input to any output, and vice versa. With the Jack server on, click the
Routing button in JackPilot, to bring up the Connections Manager window. The
following is an example of what you might see if you had not yet Jack-enabled any
applications – all you see is the physical audio device (generically called “system”),
and its send (“capture”) and receive (“playback”) ports:

It’s easy to make or break connections between Jack-aware applications and an audio
device using this window:

• A list of currently active Jack-aware applications and devices will be displayed in the
Send Ports and Receive Ports columns. Please note: some applications will not
appear in the Send Ports column until they are actively sending audio.

• A single click on an application name or device will show its connection state, with
connected applications/devices turning red. A list of the individual ports it is
connected to (if any) will be displayed in the Connections column.

In the following example, iTunes (which was selected with a single click) is connected to
the Built-in audio. The Built-in audio is in red, because that’s what iTunes is connected
to. The specific ports that iTunes is connected to appear in the Connections column.

17

• After having selected an application or device in either the Send Ports or Receive
Ports column, a double-click on a second, or target, application or device will either
connect or disconnect the target application. If the target application was not
previously connected, a double-click connects it to the 1st application or device; if
the target application was previously connected, a double-click disconnects it
from the 1st application or device.

• A double-click on a connection listed in the Connections column will disconnect it.

• “Opening” an application or device (using the disclosure triangle) allows one to make
individual port connections and disconnections, using the same method as above.

• Please note: there are no restrictions on setting up potential feedback loops (e.g.
connecting the system Send ports to the system Receive ports), so be careful!

• Saving & Loading Jack Studio Setups
To facilitate the use and reuse of a complex set of Jack connections, you can save a
Jack “studio” setup. Within Jack Pilot’s File menu, simply select Save Studio Setup
(key combination Command-S) or Load Studio Setup (key combination Command-L)
to Save or Load a studio setup, respectively.

18

Please note that Jack must be on, and the Connections window must be open, before
loading or saving a studio setup. Also note that double clicking on a studio setup in the
Mac’s finder will not load it – you must load it using the Load Sudio Setup command
within JackPilot.

If an attempt is made to load a studio setup that contains an instrument that is not
currently active and/or Jack-enabled, you will receive a warning, and given an
opportunity to start the application and/or Jack-enable it:

• Stopping the Jack Server
To stop the Jack Server and the JackRouter, click the Stop button in JackPilot:

19

A warning dialog will be displayed, asking you to confirm that this is what you want, and
alerting you as to how many clients are still connected to Jack. Stopping Jack while
clients are still connected can potentially cause them to crash, so best to disconnect
them from Jack prior to stopping Jack.

• Quitting JackPilot
Quitting JackPilot is done as with most Mac OS X applications, via the JackPilot menu,
or using the key combination Command-Q:

20

It is important to note however, that quitting JackPilot will not stop the Jack
Server and/or the JackRouter – these must be stopped manually using the Stop
Jack button in JackPilot.

Using the Jack Plugins
Jack OS X comes complete with JACK-insert plugins in both VST and AU formats.
This enables you to route streams of audio into Jack via the host application’s plugin
routing scheme. So for instance, one could route the main audio output from an
application to one destination application, but then route an audio insert feed, using an
AU or VST plugin, to a completely different application for processing. This greatly
expands the routing flexibility of Jack when used in concert with the many VST and AU-
compatible applications available today.

The image below shows the Jack AU insert being loaded within Logic 7:

21

In the example below, Cubase SE is sending audio via the Jack VST plugin to input
channels 1 and 2 of Cycling ‘74 Max/MSP Live.

22

NetJack U

NetJack has been temporarily removed from the Jack OS X package, until is
fixed.

• Overview
NetJack is the first Jack OS X module created for use within JackPilot. It allows for low
latency transmission of audio streams over a local network, or even over the Internet,
provided you have a fast and reliable connection between the computers you are
linking.

NetJack uses the UDP (User Datagram Protocol) transport layer protocol. Although in
some respects similar to the more familiar TCP (Transmission Control Protocol) protocol
(they both utilize the IP (Internet Protocol) layer, and send data in “packets”, for
example), UDP is better suited for real time audio transmission over a reliable network
because it is a simpler protocol with less overhead, and therefore, less latency. If you’re
interested in reading more about UDP, a good (albeit technical) overview is available at
the following site: http://en.wikipedia.org/wiki/User_Datagram_Protocol .

You can use any Mac OS X network interface with NetJack, including Ethernet, Airport,
or IP over Firewire connections. Furthermore you can just connect two Macs to each
other using an Ethernet cable, and let them discover themselves using Rendezvous.

• Using NetJack
We’ll use an example in which we want to sent audio from one computer (A) to another
computer (B) to illustrate how to use NetJack; rest assured that you can connect as
many computers as you like.

23

NetJack requires Jack OS X to be installed on both computers A and B, and the Jack
server should be started on both, as described in the previous sections. Also it is
assumed that the two computers are accessible to each other over a network; be sure
that firewalls, routers, etc. are configured to allow traffic through the selected NetJack
port (more on this below).

On computer A, start a new instance of the NetJack module, by choosing the Start
menu option within Slot 1 of the JackPilot Modules menu:

You’ll then see a new window that has the details of how and to where NetJack will
connect:

For now, we will focus on just some of these settings:

o Other machine address: This is the IP address (e.g. 10.6.52.24) or DNS
name (e.g. cool.stuff.com) of the machine to which you are connecting; either
will work. You can also type “localhost” (without the quotes) if you want to
connect back to the same machine. If you don’t know how to determine the IP
address of your Mac, please see the FAQ section below.

24

o Other machine will: This defines what mode the other machine will be in:
Receive audio, Send audio, or Send-Receive audio. Use Send-Receive mode
if the other machine will be both receiving audio as well as sending audio
back – this is more efficient than using two separate NetJack instances, one
to Send, the other to Receive. In our example, the other machine (B) will be
receiving audio, so we will set the drop down to Receive mode.

To begin audio transmission, press the Start Transmission button; you will then see the
NetJack entry in the appropriate Connections Manager column. To stop transmission,
press the button again (which at that point will be labeled Stop Transmission).

Note that if you go back up to the Modules menu, you’ll now see a second slot, Slot 2;
JackPilot will keep adding or removing slots sequentially as you start or stop them. Also
note that the Stop and Edit options are no longer grey in the first Slot 1 NetJack section:

If you close a NetJack settings window using the red close button in the top left corner
of its window, you can always reopen the window by selecting Edit from this menu. If
you are ready to stop using a NetJack instance, choose Stop from this menu. This will
stop the NetJack transmission, and remove the slot instance (unless the NetJack
instance you’re using is in Slot 1; Slot 1 is never removed).

Now let’s set up the other computer. Using JackPilot on Computer B, start a new
instance of the NetJack module just as you did it on Computer A, by choosing the Start
menu option within Slot 1 of the JackPilot Modules menu. In the NetJack settings

25

window, enter the IP address (or DNS name) of Computer A, be sure it is set to Send
mode, and press Start Transmission.

There – we’ve now established the connection between the two computers, each
running Jack OS X. For purposes of illustration, let’s say we want to send iTunes audio
running on Computer A to Computer B, and we want to hear the output on Computer
B’s built in speakers.

On Computer A, set up iTunes to send its audio to the NetJack ports of Computer B (be
sure you have audio playing in iTunes, in order to see it in the Connections Manager!)
(also, if you don’t know how to connect things in the Jack Pilot Connections Manager,
refer back to “How Do I Use Jack?” section above):

26

On Computer B, connect the NetJack ports to the Built-in Audio ports:

You’re done! You should be hearing your iTunes audio, which originated on Computer
A, playing back on Computer B!

Now, let’s return to the NetJack settings window, for an explanation of the other settings
not previously described:

o Port number: The UDP port on which NetJack will send the audio streams
over the network. The default port number is 57000, but you can change this
to any port you desire. Just be sure that both computers that are to
communicate are set to the same port. Also, be sure that any firewalls or
routers are set appropriately, to allow traffic through your selected port
number.

o Number of channels: This setting defines the number of channels that the
particular NetJack instance will transmit. In general, do not select more
channels than are necessary for your particular application, as latency will
increase with increasing number of channels. In general, if you desire the
lowest possible latency between connected computers, you should use the
lowest number of channels per NetJack instance. In other words, in our
example above, we sent a stereo iTunes stream over the network using one

27

NetJack instance, set up for two channels. We could have accomplished the
same thing using two NetJack instances, but configured with only one
channel each. This setup would have yielded less latency in getting the audio
from one computer to the other. The tradeoff is that this configuration requires
more of your CPU, as well as more RAM.

NetJack works best over reliable, fast networks. That said, there’s nothing preventing
you from using it over the Internet, but just understand that it may not be reliable
enough to deliver glitch-free audio back and forth.

Miscellaneous Features
• Automatic Connection Restoration
Some applications are not recognized by JackPilot’s Connections Manager when they
are not actively sending audio. This caused problems in earlier versions of Jack OS X,
as these applications would “disappear” from the Connections Manager window when
they stopped sending audio, and any connections that were already made with the
application would be lost, requiring manual re-establishment of the connections when
the audio was restarted.

Beginning with version 0.5 of Jack OS X, a feature in Jack OS X restores the
connection state of the application in question once its audio stream is resumed.

Practically this means that for these types of applications, you can start, stop, and
restart the application’s audio playback, with audio connections that were in place prior
to stopping being restored automatically when the audio is restarted.

• About Jack
You can quickly and easily find out what versions of the Jack server, Jack Router, and
JackPilot application you have installed, by selecting the About JACK menu item in
JackPilot to see the About Jack window. In addition to giving details about the currently
installed Jack, JackRouter, and JackPilot versions, it contains a link to the Jack OS X
home at http://www.jackosx.com. Click the Jack logo to close the window.

28

• Dock Menu
JackPilot also provides a quick way to access most of its functions, by using the Dock
menu; control-click on the Jack icon in the Dock to see a list of possible functions,
including starting or stopping the Jack Server, opening the Connections Manager, and
opening the Preferences window:

29

• Audio MIDI Setup and Sound Preferences quick access N
Quick access to the Audio MIDI Setup utility and the Sound Preferences pane is
available within the JackPilot menu:

Step-by-Step Examples
In this section, we will walk you through some common Jack OS X setups in a step-by-
step manner; hopefully this will familiarize you with the process sufficiently so that you
can extrapolate from these examples to your particular setup. All of the examples below
will use the Mac’s Built-in Audio, though you obviously can the audio interface of your
preference.

30

We’ll discuss three different setups, with increasing complexity as we progress through
them:
• iTunes to Logic Express
• iTunes and Real Player to Logic Pro (using four virtual inputs)
• Cubase SX, Jack VST plugin, and Max/MSP as “insert effect”

Here we go!

• iTunes to Logic Express U
o Step 1. Start JackPilot
o Step 2. Be sure that Virtual Input and Output Channels are set to 2 in the

JackPilot Preferences. It is simplest if you do not check Auto-Connect with
physical ports:

o Step 3. Start the Jack server:

o Step 4. Open System Preferences, then select the Sound control panel (or if
you prefer you can use the Audio MIDI Setup application), then select
JackRouter as both Output and Input device:

31

o Step 5. Start iTunes, and be sure that it is playing audio (choose either a very
long audio file, or connect to an Internet radio station). You will NOT hear any

32

audio yet – don’t be discouraged! By clicking the Routing button in JackPilot,
you should now see the following in your Connections Manager window:

o Step 6. Start Logic, and in the Audio menu, choose “Audio Hardware &
Drivers…”. In the window that is displayed, in the Audio section, choose Jack
Router in the Core Audio Driver section:

33

o Step 7. You may be able to just Re-Launch Core Audio, otherwise reboot
Logic:

34

o Step 8. Your Connections Manager window should now look like this:

o Step 9. Now it’s time to route the iTunes audio into Logic. Click once on
iTunes in the Send Ports column, to highlight it blue:

o Step 10. Now double click on Logic Express in the Receive Ports column. It
will turn it red, and you will see the connections listed in the Connections
column. You’ve now routed the audio from iTunes to Logic Express:

35

o Step 11. In Logic, create a stereo audio track, and set its input to Inputs 1 and
2. If you turn on monitoring for this track, you will see the iTunes audio
streaming in:

o Step 12. All that we have left to do is to connect Logic Express to the system
device within the JackPilot Connections Manager. Single click Logic Express
in the Send Ports column, to highlight it blue:

36

o Step 13. Then double click system in the Receive Ports column – you should
see the connections listed in the Connections column, and more importantly,
you should hear your iTunes audio coming through your Mac’s speakers, via
Logic Express!

You’ve now got iTunes audio routed to a stereo audio track in Logic Express, and you
can do anything with that audio that you could with any other Logic audio track,
including processing it with a plugin, sending it to a bus, recording it, etc.

• iTunes and Real Player to Logic Express (using four virtual inputs) U
Our next example is very similar to the previous one, except that we want to route two
different applications into Logic Express, and on separate channels. To do this, we will
need to create more virtual inputs into Logic.

o Step 1. Start JackPilot
o Step 2. Be sure that Virtual Output Channels are set to 2, Virtual Input

Channels are set to 4, and Auto-Connect with physical ports is unchecked in
the JackPilot Preferences:

37

o Steps 3 – 8. Same as previous example.
o Step 9. Start Real Player, and start it playing a long audio file or Internet

audio stream. Your JackPilot Connections Manager should look like this:

o Step 10. We’ll now connect iTunes to Logic Express’s first two input channels.
Click the disclosure triangles next to iTunes in the Send Ports column, and
Logic Express in the Receive Ports column. Click once on “out1” under
iTunes, to highlight it blue:

38

o Step 11. Now double click “in1” under Logic Express to connect it. It will turn
red, and you will see the connection in the Connections column:

o Step 12. Repeat the last two steps, but substituting iTunes out2 and Logic
Express’s in2. You’ve now connected the two iTunes outputs to the first two
Logic inputs. If you now single click on iTunes in the Send Ports column, you
should see the two connected Logic Express ports turn red in the Receive
Ports column, and you should see both connections displayed in the
Connections column:

39

o Step 13. Repeat steps 10 – 12, but substituting RealPlayer for iTunes, and
Logic Express’s in3 and in4. If you then single click on RealPlayer in the
Send Ports column, you should see the two connected Logic Express ports
(in3 and in4) turn red in the Receive Ports column, and you should see both
connections displayed in the Connections column. You can also try single
clicking Logic Pro in the Receive Ports column, to see all four connections to
it (two from iTunes, two from RealPlayer) turn red:

o Step 14. Now head back to Logic, and set up two stereo audio tracks, one set
to get its input from channels 1 and 2, the other set to get its input from
channels 3 and 4. Put both tracks in monitoring mode, and you should see
audio streaming in to each: iTunes on channels 1 and 2, RealPlayer on
channels 3 and 4:

40

o Step 15. All that we have left to do is to connect Logic Express to the system
device within the JackPilot Connections Manager. Single click Logic Express
in the Send Ports column, to highlight it blue:

41

o Step 16. Then double click system in the Receive Ports column – you should
see the connections listed in the Connections column, and more importantly,
you should hear your both iTunes and RealPlayer audio coming through your
Mac’s speakers, via Logic Express!

• Cubase SE, Jack VST plugin, and Max/MSP as “insert effect”
Sometimes, routing a whole application’s audio output through to another application is
not what’s desired; sometimes, you might want to just route a single audio track into
another application for processing. The Jack plugins are one way of doing this.

In this example, we will take a single stereo audio track out of Cubase SE, and using
Jack’s VST insert effect, will process that audio with Max/MSP, and then return it back
to Cubase SE.

Since this is the last example, we’ll assume you already know how to do the basics,
including starting JackPilot and the Jack server, making connections within the
Connections Manager, and how to “Jack enable” both Cubase and Max/MSP.

o Step 1. Start Jack, using two Virtual Input and Output channels (see first
example for more details).

o Step 2. Start Cubase SE, and select the JackRouter as its audio driver.
o Step 3. Start Max/MSP, and select the JackRouter as its audio driver.
o Step 4. In Cubase SE, create an audio track (could be a sample, a software

synth, whatever you want), and add Jack as an insert effect on that track:

42

o Step 5. Open a Max/MSP patch; we’ll use a pitch shifting patch that takes an
audio input stream, shifts its pitch, and streams the modified audio back out.

o Step 6. Now let’s connect things in the JackPilot Connections Manager
window. Open the disclosure triangles next to Cubase SE, Max/MSP, and
system. Connect Cubase SE VSTSend1 and VSTSend2 in the Send Ports
column to Max/MSP in1 and in2 in the Receive Ports column (we illustrate
just the VSTSend1 to in1 connection below):

o Step 7. Connect Max/MSP out1 and out2 in the Send Ports column to Cubase
SE VSTReturn1 and VSTReturn2 in the Receive Ports column (we illustrate
just the out1 to VSTReturn1 connection below):

43

o Step 8. Connect Cubase SE out1 and out2 in the Send Ports column to the
system playback_1 and playback_2 (we illustrate just the out1 to playback_1
connection below):

You’ve now set up a Max/MSP as an “insert effect” on your audio track in Cubase; if you
play your audio track in Cubase, you should be able to manipulate that audio in real
time within your Max/MSP patch, and have the resulting audio come right back into your
original Cubase audio track. Congratulations!

44

Developer Information
For developers who wish to use the Jack API, the Jack OS X library is distributed in two
ways:

• the Apple approach: a Jack framework that contains the library and the associated
headers

• the Unix approach: a libjack.dylib library installed in usr/local/lib, the associated
headers installed in usr/local/include, and a corresponding jack.pc file

Developers can use either the Apple or Unix approaches, depending on their need. The
Unix approach is especially helpful when porting applications from Linux. The "example-
clients" folder contains an XCode project and a makefile to illustrate the two ways of
developing Jack native applications on Mac OS X.

FAQ U
Q: How is Jack different than Propellerhead’s ReWire?
A: Propellerhead's ReWire technology is similar to Jack in that it allows inter-application
audio exchange. Jack however, works with all CoreAudio compliant OS X audio
applications, not just the ones in which their manufacturers have included inter-
application audio support, as with ReWire. Jack also provides for both AU and VST
plugin support, further allowing for more interesting audio routing possibilities.
Furthermore, Jack is free under the GPL and LGPL licensing models, to both end users
and developers, unlike ReWire, which is proprietary and requires licensing from
Propellerheads.

Jack does not support inter-application MIDI communication however, unlike ReWire.
This is lessened in importance in OS X however, as OS X’s CoreMIDI allows for
implementation of inter-application MIDI communication natively. (See related FAQ
question below).

Q: How is Jack different than Cycling 74’s Soundflower?
A: Soundflower is a free utility from Cycling '74 that provides 2 and 16 channel
CoreAudio ports that are available to all CoreAudio applications. It is a kernel driver.
Although very effective for straightforward setups, it is less flexible than Jack in its
routing abilities. Like Jack, it is open source.

Q: How is NetJack different than other network-enabled audio communication
tools, like apulsoft’s WormHole, FX-Max’s FX Teleport, Steinberg’s VST System
Link, or Apple’s Logic “distributed audio processing”?
A: apulsoft’s WormHole is an AU and VST plugin-based system that allows for audio
transmission over a network. It uses TCP/IP however, which theoretically will yield
higher latency. It also does not work with applications that do not support VST or AU
plugins.

45

FX-Max’s FX Teleport allows you to route audio from/to VST plugins on another
machine that is network accessible. It is intended to allow for reduction of processing
load on a single machine by the distribution of work to multiple machines that are
connected over a network. It is not yet available for Mac, nor is it free or open source. It
only works with VST plugins and instruments.

Steinberg’s System Link allows machines to be networked over physical connections; it
is not IP-network based. It is only supported by Steinberg applications. It does transmit
MIDI over the connection however.

Apple’s Logic provides for “distributed audio processing”. This allows for the built in
Logic plugins to be run on connected (via TCP) “slave” computers, whose audio is then
routed back to the main Logic application on the “master” computer. Like Steinberg’s
SystemLink, this is an application-specific technology that likely works very well for
users of Logic, however affords less flexibility than Jack OS X.

Q: Does Jack OS X work with “aggregate audio devices”?
A: Aggregate audio devices (created and managed from within the Audio MIDI Setup
application) can be used like any "native" device in Jack OS X; the device will appear in
the JackPilot Preferences Interface selection dropdown, and if selected there, in the
Connections Manager, where the set of all audio ports included in the aggregate device
will appear – see below. It’s important to note that creation of an Aggregate Device
is currently required for Intel Mac systems; this is because on Intel systems, the
Macintosh presents the input and output devices as distinct, half-duplex devices,
and so therefore they need to be aggregated together to work properly with Jack
OS X.

46

Q: Can Jack OS X work with Qjackctl, instead of JackPilot?
A: Qjackctl (http://qjackctl.sourceforge.net) is an open source application, developed by
Rui Nuno Capela, that is similar to JackPilot, in that it controls the Jack server. Unlike
JackPilot though, it supports many of the additional Jack features available on Linux,
but not yet on OS X (e.g. transport control). One often-requested enhancement to the
current Jack OS X package is the ability to more easily make or break connections
between devices/applications, and Qjackctl does support a more intuitive graphical
connection manager (see below).

Rui and several other open source developers have been able to get Qjackctl and Jack
OS X to work together; a disk image is available at the following location:
http://www.ardour.org/requirements_osx

47

Q: Why doesn’t iTunes appear in my JackPilot Connections Manager?
A: The Default Output setting in either the Sound control panel, or within the Audio MIDI
Setup application must be set to Jack Router. This is because iTunes uses the default
OS X output device when sending its audio (also similar for Quicktime Player, and other
apps that use the default OS X output device).

Q: Does NetJack send MIDI data over a network?
A: No. But there are a few utilities available that do, that you could use in conjunction
with Jack OS X and NetJack:

• MIDIoverLAN CP
o http://www.musiclab.com/products/rpl_info.htm

• iMIDI (beta)
o http://www.grantedsw.com/imidi

Also, starting in OS X 10.4.x, the ability to send MIDI data over the network is built into
the operating system – for more information and step by step procedures, open the
Audio MIDI Setup application in Applications/Utilities, select Audio MIDI Setup Help
from the Help menu, click the See all Audio MIDI Setup topics link, and then click the
Sending MIDI device information over a network link.

Q: How do I find a machine’s IP address?
A: Open the Mac’s System Preferences, choose “Network”, and choose “Network

48

Status” next to the “Show” drop down menu. You will then see a summary of your
Network connectivity, which will include your current IP address if connected to a
network:

Q: How should one select the buffer size within JackPilot?
A: Small buffer sizes are needed when using audio applications that require real-time
interaction, when a small latency is required between the physical audio input and
output. The drawback is that CPU consumption for the system is higher with smaller
buffer sizes.

Larger buffers (like 512 or 1024) can be used when there is no such requirement.

Q: What is the difference between the Jack Server and the JackRouter?

49

A: The Jack Server is the core infrastructure of Jack, and is necessary to use Jack in
any way. It routes audio between both applications and audio hardware.

The JackRouter is an OS X-specific development. It is a Core Audio “user space” driver,
that allows for any Core Audio compliant audio application to become “Jack enabled”.

Q: How do I use inter-application MIDI communication, when I’m using Jack for
inter-application audio communication?
A: CoreMIDI services in Mac OS X provide similar functionality to OMS’s IAC (inter-
application communication) MIDI bus, used in OS 9 and earlier. This allows for the
utilization of “virtual” MIDI busses, between applications. Currently, some applications
provide their own virtual MIDI busses in OS X – examples include Cycling 74’s
Max/MSP, Pete Yandell’s Simple Synth, and Five 12’s Numerology. Starting with
version 10.3 of OS X (Panther), an IAC MIDI bus comes as part of the operating system
for any application to use – take a look at the Audio MIDI Setup application in
Applications/Utilities, in the MIDI Devices section:

For those not on Panther or greater yet, you can also use an application like MIDI
Patchbay, by Pete Yandell (http://pete.yandell.com/software), to route MIDI information
between applications as well.

Q: What does the CPU meter in JackPilot represent?
A: The CPU meter in JackPilot represents the sum of the real-time audio thread CPU
use of all Jack clients. Thus it gives a partial picture of total CPU use, since it does not
take into account any GUI impact on CPU use of either JackPilot or of the Jack clients.

Known Issues & Limitations U
• When installing a new version of Jack OS X over an existing one, the previous

version is uninstalled automatically for you, and placed into the Trash. It is not
possible to fully empty the trash however, until you restart your Macintosh, as it
will complain that a file in the trash is “in use” even though it is really not in use.

50

• Some USB audio devices are seen by Jack OS X as two separate devices, one
with inputs, the other with outputs. Some devices know to exhibit this behavior
are:

o Griffin Technology iMic
o All Intel-based Mac systems

• The workaround with these devices is to use the Aggregate Audio Device
functionality in OS X 10.4 or greater. This allows one to group these audio
devices into one single virtual device, which can then be selected in the JackPilot
preferences. See the screenshots in the FAQ topic regarding aggregate audio
devices.

• The Jack server will stop running if a change in status occurs on the device it is
currently using. An example of this is when an application tries to force a change
in the sample rate of the device that Jack OS X is currently using. Another
example is when Jack OS X is using an Aggregate Device, and if one of the
subcomponents of the Aggregate Device is dropped or changes in some way,
then the Jack server will stop.

• Two specific Logic limitations:

o The JackPilot buffer size must be set to1024 for the Jack AU plugin to
work correctly. This is because Jack’s buffer size must be greater than or
equal to the plugin buffer size, and Logic seems to keep it fixed at 1024.

o When the JackPilot Connections Manager is used, the Jack client graph is
stopped when the connection state is read or new connections are made;
this can cause an error message in Logic ("Error while trying to
synchronize Audio and MIDI") if Logic was currently playing. Stopping and
starting Logic playback solves the problem.

• The Apple DVD Player application only works when the Jack buffer size is set to
1024; this seems to be a limitation of the application itself, and a bug report has
been filed with Apple.

• The contents of the JackPilot Connections Manager columns, as well as the
number of connections displayed in the main JackPilot window, do not refresh
immediately when there is a change in state.

• Powering an audio interface on or off, or hot-plugging an audio interface, will
cause errors in JackPilot if it is already running. To remedy the problem, quit
JackPilot, and start it up again after making your audio device changes.

• When using a Jack OS X on a Mac laptop with built in volume adjust keys, these
keys may not work when using an Aggregate Device with Jack OS X. This is not

51

a Jack OS X problem, but rather a limitation of the Core Audio infrastructure (you
can try to see if the keys work without Jack OS X at all, and just using an
Aggregate Device).

Contacts
• Stephane Letz – letz @ grame.fr

o OS X Jack port, Jackdmp multi-processor optimized version of Jackd,
JackRouter

• Dan Nigrin – dan @ defectiverecords.com
o Documentation, Testing, Web Site, Public Relations

• Johnny Petrantoni – johnny @ lato-b.com
o JackPilot, Jack-aware plugins, NetJack, JackRouter

• Paul Davis – paul @ linuxaudiosystem.com
o Initial Jack concept, design and main developer

Links
• Jack OS X - http://www.jackosx.com

• Jack OS X discussion group – http://groups.yahoo.com/group/jackosx

• Jack – http://jackaudio.org

License
This program is free software, with redistribution and/or modification terms as per the
GNU General Public License (GPL) version 2, and the GNU Lesser General Public
License (LGPL), version 2.1, as published by the Free Software Foundation. The
identification of which parts of Jack OS X are covered by either the GPL or the LGPL is
specified below:

• Jack – GPL, except for the jack.h file (used when an application needs to access
the Jack API), which is LGPL.

• JackRouter – GPL
• Jack AU and VST plugins – GPL
• JackPilot – GPL
• NetJack – GPL
• Panda - LGPL

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

52

The GPL and LGPL are available from the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA, or online at http://www.gnu.org/licenses/license-
list.html#GNUGPL

Copyrights and Trademarks
Jack OS X is Copyright © 2004-2008 by JackOSX.com. All Rights Reserved
Jack OS X is Copyleft 2004-2008 by JackOSX.com. All Rights Reserved.
VST is a trademark of Steinberg Soft und Hardware GmbH.
All other copyrights and trademarks are property of their respective owners.

Version History U
• 0.76 – Feb 7, 2008

o Corrected a flaw in how certain specific audio device state changes are
handled by the Jack server

o Added menu items for Audio MIDI Setup and Sound preferences pane
o Jackdmp – 0.691
o JackRouter – 0.8.6
o JackPilot – 1.6.3

• 0.75 – Jan 23, 2008
o Now using Jackdmp Jack infrastructure, instead of Jackd
o Now compatible with OS X 10.5.x (Leopard)
o No longer automatically selects Jack as Default Input/Output device if

selected in JackPilot Preferences – must manually do so in Sound Control
Panel or in Audio MIDI Setup application

o Jack VST plugin now VST 2.4-compatible
o Previous iSight incompatibility fixed
o Jackdmp – 0.69
o JackRouter – 0.8.6
o JackPilot – 1.6.2

• 0.74 – May 4, 2006
o Updated Jack AU plugin to pass Apple AU validation

• 0.73 – Apr 13, 2006
o Entire Jack OS X package, including plugins, now Universal Binary
o Updated Jack server to most current version
o Removed NetJack component from package pending critical bug fixes
o Removed “portaudio” driver from package
o Jack – 0.101.3
o Jack Audio Router (JAR) – 0.8.3
o JackPilot – 1.6.0

53

• 0.72 – Jan 27, 2006
o Updated Jack server to most current version
o Updated Core Audio driver to solve problems with some audio interfaces
o Updated JackPilot to solve a problem with latest 17 inch PowerBooks
o Updated Jack Audio Router (JAR) to support VideoLan player (VLC), and

addressing various bugs, including memory leak
o Jack – 0.100.6
o Jack Audio Router (JAR) – 0.8.0
o JackPilot – 1.5.9

• 0.71 – Jul 12, 2005
o Fixed bug in JAR buffer management code that prevented Rax from

working properly. Fixed a bug in JAR stream property management that
prevented Plogue Bidule from working properly.

o Jack Audio Router (JAR) – 0.7.7

• 0.7 – Jun 23, 2005
o Now compatible with OS X 10.4.x (Tiger), including Aggregate Audio

Devices
o Only streams that are actually used now appear as Jack ports (e.g. iTunes

only has outputs now, and no inputs)
o Fixed JackPilot port scanning bug, so that ZynAddSubFX OS X port works

properly.
o Updated Jack server to most current version, 0.100.1
o Documentation updated
o Jack – 0.100.1
o Jack Audio Router (JAR) – 0.7.6
o JackPilot – 1.5.8

• 0.61 – Mar 1, 2005
o Fixed Jack Audio Router to work with Skype, Rax, and other applications it

was having trouble with. Related to a problem starting the JAR because of
some C++ static variable initialization issues.

o Added Arvid Tomayko-Peters’ Autostart Applescript, to standard
distribution, in Extras/Autostart folder

• 0.6 – Feb 21, 2005
o Updated Jack server to version 0.99.49
o Fixed Jack Audio Router to work with Native Instruments applications
o Fixed Jack Audio Router to work with Final Cut Pro
o Fixed Jack Audio Router to allow working with both Jack AU and Jack

VST plugins at the same time
o Added “blacklist” functionality to Jack Audio Router, allowing for some

clients to be rejected from being added. Currently, XQuartz (opened by
X11) is the only client on the list. This is mostly for the upcoming Ardour
OS X port

54

o Fixed CoreAudio driver to fix a problem with multi-stream interfaces
o New management of Jack plugin audio buffers (they are now allocated

and managed in the JAR, not in the plugins), to address “dirty buffer”
problem, especially in Logic

o Documentation updated
o Jack - 0.99.49
o Jack Audio Router (JAR) – 0.7.2
o JackPilot – 1.5.4

• 0.51 – Oct 7, 2004
o Fixed Jack Audio Router to fix crash when using “Band-in-a-Box™”

application; JAR did not deal with special characters nicely
o Fixed AU and VST plugs to fix crashes when Jack buffer size less than

hosting app buffer size
o Fixed default Jack server buffer size to 512 – was set to 4096 by default in

0.5 version, which caused problems with iTunes not playing correctly
o Jack Audio Router (JAR) – 0.5.8
o Jack AU plugin – 1.5.1
o Jack VST plugin - 1.5.1

• 0.5 – Sep 30, 2004
o New CoreAudio driver (in addition to existing PortAudio driver)
o New plugin architecture included in JackPilot
o New NetJack UDP plugin for JackPilot
o Workaround for “iTunes problem” – restores state of application’s

connections if audio stream into Jack is stopped, then restarted
o Various Jack Audio Router bug fixes
o New Jack VST and AU plugin design – AU plugin now passes current

Apple AU validation test (version 1.1.1b11 of validation tool)
o CFM VST plugin no longer supplied in package – essentially all VST hosts

now support Mach-O
o Developer toolset added
o Step-by-step illustrated examples added to documentation
o Documentation updated and revised overall
o Italian and French localization of JackPilot
o Jack - 0.82.0
o Jack Audio Router (JAR) – 0.5.7
o Jack AU plugin – 1.5
o Jack VST plugin – 1.5
o JackPilot – 1.5

• 0.4 – initial public release – Jan 7, 2004 (originally called Jack Tools)
o Jack - 0.82.0
o Jack Audio Server (JAS) – 0.4.5
o Jack AU plugin – 1.0
o Jack VST plugin (Mach-O) – 1.0

55

o Jack VST plugin (CFM) – 1.0
o JackPilot – 1.4

