
jackdmp: Jack server for multi-processor
machines

S.Letz, D.Fober, Y.Orlarey
Internal technical report 11-28-05

Grame - Centre national de création musicale
{letz, fober, orlarey}@grame.fr

Abstract
jackdmp is a C++ version of the Jack low-latency
audio server for multi-processor machines. It is a
new implementation of the jack server core features
that aims in removing some limitations of the cur-
rent design. The activation system has been changed
for a data flow model and lock-free programming
techniques for graph access have been used to have
a more dynamic and robust system. We present the
new design and the implementation for Linux and
OSX.

1 Introduction

The new design and implementation aims in re-
moving limitations of the current version. This
has been done by isolating the ”heart” of the
system and simplifying the implementation:

• removing of the sequential client activation
limitation using a new graph activation
scheme based on a data-flow model, that
will naturally take profit of multi-processor
machines.

• more robust architecture based on lock-
free programming techniques allowing the
server to keep working (not interrupting
the audio stream) when the client graph
changes or in case of client execution fail-
ure, especially interesting in live situations.

• various changes in the internal design to
simplify portability.

2 Multi-processing

In a Jack server like system, there is a natural
source of parallelism when Jack clients depend
of the same input and can be executed on dif-
ferent processor at the same time. The main re-
quirement is then to have an activation model
that allows the scheduler to correctly activate
parallel runnable clients. Going from a sequen-
tial activation model to a completely distributed
one also raise synchronization issues that can be
solved using lock-free programming techniques.

3 New design

3.1 Graph execution

In the current activation model (either on Linux
or MacOSX), knowing the data dependencies
between clients allows to sort the client graph
to find an activation order. This topological
sorting step is done each time the graph state
changes, for example when connections are done
or removed or when a new client opens or closes.
This order is used by the server to activate
clients in sequence.

Forcing a complete serialization of client ac-
tivation is not always necessary: for example
clients A and B (Fig 1) could be executed at the
same time since they both only depend of the
”Input” client. In this graph example, the cur-
rent activation strategy choose an arbitrary or-
der to activate A and B. This model is adapted
to mono-processor machines, but cannot exploit
multi-processor architectures efficiently.

Input Ouput

A

B

C D

Figure 1: Client graph: Client A and B could
be executed at the same time, C must wait for
A and B end, D must wait for C end.

3.2 Data flow model

Data flow diagrams (DFD) are an abstract gen-
eral representation of how data flows around
a system. In particular they describe systems
where the ordering of operations is governed by
data dependencies and by the fact that only the
availability of the needed data determines the
execution of one of the process.

A graph of Jack clients typically contains se-
quencial and parallel sub-parts (Fig 1). When
parallel sub-graph exist, clients can be executed
on different processors at the same time. A
data-flow model can be used to describe this
kind of system: a node in a data-flow graph
becomes runnable when all inputs are avail-
able. The client ordering step done in the mono-
processor model is not necessary anymore. Each
client uses an activation counter to count the
number of input clients which it depends on.
The state of client connections is updated each
time a connection between ports is done or re-
moved.

Activation will be transfered from client to
client during each server cycle as they are exe-
cuted: a suspended client will be resumed, exe-
cutes itself, propagates activation to the output
clients, go back to sleep, until all clients have
been activated. 1

3.2.1 Graph loops
The Jack connection model allows loops to be
established. Special feedback connections are
used to close a loop, and introduce a one buffer
latency. We currently follow Simon Jenkins 2

proposition where the feedback connection is in-
troduced at the place where the loop is estab-
lished. This scheme is simple but has the draw-
back of having the activation order become sen-
sitive to the connection history. More complex
strategy that avoid this problem will possibly
be tested in the future.
3.2.2 Complete graph
At each cycle, clients that only depend of the
input driver and clients without inputs have to
be activated first. To manage clients without in-
puts, an internal freewheel driver is used: when
first activated, a client will be connected to it.
At the beginning of the cyle, each client has its
activation counter containing the number of in-
put client it depends of. After being activated,
a client decrements the activation counter of all
its connected output. The last activated in-
put client will resume the following client in the
graph (Fig 2).

3.3 Lock-free programming
In classic lock-based programming, access to
shared data needs to be serialized. Update op-

1The data-flow model still works on mono-processor
machines and will correctly guaranty a minimum global
number of context switches like the ”pre-sorting step”
model.

2Discussed on the jack-dev mailing list

C (1)

A(0)

B(0) B(0)

C (0)

A(0)

C (2)

A(0)

B(0)

Running client

Figure 2: Example of graph activation: C is ac-
tivated by the last running of its A and B input.

erations must appear as atomic. The standard
way is to use a mutex that is locked when a
thread starts an update operation and unlocked
when the operation is finished. Other threads
wanting to access the same data will check the
mutex and possibly suspend their execution un-
til the mutex becomes unlocked. Lock based
programming is classically sensitive to prioriy
inversion problems (when a high priority thread
waits for a ressource owned by a lower priority
thread) or deadlocks. Lock-free programming
on the contrary allows to build data structures
that are safe for concurrent use without needing
to manage locks or block threads.

Locks are used at several places in the cur-
rent Jack server implementation. For exam-
ple, the client graph needs to be locked each
time a server update operation access it. When
the real-time audio thread runs, it needs also
to access the graph lock. If the graph is al-
ready locked and to avoid waiting an arbitrary
long time, the RT thread will generate an empty
buffer for the given audio cycle, causing an an-
noying interruption in the audio stream.

A lock-free implementation aims in remov-
ing all locks (and particularly the graph
lock) and allowing all graph state changes
(add/remove client, add/remove ports, connec-
tion/disconnection...) to be done without in-
terrupting the audio stream. 3 As we will see
in the implementation section, this new con-
straint requires also some changes in the client
side threading model.

3.3.1 Lock-free graph state change
All update operations from clients are serialized
through the server, thus only one thread will
update the graph state. RT threads from the
server and clients have to see a coherent state
during a given audio cycle. Non RT threads
from clients may also access the graph state at

3Some operations like buffer size change will still in-
terrupt the audio stream.

any moment. The idea is to use two states: one
current state and one next state to be updated.
A state change consists in atomically switching
from the current state to the next state. This is
done by the RT server thread at the beginning
on a cycle. Clients RT threads will use the same
state during the entire cycle. All state manage-
ment operations are implemented thanks to the
CAS operation and are described more deeply
in the implementation section.

3.4 A ”robust” server

Having a robust system is especially important
in live situations where one can accept a tempo-
rary graph execution fault, which is usually bet-
ter that having the system totally failing with a
completely silent buffer interrupting the audio
stream.

In a multi-processor context, it is interesting
to have a more distributed system, where a part
of the graph may still run on one processor even
if another part is blocked on the other one.

3.4.1 Engine cycle
The engine can be started in two different
modes:

• synchronous mode: as in the previous ver-
sion, the server waits for the client graph
execution end before it can produce the
output audio buffers. Thus a client that
does not run during one cycle will cause
the complete failure of the system.

• asynchronous mode: the server no longer
waits for the graph execution end. It uses
the buffers computed at the previous cy-
cle. The server cycle is fast and take almost
constant time since it is totally decoupled
from the client execution. This allows the
system to keep running even if a part of the
graph can not be executed during the cycle
for whatever reason (too slow client, crash
of a client...). The server is more robust:
the resulting output buffer may be incom-
plete, if one or several clients have not pro-
duced their contribution, but the output
audio stream will still be produced.

Each client uses an inter-process sus-
pend/resume primitive associated with an ac-
tivation counter. For synchronous execution
mode, the server cycle consists of:

• read audio input buffers

• for each client in client list, reset the acti-
vation counter to its initial value

• activate all clients connected to the audio
driver and freewheel driver

• write output audio buffers

• suspend until the next cycle

For asynchronous execution mode, the server
cycle consists of:

• read audio input buffers

• write output audio buffers computed the
previous cycle

• for each client in client list, reset the acti-
vation counter to its initial value

• activate all clients connected to the audio
driver and freewheel driver

• suspend until the next cycle

After being resumed by the system, execution
of a client consists of:

• call the client process function

• propagate activation to output clients

• suspend until the next cycle

3.4.2 Latency
This asynchronous model for engine cycle acti-
vation adds a one buffer more latency in the sys-
tem 4. But according to the needs, it is possible
to choose between the current model where the
server is synchronized on the client graph exe-
cution end and the new more robust distributed
model with higher latency.

4 Implementation

The new implementation concentrates on the
core part of the system. Some part of the API
like the Transport system are not implemented
yet.

4.1 Data structure
Using pointers in shared memory on the server
and client side is usually complex: pointers have
to be described as offset related to a base ad-
dress local to each process. Linked lists for ex-
ample are more complex to manage and usu-
ally need locked access method in multi-thread
cases. We choose to simplify data structures to
use fixed size preallocated arrays that will be
easier to manipulate in a lock free manner.

4The additional latency can probably be lowered by
adjusting the output advance used at the driver level

4.2 Shared Memory
Shared memory segments are allocated on the
server side. A reference (index) on the shared
segment must be transfered on the client side.
Shared memory management is done using two
classes:

• On the server side, the JackShmMem
class overloads new and delete operators.
Objects of sub-classes of JackShmMem will
be automatically allocated in shared mem-
ory. The GetShmIndex method retrieves
the corresponding index to be transfered
and used on the client side.

• On the client side, the JackShmPtr tem-
plate class allows to manipulate objects
allocated in shared memory in a trans-
parent manner. Initialized with the in-
dex obtained from the server side, a Jack-
ShmPtr pointer can be used to access data
and methods 5 of the corresponding shared
memory object. Shared memory objects
will be accessed using a standard pointer
on the server side and an JackShmMem
pointer on the client side.

Shared memory segments allocated on the
server will be transfered from server to client
when a new client is registered in the server, us-
ing the corresponding shared memory indexes.

4.3 Graph state
Connection state was previously described as
a list of connected ports for a given port.
This list was duplicated both on the server
and client side thus complicating connec-
tion/disconnection steps. Connections are now
managed in shared memory in fixed size arrays.

The JackConnectionManager class main-
tains the state of connections. Connections are
represented as an array of port indexes for a
given port. Changes in the connection state
will be reflected the next audio cycle, using the
JackAtomicState.

The JackGraphManager is the global
graph management object. It contains a con-
nection manager and an array of preallocated
ports.

4.4 Port description
Ports are a description of data type to be ex-
changed between Jack clients, with an associ-
ated buffer used to transfer data. For audio

5Only non virtual methods

input ports, this buffer is typically used to mix
buffers from all connected output ports. Audio
buffers were previously managed in a indepen-
dent shared memory segment.

For simplification purpose, each audio buffer
is now associated with a port. Having all buffers
in shared memory will allow some optimiza-
tions: an input port used at several places with
the same data dependencies could possibly be
computed once and shared. Buffers are pre-
allocated with the maximum possible size, there
is no re-allocation operation needed anymore.
Ports are implemented in the JackPort class.

4.5 Client activation
On each platform, an efficient synchronization
primitive must be found to implement the sus-
pend/resume operation. On Linux, Fifo and
POSIX named semaphores have been tested
and POSIX named semaphores are the fastest.
On OSX, Fifo, POSIX named semaphores and
Mach semaphores have been tested and Mach
semaphores are the fastest. They are allocated
and published by the server in a global names-
pace (using the mach bootstrap service mecha-
nism).

Synchronization primitives are described
in the JackSynchro class. Specialized
versions are implemented in JackFifo,
JackPosixSemaphore and JackMach-
Semaphore classes.

When a new client appears in the server, run-
ning clients are notified and will access the cor-
responding synchronization primitive.

4.6 Lock-free graph access
Lock-free graph access is done using the Jack-
AtomicState template class. This class imple-
ment the two state pattern. Update methods
use on the next state and read methods access
the current state. The two states can be atom-
ically exchanged using a CAS based implemen-
tation.

• code updating the next state is protected
using the WriteNextStateStart and
WriteNextStateStop methods. When
executed between these two methods, it can
freely update the next state (and be sure
that the RT reader thread can not switch to
the next state).6 A typical update method
would be written the following way:

6The programming model is similar to a lock-based
model where the update code would be written inside a
mutex-lock/mutex-unlock pair.

void ServerUpdate(...)
{

State* next_state;
next_state = WriteNextStateStart();
...
< update next_state >
...
WriteNextStateStop();

}

• the RT server thread switch to the new
state using the SwitchState method:

void ServerRTCode(...)
{

State* current_state;
current_state = TrySwitchState();
...
< use current_state >
...

}

• other RT threads read the current state,
valid during the entire audio cycle using the
ReadCurrentState method:

void ClientRTCode(...)
{

State* current_state;
current_state = ReadCurrentState();
...
< use current_state >
...

}

• non RT threads read the current state using
the ReadCurrentState method and can
check that the state was not changed dur-
ing the read operation using the GetCur-
rentIndex method:

void ClientNonRTCode(...)
{

int cur_index,next_index;
State* current_state;
do {

cur_index = GetCurrentIndex();
current_state = ReadCurrentState();
...
< copy current_state >
...
next_index = GetCurrentIndex();

} while (cur_index != next_index);
}

4.7 Server client communications
A global client registration entry point is de-
fined to allow client code to register a new
client (a JackServerChannel object). A pri-
vate communication channel is then allocated
for each client for all client requests, and re-
mains until the client quits. Possible crash of

a client is detected and handled by the server
when the private communication channel is ab-
normally closed. A notification channel is also
allocated to notify client. Notifications are sep-
arated in two sets:

• synchronous notifications where the server
waits for the client answer: they are used
for add/remove client, buffersize change
and freewheel events.

• asynchronous notifications where the
server waits for the client answer: they
are used for other kind of notifications like
graph reorder, port registration and xrun
events.

Running clients can also detect that the
server no more runs when they input suspend
primitive fails. (Fig 3) Communication chan-
nels are defined in a set of abstract classes:
JackClientChannelInterface, JackNotify-
ChannelInterface, JackServerChannelIn-
terface and JackServerNotifyChannelIn-
terface which are implemented on each plat-
form. On Linux, communication channels are
based on socket. On MacOSX, we use MIG
(Mach Interface Generator), a very convenient
way to define new Remote procedure Calls
(RPC) between the server and clients. 7

 Jack Server

Client A

Client B

Client requests
Server

notifications

Client requests

Server
notifications

Client
registration

Figure 3: The server defines a public ”client
registration” channel. Each client is linked with
the server through two ”request ”and ”notifica-
tion” channels.

4.8 Server
The Jack server contains the global client regis-
tration channel, the drivers, the engine, the en-

7Both synchronous and asynchronous function calls
can be defined

gine shared control (JackEngineControl ob-
ject), the synchronization table, and a graph
manager. It receives requests from the global
channel, handle some of them (BufferSize
change, Freewheel mode..) and other one are
managed by the engine.

4.8.1 Engine
The engine contains the list of running client
and timing related components. It does the fol-
lowing:

• handles requests for new clients through
the global client registration channel and
allocates a server representation of new ex-
ternal clients

• handles request from running clients

• activate the graph when triggered by the
driver and does various timing related oper-
ations (CPU load measurement, detection
of late clients...)

4.8.2 Server clients
Server clients are either internal clients (a Jack-
InternalClient object) when they runs in the
server process space8 or external clients (a
JackExternalClient object) as a server repre-
sentation of an external client. External clients
contain the local data (for example the notifi-
cation channel, a JackNotifyChannel object)
and a JackClientControl object to be used by
the server and the client.

4.8.3 Library Client
On the client side, the current Jack version uses
a one thread model: real-time code and notifi-
cation (graph reorder event, xrun event...) are
treated in a unique thread. Indeed the server
stops audio processing while notifications are
handled on the client side. This has some ad-
vantages: a much simpler model for synchro-
nization issues, but also some problematic con-
sequences: since notifications are handled in a
thread with real-time behaviour, a non real-time
safe notification may disturb the entire machine.

Because the server audio thread is not in-
terrupted anymore, most of server notifications
will typically be delivered while the client au-
dio thread is running. A two threads model for
client has to be used:

• a real-time thread dedicated to the audio
process.

8Drivers are a special type of internal clients

• a non real-time thread for notifications.

The client notification thread is started in
jack-client-new call. Thus clients can al-
ready receive notifications when they are in the
”opened” state. The client real-time thread is
started in jack-activate call. A connection
manager client for example does not need to be
”activated” to be able to receive graphreorder,
or portregistration like notifications (Fig 4).

Closed Opened Running

jack_client_new jack_activate

jack_deactivatejack_client_close

Notification thread
running

Notification + RT thread
running

Figure 4: Client life cycle

The library client (a JackLibClient object)
redirects the external Jack API to the Jack
server. It contains a JackClientChannel ob-
ject that implements both the request and no-
tification channels, local client side resources as
well as access to object shared with the server
like the graph manager or the server global
state. JackInternalClient objects and Jack-
LibClient objects share part of their imple-
mentation in a common superclass JackClient.

4.8.4 Drivers
Drivers are needed to activate the client graph.
When several drivers need to be used, one of
them is called the ”master” and will update the
graph. Other one are considered as ”slaves”.

The JackDriver class implements com-
mon behaviour for drivers. Those that use
a blocking audio interface (like the Jack-
ALSADriver driver) are subclasses of the
JackThreadedDriver class. A special Jack-
FreewheelDriver (subclass of JackThreaded-
Driver) is used to activate clients without in-
puts and to implement the freewheel mode
(see 4.8.5). The JackAudioDriver class im-
plements common code for audio drivers, like
the management of audio ports. Callback
based drivers (like the JackCoreAudioDriver
driver, a subclass of JackAudioDriver) can di-
rectly trigger the Jack engine.

An experimental JackLoopbackDriver has
been implemented. It allows to manually
pipeline two applications connected in sequence
by adding an additional one buffer latency in the
connection, thus allowing parallel activation in
a multi-processor context.

When the graph is synchronized to the audio
card, the audio driver will be the ”master” and
the freewheel driver will be a ”slave”.

4.8.5 Freewheel mode
In freewheel mode, Jack no longer waits for any
external event to begin the start of the next
process cycle thus allowing faster than real-time
execution of Jack graph. Freewheel mode is im-
plemented by switching from the audio and free-
wheel driver synchronization mode to the free-
wheel driver only:

• the ”global” connection state is saved

• all audio driver ports are deconnected, thus
there is no more dependancies with the au-
dio driver

• the freewheel driver will be synchronized
with the end of graph execution : all clients
are connected to the freewheel driver

• the freewheel driver becomes the ”master”

Normal mode is restored with the connections
state valid before freewheel mode was done.
Thus one consider that no graph state change
can be done during freewheel mode.

4.9 XRun detection
In synchronous mode, abnormal situations (too
long cycle) will usually be detected by the
driver. In asynchronous mode, the server can
detect abnormal situations by checking if all
clients have been executed during the previous
cycle and notify the faulty clients with an XRun
event.

On Linux, XRun detected by the ALSA
driver are reported. 9 On MacOSX, the Core-
Audio HAL system already contains a XRun
detection mechanism: a kAudioDeviceProces-
sorOverload notification is triggered when the
HAL detects an XRun. The notification will be
redirected to all running clients.

4.10 API semantic changes
Due to changes in the internal design, some
functions in the external API have slightly
changed semantic:

• with the 2 threads model on the client side,
notification callbacks are now concurrent to
the audio process. Applications may need
to be adapted.

9Xrun reported at the engine level are currently not
handled

• jack-port-connected now works for all
ports, not only the ones registered by the
client.

• jack-connect/jack-disconnect are now
asynchronous: the effective change will be
seen at the next server cycle.

5 Conclusion

By adopting a data flow model for client acti-
vation, it is possible to let the system sched-
uler do it jobs and naturally distribute parallel
Jack clients on available processors. Moreover
this model works for the benefit of all kind of
clients aggregation, like internal clients in the
Jack server, or multiple jack clients in an exter-
nal process.

The multi-processor version is a first step to-
wards a completely distributed version, that will
take advantage of multi-processor on a machine
and could run on multiple machines in the fu-
ture.

References

ALSA, Advanced Linux Sound Architecture,
http://www.alsa-project.org, Nov. 2002.

S.Letz, D.Fober, Y.Orlarey, P.Davis ,
Jack Audio Server: MacOSX port and multi-
processor version, Proceedings of the first
Sound and Music Computing conference -
SMC’04”, pages 177–183

Vehmanen Kai, Wingo Andy and Davis
Paul, Jack Design Documentation
http://jackit.sourceforge.net/docs/design/

