
Variables and Mutability	2
Differences Between Variables and Constants	4
Shadowing	5
Data Types	7
Scalar Types	8
Integer Types	8
Floating-Point Types	10
Numeric Operations	10
The Boolean Type	11
The Character Type	12
Compound Types	12
Grouping Values into Tuples	12
Arrays	13
Accessing Array Elements	14
Invalid Array Element Access	15
How Functions Work	16
Function Arguments	17
Function Bodies	18
Statements and Expressions	18
Functions with Return Values	20
Comments	23
Control Flow	24
if Expressions	24
Multiple Conditions with else if	27
Using if in a let statement	28
Repetition with Loops	30
Repeating Code with loop	30
Conditional Loops with while	31
Looping Through a Collection with for	32
Summary	34

Chapter 3
Common Programming Concepts
We’ll start this chapter by looking atYouLet’s first This chapter covers concepts that appear in almost every programming language andlearningsee how they work in Rust. Many programming languages have much in common at their core. None of the concepts presented in this chapter are unique to Rust, but we’ll discuss Rust’s particular syntax and conventions concerning these common concepts.them in the context of Rust and explain their conventions.
Specifically, weyou’ll be talking learn about variable bindingvariables, basic types, functions, comments, and control flow. These foundations will be in every Rust program, and learning them early will give you a strong core to start from.
PROD: START BOX
Keywords	Comment by AnneMarieW: Au: We need a title for this sidebar. Please edit my suggestion if needed.
Keep in mind as we get into variables and functions that tThe Rust language has a set of keywords that have been reserved for use by the language only by the language only, much like other languages do. Keep in mind thatThis means you cannot use these words as names of variables or functions, for example. Most of these keywords have special meanings, and we wiyou’ll be using them to do various thingtasks in your Rust programs; a few have no current functionality associated with them but have been reserved for functionality that might be added into the Rust language in the future. You can find a list of the keywords in Appendix XXA.
PROD: END BOX
Variable BindingVariables and Mutability
We As mentioned in Chapter 2, that by default, variable bindingvariables are immutable. This is one of many nudges in Rust that encourages usyou to write your code in a way that takes advantage gets the most of the safety and easy concurrency that Rust has to offers. However, Weyou still have the option to make your bindingsvariables mutable, though. Let’s explore how and why Rust encourages usyou to favor immutability, and why weyou might want to opt out of that.
 beingariablesVVariable bindingImmutable vWhen a variable is immutable, that means immutable mean thats once a value is bound to a name, you can’t change that value. To illustrate this, let’s generate a new project called bindingvariables in your projects directory called binding by using cargo new --bin bindingsvariables.
Then, in your new bindingsvariables directory, open src/main.rs and replace its code with the following:
Filename: src/main.rs
fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}
Save and run the program using cargo run, :and you. You should receive an error message, as shown in this output:
$ cargo run
 Compiling bindings v0.0.1 (file:///projects/bindings)2 |> let x = 5;
 --> src/main.rs:2:9
note: prior assignment occurs here
 |> ^^^^^
4 |> x = 6;
 --> src/main.rs:4:5
error: re-assignment of immutable variable `x` [--explain E0384]

 |> ^error[E0384]: re-assignment of immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | - first assignment to `x`
3 | println!("The value of x is: {}", x);
4 | x = 6;
 | ^^^^^ re-assignment of immutable variable
This is our first example shows howof the compiler helpsing us you find an errors in your program!s. Even though Ccompiler errors can be frustrating.,Keep in mind that they only mean your program isn’t safely doing what you want it to do yet; they do not mean that you’re not a good programmer! Experienced Rustaceans still get compiler errors. For example:	Comment by Carol Nichols: I've removed the Extended Error Explanations box. Due to the recent improvements to the initial error messages, the extended error explanations are being de-emphasized.
This error occurs when an attempt is made to reassign an immutable variable.
$ rustc --explain E0384
you just received:wethat will try to explain common causes of and solutions to that kind of error. Not every error has a longer explanation, but many do. Here’s a portion of the explanation for the E0384 error whichyou can see an extended explanation weexplain flag to rustc with the provided error code, –you pass the we that if tells usThis error indicates
error: re-assignment of immutable variable `x` [--explain E0384]
output like this:with look at one particularly useful aspect of errors. Rust encourages you to seek further information on the kind of error you’ve received by showing you take a moment to Let’s Now that you’ve seen a Rust error, l
Extended Error Explanations
PROD: START BOX
The Rust compiler is trying to help your program be the very best.

PROD: END BOX
.is your friend, and it’s there to helpthese helpful compiler errors to perfect your codeT Use are beneficial if you’re stuck on an error, so don’t hesitate to look up the error code.can really help These explanations
```
}
x = 5; // error, reassignment of immutable variable
let x = 3;
fn main(){
```
T. The error tells us indicates that the cause of the error is re--assignment of immutable variable, because youwewe tried to assign a second value to the immutable x v variable.
It’s important that youwewe get compile-time errors when youwewe attempt to change a value that youwewe previously said wasdesignated as immutable because this very situation can lead to bugs. If one part of your code operates on anthe assumption that a value will never change, and another part of your code changes that value, it’s possible that the first part of the code won’t do what it was designed to do. This cause of bugs can be difficult to track down after the fact, especially when the second piece of code only changes the value only sometimes.
In Rust, weyou can trust that a value weyou sayspecify not to won’t change really won’t change, because the compiler enforcesing that is guarantees that when youwe state that a value won’t change, it really won’t changefor usyou. That means that Wwhen you’re reading and writing code, weyou don’t have to keep track in our head of how and where a value might change., which This can make code easier to reason about.
But Mmutability can be reallvery useful, though!. BindingsVariables are immutable only by default; youwe can make them mutable by adding mut in front of the variable name. In addition to allowing this value to be changed, it conveys intent to future readers of the code by indicating that other parts of the code will be changing this variable value.
For example, change the program you just wrote to src/main.rs to the following:
Filename: src/main.rs
fn main() {
 let mut x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}
When youwe Rrunning this program, youwewe get the following:
$ cargo run
 Compiling bindingsvariables v0.1.0 (file:///projects/bindingsvariables)
 Running `target/debug/bindingsvariables`
The value of x is: 5
The value of x is: 6
Using mut, weyou wea’re allowed to change the value that x binds to from 5 to 6. In some cases, you’ll want to make a bindingvariable mutable because it makes the code easiermore convenient to write to understand than an implementation that only uses immutable bindingsvariables.
There are multiple trade-offs to consider, in addition to the prevention of bugs. For example, iIn cases where you’re using large data structures, mutating an instance in place may be faster than copying and returning newly allocated instances. It all depends on the trade-offs you want to make in your situation.With smaller data structures, always creating new instances and writing in a more functional programming style may be easier to reason about, so the lower performance penalty might be worth it to might be a worthwhile penalty for gaining that clarity.
[bookmark: _Toc477424446]Differences Between Variables and Constants
Not bBeing unable to change the value of a variable might have reminded you of another programming concept that exists that in most other languages have: constants. Like immutable variables, Cconstants are also values unable to change that are bound to a name thatand are not allowed to change, but there are a few differences between constants and variables.
First, in Rust, youwe aren’t allowed to useing mut with constants is not allowed: constants aren't only immutable by default, they're always immutable.
YouWe declare a Cconstants are declared using the const keyword instead of the let keyword, and the type of the value must be annotated. —Wwe're about to cover types and type annotations in the next section, “Data Types,” so don't worry about the details right now, just know that youwe must always annotate the type.
Constants can be declared in any scope, including the global scope, which makes them useful to useo use for values that many parts of your code need to know about.
The last difference is that constants may only be set to a constant expression, not the result of a function call or any other value that could only be computed at runtime.
Here's an example of a constant declaration where the constant's name is MAX_POINTS and its value is set to 100,000. (Rust constant naming convention is to use all upper case with underscores between words):
const MAX_POINTS: u32 = 100_000;
Constants are valid for the entire time a program runs, within the scope they were declared in, making them a . That makes constants useful choice for values in your application domain that multiple part of the program might need to know about, such as the maximum number of points any player of a game is allowed to earn, or the speed of light.
Naming Documenting hardcoded values used throughout your program by naming them as constants is useful to in conveying the meaning of that value to future maintainers of the code. It also helps to have only one place in your code that you would need to change if the hardcoded value needed to be updated in the future.
[bookmark: _Toc477424447][bookmark: _Toc462761700][bookmark: shadowing]Shadowing
As youwewe saw in the guessing game tutorial in Chapter 2, youwewe can declare new bindingsvariables with the same name as a previous bindingvariables, and the new bindingvariable shadows the previous bindingvariable. WeRustaceans say that the first bindingvariable is shadowed by the second, which means that the second binding’svariable’s value is what ’ll wiyouwe’ll see when youwe use the variable. YouWeWe can shadow a bindingvariable by using the same binding’svariable’s name and repeating the use of the let keyword as follows:
Filename: src/main.rs
fn main() {
 let x = 5;

 let x = x + 1;

 let x = x * 2;

 println!("The value of x is: {}", x);
}
This program first binds x to a value of 5. Then, it shadows x by repeating let x =, taking the original value and adding 1 so that the value of x is then 6. The third let statement also shadows x, taking the previous value and multiplying it by 2 to give x a final value of 12. IfWhen you run this program, it will output the following:
$ cargo run
 Compiling bindingsvariables v0.1.0 (file:///projects/bindingsvariables)
 Running `target/debug/bindingsvariables`
The value of x is: 12
This is different fromthan marking a bindingvariable as mut , because unless we use the let keyword again, we’ll get a compile-time error if we accidentally try to reassign to this bindingvariable. We can perform a few transformations on a value, but have the bindingvariable be immutable after those transformations have been completed.
The other difference between mut and shadowing is that, since because youwewe’re effectively creating a new bindingvariable when youwewe use the let keyword again, youwewe can change the type of the valueyou’re binding towe , but reuse the same name. For example, say yourweour program asks a user to show usyou how many spaces they want between some text by ussending inputting space characters, but youwewe really want to store that input as a number:
let spaces = " ";
let spaces = spaces.len();
This construct is allowed: because the first spaces binding is variable is a string type, and the second spaces binding variable, which is a brand- new bindingvariable that happens to have the same name as the first one,, is a number type. Shadowing thus saves uspares youus from having to come up with different names, like spacesspaces_str and spac spaces_num; instead, youwewe can reuse the simpler spaces name. However, iIf youwewe try to use mut for this, as shown herelike this, however:
let mut spaces = " ";
spaces = spaces.len();
you’llWe wiwe’ll get a compile-time error because youwe awe’re not allowed to mutate abinding’s
 variable’s type:note: expected type `&str`
 |> ^^^^^^^^^^^^ expected &-ptr, found usize
4 |> spaces = spaces.len();
 |>
 -->
error: mismatched types [--explain E0308]

note: found type `usize`
error[E0308]: mismatched types
 --> src/main.rs:3:14
 |
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected &str, found usize
 |
 = note: expected type `&str`
 found type `usize`

error: aborting due to previous error
Now that we’ve explored how variable bindingvariables work, let’s look at some more data types of values that we can bind variables to.they can have.
[bookmark: _Toc477424448][bookmark: _Toc462761701][bookmark: data-types]Data Types
Every value in Rust is of a certain type, which tells Rust what kind of data is being givenspecified so it knows how to work with that data. In this section, we’ll look at a number of types that are built into the language. anditself We split the types into two subsets: scalar and compound.
Something to keep in mind tThroughout this section:, keep in mind that Rust is a statically typed language, which means that it must know the types of all bindingsvariables at compile time. The compiler can usually infer what type youwewe want to use based on the value and how youwewe use it. In cases when many types are possible, such as when we converted a String to a numeric type using parse in Chapter 2, youwe we must add a type annotation, like this:
let guess: u32 = "42".parse().unwrap();.expect("Not a number!");
If youwewe don’t putadd the type annotation here, Rust will give us display thise following error, which that means the compiler needs more information from youusus to know which possible type youwewe want to use:3 |> let guess = "42".parse().unwrap();
 |>
 -->
generic parameter binding required [--explain E0282]
error: unable to infer enough type information about `_`; type annotations or

 |> ^^^^^error[E0282]: unable to infer enough type information about `_`
 --> src/main.rs:2:9
 |
2 | let guess = "42".parse().expect("Not a number!");
 | ^^^^^ cannot infer type for `_`
 |
 = note: type annotations or generic parameter binding required
You wi’ll see some different type annotations as we discuss the various data types.
[bookmark: _Toc477424449][bookmark: _Toc462761702][bookmark: scalar-types]Scalar Types
A scalar type represents a single value. There are Rust has four primary scalar types in Rust: integers, floating -point numbers, booleans, and characters. You’ll likely recognize these from other programming languages, but let’s jump into how they work in Rust.
[bookmark: _Toc477424450][bookmark: _Toc462761703][bookmark: integer-types]Integer Types
[bookmark: move463006056]An integer is a number without a fractional component. We’ve used one integer type alreadyearlier in this chapter, the i32 type. This type declaration indicates that the value it’s associated with should be a signed integer (hence the i, as opposed to a u for unsigned) for athat takes up 32- bits systemof space. TTable 3-1 shows ere are a number ofhthe built-in integer types in Rust Table 3-1, shown in. Each variant in the Ssigned and Uunsigned columns (for example, i32) can be used to declare the type of an integer value.
Table 3-1: Integer Ttypes in Rust Each variant in the signed and unsigned columns (for example, i32) can be used to declare the type of an integer value..
	Length
	Ssigned
	Uunsigned

	8-bit
	i8
	u8

	16-bit
	i16
	u16

	32-bit
	i32
	u32

	64-bit
	i64
	u64

	arch
	isize
	usize

Each variant can be either signed or unsigned and has an explicit size. Signed and unsigned merely refers to whether it i’s possible for the number to be either negative or positive; in other words, whether the number needs to have a sign with it (signed), or whether it will only ever be positive and can therefore be represented without a sign (unsigned). It’s like writing numbers on paper: when the sign matters, a number is shown with a plus sign or a minus sign,; however, but when it’s safe to assume the number is positive, it’s shown with no sign. Signed numbers are stored using two’s complement representation (if you’re unsure what this is, you can search for it online; an explanation is outside the scope of this textbook).
Each signed variant can store numbers from -(2n - 1) to 2n - 1 - 1 inclusive, where n is the number of bits that variant uses. So an i8 can store numbers from -(27) to 27 - 1, which equals -128 to 127. Unsigned variants can store numbers from 0 to 2n - 1, so a u8 can store numbers from 0 to 28 - 1, which equals 0 to 255.
FinAdditionally, the isize and usize types depend on the kind of computer your program is running on: 64-bits if you’re on a 64-bit architecture, and 32-bits if you’re on a 32-bit architecture.
You can write integer literals in any of the forms shown in Table 3-2. Note that all number literals except for the byte literal allow a type suffix, such as 57u8, and _ as a visual separator, such as 1_000.
Table 3-2: Integer Lliterals in Rust.
	Number Lliterals
	Example

	Decimal
	98_222

	Hex
	0xff

	Octal
	0o77

	Binary
	0b1111_0000

	Byte (u8 only)
	b’A’

So how do you know which type of integer to use? If you’re unsure, Rust’s defaults are generally good choices, and integer types default to i32: it’s generally the fastest, even on 64-bit systems. The primary situation in which you’d use isize or usize is when indexing some sort of collection.
[bookmark: _Toc477424451][bookmark: _Toc462761704][bookmark: floating-point-types]Floating-Point Types
Rust also has two primitive types for floating-point numbers, which are numbers with decimal points. Rust’s floating-point types are f32 and f64, which are 32 bits and 64 bits in size, respectively. The default type is f64, asbecause it’s roughly the same speed as f32, but has a largeris capable of more precision. It i’s possible to use an f64 type on 32- bit systems, but it will be slower than using an f32 type on those systems. Most of the time, trading potential worse performance for better precision is a reasonable initial choice, and you should benchmark your code if you suspect floating-point size is a problem in your casesituation.Chapter XXSee for shows you how to run benchmarks.
Here’s an example that showsing floating-point numbers in action:
Filename: src/main.rs
fn main() {
 let x = 2.0; // f64

 let y: f32 = 3.0; // f32
}
Floating-point numbers are represented according to the IEEE-754 standard. The f32 type is a single-precision float, whileand f64 has double- precision.
[bookmark: _Toc477424452][bookmark: _Toc462761705][bookmark: numeric-operations]Numeric Operations
Rust supports the usual basic mathematic operations you’d expect for all of these number types: addition, subtraction, multiplication, division, and moduloremainder. Thise following code shows how you’d use each one in a let statement:
Filename: src/main.rs
fn main() {
 // addition
 let sum = 5 + 10;

 // subtraction
 let difference = 95.5 - 4.3;

 // multiplication
 let product = 4 * 30;

 // division
 let quotient = 56.7 / 32.2;

 // moduloremainder
 let remainder = 43 % 5;
}
Each expression in these statements uses a mathematical operator and evaluates to a single value, which is then bound to a variable. Appendix B contains a list of all operators that Rust provides.
[bookmark: _Toc477424453][bookmark: _Toc462761706][bookmark: the-boolean-type]The Boolean Type
As in most other programming languages, a boolean type in Rust has two possible values: true and false. The boolean type in Rust is specified withusing bool. For example:
Filename: src/main.rs
fn main() {
 let t = true;

 let f: bool = false; // with explicit type annotation
}
The main way to consume boolean values is through conditionals, such as like an if statement. We’ll cover how if statements work in Rust in the “Control Flow” section of this chapteron page XX.
Production: See cross-reference above.
[bookmark: _Toc477424454][bookmark: _Toc462761707][bookmark: the-character-type]The Character Type
So far you’vewewe’ve only worked with numbers, but Rust supports letters too. Rust’s char type is the language’s most primitive alphabetic type, and thise following code
shows one way to use it:
Filename: src/main.rs
fn main() {
 let c = ‘'z’';
 let z = '‘ℤ’';
 let heart_eyed_cat = '‘😻’';
}
Rust’s char type represents a Unicode Scalar Value, which means that it can represent a lot more than just ASCII. Accented letters, Chinese/Japanese/Korean ideographs, emoji, and zero width spaces are all valid char types in Rust. Unicode Scalar Values range from U+0000 to U+D7FF and U+E000 to U+10FFFF inclusive. However, Aa “character” isn’t really a concept in Unicode, however, so your human intuition for what a “character” is may not match up with what a char is in Rust. We’ll discuss this topic in detail in the “Strings” section ofin Chapter 8.
[bookmark: _Toc477424455][bookmark: _Toc462761708][bookmark: compound-types]Compound Types
Compound types can group multiple values of other types into one type. Rust has two primitive compound types: tuples and arrays.
[bookmark: _Toc477424456][bookmark: _Toc462761709][bookmark: grouping-values-into-tuples]Grouping Values into Tuples
A tuple is a general way of grouping together some number of other values with distincta variety of types into one compound type.
YouWeWe create a tuple by writing a comma-separated list of values inside parentheses. Each position in the tuple has a distinct type, and the types of the different values in the tuple do no’t have to be the same. We’ve added optional type annotations in this example:
Filename: src/main.rs
fn main() {
 let tup: (i32, f64, u8) = (500, 6.4, 1);
}
Note that the single nThe variableame tup binds to the entire tuple, emphasizingsince the fact that a tuple is considered a single compound element. To get the individual values out of a tuple, youwewe can use pattern matching to destructure a tuple value, like this:
Filename: src/main.rs
fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

 println!("The value of y is: {}", y);
}
In tThis programwe, first creates a tuple and binds it to the namevariable tup. WeIt then uses a pattern with let to take tup and turn it into three separate bindingsvariables, x, y, and z. This is called destructuring, because it breaks the single tuple into three parts. Finally, wethe program prints the value of y, which is 6.4.
Tuple Indexing
In addition to destructuring through pattern matching, youwewe can also access a tuple element directly by using a period (.) followed by the index of the value youwewe want to access. For example:
Filename: src/main.rs
fn main() {
 let x: (i32, f64, u8) = (500, 6.4, 1);

 let five_hundred = x.0;

 let six_point_four = x.1;

 let one = x.2;
}
This program creates a tuple, x, and then makes new bindingsvariables tofor each element by using their index. As with most programming languages, the first index in a tuple is 0.
[bookmark: _Toc477424457][bookmark: _Toc462761711][bookmark: arrays]Arrays
Another way to bindhave a name to a collection of multiple values is with an array. Unlike a tuple, every element of an array must have the same type. Arrays in Rust are different than arrays in some other languages because arrays in Rust have a fixed length: once declared, they cannot grow or shrink in size.
In Rust, the values going into an array are written as a comma- separated list inside square brackets:
Filename: src/main.rs
fn main() {
 let a = [1, 2, 3, 4, 5];
}
WhileAlthough arrays canare be useful, sincewhen you want your data allocated on the stack rather than the heap (we will discuss the stack and the heap more in Chapter 4), or when you want to ensure you always have a fixed number of elements. theybecause are a primitive type and ’so can be very fast to use, tthereforeThey aren’t as flexible as the vector type, though. The vector type is a similar collection type provided by the standard library that is allowed to grow or shrink in size. If you’re unsure whether to use an array or a vector, you should probably go withuse a vector,: and we’llChapter 8 discusses vectors them in more detail in Chapter 8.
An example of when weyou might want to use an array rather than a vector is in a program that needswhen storing the to know the names of the months of the year. It’s very unlikely that oursuch a program will need to add or remove months, so weyou can use an array since webecause you know weit will always havecontain 12 items:	Comment by AnneMarieW: Au: Can you name the program here to eliminate the use of “our”? Which program are you referring to? Best to use a listing number for cross-reference.
let months = ["January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"];
[bookmark: _Toc477424458][bookmark: _Toc462761712][bookmark: accessing-array-elements]Accessing Array Elements
An array is a single chunk of memory, allocated on the stack. YouWeWe can access elements of an array using indexing, like this:
Filename: src/main.rs
fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
}
In this example, the bindingvariable named first will get the value 1, sincebecause that is the value at index [0] in the array. The bindingvariable named second will get the value 2 from index [1] in the array.
[bookmark: _Toc477424459][bookmark: _Toc462761713][bookmark: invalid-array-element-access]Invalid Array Element Access
What happens if youwe try to access an element of an array that is past the end of the array? Say youwewe changed our program the example to the following:
Filename: src/main.rs
fn main() {
 let a = [1, 2, 3, 4, 5];
 let index = 10;

 let element = a[10index];

 println!("The value of element is: {}", element);
}
Running this code withusing cargo run produces the following result:
$ cargo run
 Compiling arrays v0.1.0 (file:///projects/arrays)
 Running `target/debug/arrays`
thread ‘'<main>‘' panicked at ‘'index out of bounds: the len is 5 but the index is
 10’', src/main.rs:46
note: Run with `RUST_BACKTRACE=1` for a backtrace.
error: Process didn’t exit successfully: `target/debug/arrays` (exit code: 101)
We can see that tThe compilation did no’t give usproduce any errors, but wethe program gotresults in a runtime error and our program didn’t exit successfully. When weyou attempt to access an element using indexing, Rust will check that the index weyou’ve specified is less than the array length. If the index is greater than the length, it Rust will “panic,,”, which is whatthe term it’s called when a Rust uses when a program exits with an error.
This is ourthe first example of Rust’s safety principles in action. In many low-level languages, this kind of check is not done, and when you provide an incorrect index, invalid memory can be accessed. Rust protects usyou against this kind of error by immediately exiting instead of allowing the memory access and continuing. We’ll Chapter XX9 discusses more of Rust’s error handling in Chapter XX.
[bookmark: _Toc477424460][bookmark: _Toc462761714][bookmark: how-functions-work]How Functions Work
Functions are pervasive in Rust code. WeYou’ve already seen one of the most important functions in the language: the main function, which that’ is the entry point of many programs. WeYou’ve also seen the fn keyword, which allows usyou to declare new functions.
Rust code uses snake case as the conventional style for function and variable names. In snake case, all letters are lower case, and there are underscores separateing words. Here’s a program that containings an example function definition:
Filename: src/main.rs
fn main() {
 println!("Hello, world!");

 another_function();
}

fn another_function() {
 println!("Another function.");
}
Function definitions in Rust start with fn and have a set of parentheses after the function name. The curly braces tell the compiler where the function body begins and ends.
YouWeWe can call any function youwewe’ve defined by entering its name followed by a pairset of parentheses. SincBecause another_function is defined in the program, it can be called from inside the main function. Note that we defined another_function after the main function in ourthe source code; we could have defined it before as well. Rust doesn’t care where you define your functions, only that they a’re defined somewhere.
Let’s start a new binary project named functions so that we can to explore functions further. Place the another_function example in src/main.rs and run it. You should see the following output:
$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Running `target/debug/functions`
Hello, world!
Another function.
The lines execute in the order in which they appear in the main function. First, ourthe “Hello, world!” message prints, and then another_function is called and its message is printed.
[bookmark: _Toc477424461][bookmark: _Toc462761715][bookmark: function-arguments]Function ArgumentsParameters
Functions can also takebe defined to have parameters arguments. , which are special variables that are part of a function's signature. When a function has parameters, we can provide it with concrete values for those parameters. Technically, the concrete values are called arguments, but in casual conversation people tend to use the words “parameter” and “argument” interchangeably for either the variables in a function's definition or the concrete values passed in when you call a function.
The following rewritten version of another_function shows what argumentsparameters look like in Rust:
Filename: src/main.rs
fn main() {
 another_function(5);
}

fn another_function(x: i32) {
 println!("The value of x is: {}", x);
}
Try running this program,; and you should get thise following output:
$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Running `target/debug/functions`
The value of x is: 5
In tThe declaration of another_functionowe place , has one argumentparameter named x is placed. We specify tThe type of x is specified as i32. When we pass 5 is passed to another_function, the println! macro puts 5 where the pair of curly braces were in the format string.
In function signatures, weyou must declare the type of each parameter. This is a deliberate decision in Rust’s the design; Rust of: requiring type annotations in function definitions means the compiler almost never needs you to use them elsewhere in the code in order to figure out what you mean.
When you want a function to have multiple argumentsparameters,just separate themthe parameter declarations inside the function signature with commas, like this:
Filename: src/main.rs
fn main() {
 another_function(5, 6);
}

fn another_function(x: i32, y: i32) {
 println!("The value of x is: {}", x);
 println!("The value of y is: {}", y);
}
In tThis example, we make creates a function with two argumentsparameters, both of which are i32 types. If your function has multiple arguments, they arguments don’t need to be the same type, but they just happen to be in this example. OurThe function then prints out the values of both of its arguments.The function then prints out the values in both of its parameters. Note that function parameters don't all need to be the same type, they just happen to be in this example.
Let’s try outrunning this code. Replace the program currently in your function project’s msrc/main.rs file with the preceding example above, and run it as follows using cargo run:
$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Running `target/debug/functions`
The value of x is: 5
The value of y is: 6
SincBecause we called the function with 5 as the value for is passed as the x argumentand and 6 is passed as the value for y argument, the two strings are printed with these values.
[bookmark: _Toc477424462][bookmark: _Toc462761716][bookmark: function-bodies]Function Bodies
Function bodies are made up of a series of statements optionally ending in an expression. So far, youwewe’ve only seencovered functions without an ending expression, but youwewe have seenseen expressions as parts of statements. SincBecause Rust is an expression-based language, this is an important distinction to understand. Other languages don’t have the same distinctions, so let’s look at what statements and expressions are, and how their differences affect the bodies of functions.
[bookmark: _Toc477424463][bookmark: _Toc462761717][bookmark: statements-and-expressions]Statements and Expressions
YouWeWe’ve actually already already usedbeen using both statements and expressions. Statements are instructions that perform some action and do not return a value. Expressions evaluate to a resulting value. Let’s look at some examples.
Creating a variable bindingvariable and assigning a value to it with the let keyword is a statement. In thisListing 3-3 example, let y = 6; is a statement:
Filename: src/main.rs
fn main() {
 let y = 6;
}
Listing 3-3: A main function declaration containing one statement.
Function definitions are also statements; the entire previousceding example is a statement in itself.
Statements do not return values themselves. Therefore, you can’t assign a leting to bind statement to another bindingvariable, as thise following code tries to do:
Filename: src/main.rs
fn main() {
 let x = (let y = 6);
}
IfWhen we were to runyou run this program, weyou’dll get an error like this:
$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)

error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
2 |> let x = (let y = 6);
 |> ^^^
note: variable declaration using `let` is a statement

error: aborting due to previous error
error: Could not compile `functions`.error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^
 |
 = note: variable declaration using `let` is a statement
The let y = 6 statement does not return a value, so there isn’t anything for x to bind to. This is different than in other languages, such as like C and Ruby, where the assignment returns the value of the assignment. In those languages, weyou can write x = y = 6 and have both x and y have the value 6; that is not the case in Rust.
Expressions are code that evaluate to something, and make up most of the rest of the code that you wi’ll write in Rust. Consider a simple math operation, such as
like this:5 + 6, which This
 is an expression, that and evaluatesing it results in to the value 11. Expressions can be part of statements: — in e previous exampleth Listing 3-3 that had the statement let y = 6;, 6 is an expression that evaluates to the value 6. Calling a function is an expression. Calling a macro is an expression. The block that we use to create new scopes, {}, is an expression, for example:
Filename: src/main.rs
fn main() {
 let x = 5;

 let y = { 
 let x = 3;
 x + 1 
 };

 println!("The value of y is: {}", y);
}
[bookmark: move463257342]The following expression :shown in the code  is a block that, in this case, evaluates to 4, . and thenThat value gets bound to y as part of the let statement. 
is a block that, in this case, evaluates to 4, and then gets bound to y as part of the let statement.
}
 x + 1
 let x = 3;
{
. Note the line withoutat the line containing x + 1 does not have a semicolon at the end , unlike most of the lines weyou’ve seen up until now so far. expressions do not. while This is the most important distinction between expressions and statements to remember: statements end in semicolons, whereas Expressions do not include ending semicolons. If you add a semicolon to the end of an expression, that willyou turn it into a statement, which will then not return a value. Keep this in mind as weyou explore function return values and expressions next.
[bookmark: _Toc477424464][bookmark: _Toc462761718][bookmark: functions-with-return-values]Functions with Return Values
Functions can return values back to the code that calls them. YouWeWe don’t name return values, but youwewe do declare their type, after an arrow (->). In Rust, the “return value of the function” is synonymous with the “value of the final expression in the block of the body of a function.” Here’s an example of a function that returns a value:
Filename: src/main.rs
fn five() -> i32 {
 5
}

fn main() {
 let x = five();

 println!("The value of x is: {}", x);
}
There are no function calls, macros, or even let statements in the five function: —just the number 5 by itself. That’s a perfectly valid function in Rust. Note that the function’s return type is specified, too, as -> i32. Try running this code,; and the output should look like this:
$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Running `target/debug/functions`
The value of x is: 5
The 5 in five is the function’s return value, which is why the return type is i32. Let’s examine this in more detail. There are two important bits.: Ffirst, the line let x = five(); shows usthat youwe’re using the return value of a function to initialize a bindingvariable.
Because the function five returns a 5, that line is the same as sayingthe following:
let x = 5;
The sSecond, interesting bit is the five function itself. It requireshas no argumentsparameters and defines the type of the return value, but the body of the function is a lonely 5 with no semicolon because it i’s an expression whose value we want to return. Let’s look at another example:
Filename: src/main.rs
fn main() {
 let x = plus_one(5);

 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}
Running this code will print The value of x is: 6. What happens if we putplace a semicolon at the end of the line containing x + 1, changing it from an expression to a statement?
Filename: src/main.rs
fn main() {
 let x = plus_one(5);

 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1;
}
Running this code givesproduces an error, as follows:
 |> ^
8 |> x + 1;
 --> src/main.rs:8:10
help: consider removing this semicolon:
 |> ^
7 |> fn plus_one(x: i32) -> i32 {
 --> src/main.rs:7:1
error: not all control paths return a value [--explain E0269]
 Compiling functions v0.1.0 (file:///projects/functions)
$ cargo run

error: aborting due to previous error
error: Could not compile `functions`.error[E0308]: mismatched types
 --> src/main.rs:7:28
 |
7 | fn plus_one(x: i32) -> i32 {
 | ____________________________^ starting here...
8 | | x + 1;
9 | | }
 | |_^ ...ending here: expected i32, found ()
 |
 = note: expected type `i32`
 found type `()`
help: consider removing this semicolon:
 --> src/main.rs:8:10
 |
8 | x + 1;
 | ^
The main error message, “not all control paths return a valuemismatched types,”, reveals the core of the issue with this code. The definition of the function plus_one says that it will return an i32, but statements don’t evaluate to a value, which is expressed by (), the empty tuple. Therefore, nothing is returned, which contradicts the function definition and results in an error. In this output, Rust givesprovides an option toa message to possibly help rectify this issue: it suggests removing the semicolon, which would fix the error.
[bookmark: _Toc477424465][bookmark: _Toc462761719][bookmark: comments]Comments
All programmers strive to make their code easy to understand, but sometimes extra explanation is warranted. In these cases, we programmers leave notes, or comments , in yourtheir source code that the compiler will ignore but people reading the source code may find useful. These notes are called comments.
Here’s a simple comment:
// Hello, world.
In Rust, comments must start with two slashes and extendlastwill continue until the end of the line. For comments that extend beyond a single line, you’ll need to include // on each line, like this:
// So we’re doing something complicated here, long enough that we need
// multiple lines of comments to do it! Whew! Hopefully, this comment will
// explain what’s going on.
Comments can also be placed at the end of code lines of code containing code:
Filename: src/main.rs
fn main() {
 let lucky_number = 7; // I’m feeling lucky today.
}
But you’ll more often see them used in this formatabove, like so, with the comment on a separate line above the code it's annotating:
Filename: src/main.rs
fn main() {
 // I’m feeling lucky today.
 let lucky_number = 7;
}
That’s all there is to it. Ccomments. They a’re not particularly complicated.
[bookmark: _Toc477424466][bookmark: _Toc462761720][bookmark: control-flow]Control Flow
Decisions oniding whether or not to run some code depending on if a condition is true, or deciding to run some code repeatedly while a condition is true, are basic building blocks in most programming languages. The most common constructs that let usyou control the flow of execution of our Rust code are if expressions and loops.
Iif Expressions
An if expression allows youusus to branch yourour code depending on conditions. YouWeWe provide a condition and then saytate, “If this condition is met, run this block of code. If the condition is not met, do not run this block of code.”
Let’s make Create a new project called branches in your projects directory to explore the if, expressionand call it branches. In the src/main.rs file, input the following:
Filename: src/main.rs
fn main() {
 let number = 3;

 if number < 5 {
 println!("condition was true");
 } else {
 println!("condition was false");
 }
}
All if expressions start with the keyword if, which is followed by a condition. In this case, our the condition is checksing if our whether or not the variable bindingvariable number has a value that is less than 5. The block of code we want to execute if the condition is true is placed es goimmediately after the condition, inside curly braces. These bBlocks of code associated with the conditions in if expressions are sometimes called arms, just like the arms in match expressions that we discussed in the “Comparing the Guess to the Secret Number” section on page XX of Chapter 2 are sometimes called armsWe can o. . Optionally, youwe can also include an else expression, as e as wwhich which we chose to dohave chosen to done here,. to This gives the program an alternative block of code to execute should the condition evaluate to false. If you don’t giveprovide an else expression and the condition is false, the program will just skip the if block and move on to the next bit of code.
Production: See the cross-reference above.
Try running this code,; and you should see the following output like this:
$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Running `target/debug/branches`
condition was true
Let’s try changing the value of number to a value that makes the condition false to see what happens:
let number = 7;
Run the program again, and look at the output:
$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Running `target/debug/branches`
condition was false
It’s also worth noting that the condition herein this code must be a bool. To see what happens if the condition isn’t a bool, try running thise following code:
Filename: src/main.rs
fn main() {
 let number = 3;

 if number {
 println!("number was three");
 }
}
The if condition evaluates to a value of 3 this time, and Rust will complain about it throws an error:
 Compiling branches v0.1.0 (file:///projects/branches)
error: mismatched types [--explain E0308]
 --> src/main.rs:4:8
4 |> if number {
 |> ^^^^^^ expected bool, found integral variable
note: expected type `bool`
note: found type `_`

error: aborting due to previous error
Could not compile `branches`.error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected bool, found integral variable
 |
 = note: expected type `bool`
 found type `{integer}`
The error tells usindicates that Rust expected a bool, but got an integer. Rust will not automatically try to convert non-boolean types to a boolean here, unlike languages likesuch as Ruby orand JavaScript. WeYou must be explicit and always giveprovide if with a boolean as its condition. If youwe wantedwant yourthe if code block to run only when a number is not equal to 0, for example, youwewe wouldcan change the if expression to readthe following:
Filename: src/main.rs
fn main() {
 let number = 3;

 if number != 0 {
 println!("number was something other than zero");
 }
}
Running this code will print number was something other than zero.
[bookmark: _Toc477424468][bookmark: _Toc462761722][bookmark: multiple-conditions-with-`else-if`]Multiple Conditions with else if
YouWeWe can have multiple conditions by combining if and else in an else if expression. For example:
Filename: src/main.rs
fn main() {
 let number = 6;

 if number % 4 == 0 {
 println!("number is divisible by 4");
 } else if number % 3 == 0 {
 println!("number is divisible by 3");
 } else if number % 2 == 0 {
 println!("number is divisible by 2");
 } else {
 println!("number is not divisible by 4, 3, or 2");
 }
}
This program has four possible paths it can take. If you try After running it, you should see the following output like this:
$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Running `target/debug/branches`
number is divisible by 3
When this program executes, it will checks each if expression in turn and executes the first body for which the condition holds true. Note that even though 6 is divisible by 2, we did ndon’t see the output number is divisible by 2, nor did weo youwe see the number is not divisible by 4, 3, or 2 text from the else block. That’s becausee reason is that Rust will only execute the block for the first true condition, and once it finds one, it won’t even check the rest.
Using too many else if expressions can clutter your code, so if you find yourself with have more than one, you mayight want to look at refactoring your code. In Chapter 6, we’ll talk about describes a powerful Rust branching construct called match for these cases.
[bookmark: _Toc477424469][bookmark: _Toc462761723][bookmark: using-`if`-in-a-binding]Using if in a Bindinglet statement
The last detail you need to know aboutBecause if is that it’s an expressionyouwe. That means that , we can use it on the right hand side of a let bindingstatement, for instance in Listing 3-4:	Comment by AnneMarieW: Au: You’ve said this many times in the preceding text. Perhaps reword here to say: Another important detail about if is that because it’s an expression, you can use it on the right side of a let binding, for instance:
Filename: src/main.rs
fn main() {
 let condition = true;
 let number = if condition {
 5
 } else {
 6
 };

 println!("The value of number is: {}", number);
[bookmark: __DdeLink__9878_1327000329]}
Listing 3-4: Assigning the result of an if expression to a variable
The number variable will be bound to a value based on the outcome of the if expression. Let’s rRun this code to see what happens:
$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Running `target/debug/branches`
The value of number is: 5
Remember, that blocks of code evaluate to the last expression in them, and numbers by themselves are also expressions. In this case, the value of the whole if expression depends on which block of code executes. This means the values that have the potential to be results from botheach arms of the if must be the same type; in the previous example Listing 3-4, they were boththe results of both the if arm and the else arm were i32 integers. But what happens if the types are mismatched, as in the following example?
Filename: src/main.rs
fn main() {
 let condition = true;

 let number = if condition {
 5
 } else {
 "six"
 };

 println!("The value of number is: {}", number);
}
If we try to When youwe try to run this code, we’ll get an error. The if and else arms have value types that are incompatible, and Rust tells usindicates exactly where to find the problem in our the program:
error[E0308]: if and else have incompatible types
 --> src/main.rs:4:18
 |
4 | let number = if condition {
 | __________________^ starting here...
5 | | 5
6 | | } else {
7 | | "six"
8 | | };
 | |_____^ ...ending here: expected integral variable, found reference
 |
 = note: expected type `{integer}`
 found type `&'static str`

 Compiling branches v0.1.0 (file:///projects/branches)
error[E0308]: if and else have incompatible types
 --> src/main.rs:4:18
 |
4 | let number = if condition {
 | ^ expected integral variable, found reference
 |
 = note: expected type `{integer}`
 = note: found type `&’static str`

error: aborting due to previous error

error: Could not compile `branches`.
The expression in the if block evaluates to an integer, and the expression in the else block evaluates to a string. This cawon’t work, because variable bindingvariables must have a single type. Rust needs to know at compile time what type the number binding variable is, definitively, so that it can verify at compile time that its type is valid everywhere we use number. Rust wouldn’t be able to do that if the type of number was only determined at runtime; the compiler would be more complex and be able to would make fewer guarantees about ourthe code if it had to keep track of multiple hypothetical types for any variable bindingvariable.
[bookmark: _Toc477424470][bookmark: _Toc462761724][bookmark: repetition-with-loops]Repetition with Lh Loops
It’s often useful to be able to execute a block of code more than once time. For this task, Rust hasprovides several loops. A loop runs through the code inside the loop body to the end and then starts immediately back at the beginning. To try out experiment with loops, let’s make a new project called loops.
There are tRust has three kinds of loops in Rust: loop, while, and for. Let’s dig intry each one.
[bookmark: _Toc477424471][bookmark: _Toc462761725][bookmark: repeating-code-with-`loop`]Repeating Code with loop
The loop keyword tells Rust to execute a block of code over and over again forever or until weyou explicitly tell it to stop.
For As an example, change the src/main.rs file in your loops directory to look like this:
Filename: src/main.rs
fn main() {
 loop {
 println!("again!");
 }
}
If we When youwe run this program, we’ll see again! printed over and over continuously until we stop the program manually. Most terminals support a keyboard shortcut, control-c Cctrl-C, to halt a program that is stuck in a continual loop. Give it a try:
$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!
Thate symbol ^C e istherrepresents where you pressed control-cwe hit Cctrl-C. You may or may not see the word “again!” printed after the ^C, depending on where the code was in the loop when it received the halt signal to halt.
Fortunately, Rust provides another, more reliable way to break out of a loop. WeYou can place the break keyword within the loop to tell the program when to stop executing the loop. Recall that we did this in the guessing game in the “Quitting After a Correct Guess” section of Chapter 2 on page XX to exit the program when the user won the game by guessing the correct number correctly.	Comment by AnneMarieW: Au: Want to tell readers the name of the section and page in Ch2?
Production: See the cross-reference above.
[bookmark: _Toc477424472][bookmark: _Toc462761726][bookmark: conditional-loops-with-`while`]Conditional Loops wWith while
It’s often useful for a program to evaluatehave a conditiond evaluate that can be within a loop. While the condition is true, the loop runs. When the condition ceases to be true, weyou call break, stopping the loop. This loop type could be implemented withusing a combination of loop, if, else, and break; you could try that now in a program, if you’d like.
But However, this pattern is so common that Rust has a more efficientbuilt-in language construct for it, and it’s called a while loop. Here’s an The following example usesing while: thise program loops three times, counting down each time. FinallyThen, after the loop, it prints another message, then and exits:
Filename: src/main.rs
fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{}!", number);

 number = number - 1;
 }

 println!("LIFTOFF!!!");
}
This construct eliminatesgets rid of a lot of nesting that would be necessary if weyou used loop, if, else, and break, and it’s more clearer. While a condition holds true, the run this code runs; otherwise, it exits the loop.
[bookmark: _Toc477424473][bookmark: _Toc462761727][bookmark: looping-through-a-collection-with-`for`]Looping Through a Collection with for
WeYou could use thise while construct to loop over the elements of a collection, likesuch as an array. For example:
Filename: src/main.rs
fn main() {
 let a = [10, 20, 30, 40, 50];
 let mut index = 0;

 while index < 5 {
 println!("the value is: {}", a[index]);

 index = index + 1;
 }
}
Listing 3-5: Looping through each element of a collection using a while loop
Here, we’rethe code countsing up through the elements in the array. WeIt starts at index 0, and then loops until weit hitreaches the final index ofin ourthe array (that is, when index < 5 is no longer true). Running this code will print out every element ofin the array:
$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Running `target/debug/loops`
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50
All five array values appear in the terminal, as expected. Even though index will reach a value of 65 at some point, the loop stops executing before trying to fetch a sixth value from the array.
But Tthis approach is error -prone, though; we could cause ourthe program to panic by getting if the index length is incorrect. It’s also slow, asbecause the compiler needsadds runtime code to perform the conditional check on every element on every iteration through the loop.
As a more efficient alternative, weyou can use a for loop and execute some code for each item in a collection. A for loop looks like this:
Filename: src/main.rs
fn main() {
 let a = [10, 20, 30, 40, 50];

 for element in a.iter() {
 println!("the value is: {}", element);
 }
}
Listing 3-6: Looping through each element of a collection using a for loop
If weWhen youwe run this code, we’ll see the same output as in the previous exampleListing 3-5. More Iimportantlyly, though, we’ve now increased the safety of ourthe code and eliminated the chance of bugs that might result from going beyond the end of the array or not going far enough and missing some items.
For example, in the previous code that uses the while loopin the code in Listing 3-5, if weyou removed an item from the a array but forgot to update the condition to while index < 4, ourthe code would panic. Using the for loop, you don’t means we would not need to remember to change any other code if weyou changed the number of values in the array.and Chapter XXChapter XX incovers method syntax generally,will XXChapter We If you’re wondering about the iter code in this example, keep reading!
. in Chapter XX covers iterators specifically
The safety and conciseness of for loops make them the most commonly used loop construct in Rust. Even in situations wherein which you want to run some code a certain number of times, like ouras in the countdown example that used a while loop in Listing 3-5, most Rustaceans would use a for loop. The way to do that would be to use a Range, which is a type provided by the standard library that generates all numbers in sequence starting from one number and ending before another number.
Here’s what the countdown would look like withusing a for loop, and using another method we’ve wenot haven’t yet talked about, rev, to reverse the range:
Filename: src/main.rs
fn main() {
 for number in (1..4).rev() {
 println!("{}!", number);
 }
 println!("LIFTOFF!!!");
}
That’is code is a bit nicer, isn’t it?
[bookmark: _Toc477424474][bookmark: _Toc462761728][bookmark: summary]Summary
You made it! That was a bigsizable chapter: we covered you learned about variable bindingvariables, scalar and
compound data types, functions, comments, if expressions, and loops! If you’d want to
like to get some practice with the concepts discussed in this chapter, try building
programs to do the following:
Convert temperatures between Fahrenheit and Celsius.
Generate the nth Fibonacci number.
Print the lyrics to the Christmas carol “The Twelve Days of Christmas,”
 taking advantage of the repetition in the song.
When you’re ready to move on, we’ll talk about a concept in Rust that doesn’t
 commonly exist in other programming languages: ownership.
