Customizing Builds with Release Profiles	1
Publishing a Crate to Crates.io	3
Making Useful Documentation Comments	3
Commonly Used Sections	4
Documentation Comments as Tests	5
Commenting Contained Items	5
Exporting a Convenient Public API with pub use	6
Setting up a Crates.io Account	11
Before Publishing a New Crate	12
Publishing to Crates.io	13
Publishing a New Version of an Existing Crate	14
Removing Versions from Crates.io with cargo yank	14
Cargo Workspaces	15
Specifying Workspace Dependencies	15
Creating the Second Crate in the Workspace	16
Depending on an External Crate in a Workspace	18
Adding a Test to a Workspace	19
Installing Binaries from Crates.io with cargo install	21
Extending Cargo with Custom Commands	22
Summary	22
Chapter 14
More Aabout Cargo and Crates.io
So far we’ve used only the most basic features of Cargo to build, run, and test our code, but it can do a lot more. HereIn this chapter, we’ll go over discuss some of its other, more advanced features to show you how to:	Comment by Liz Chadwick: Au: can you please add the images in the correct place? I’ve added a few, but am not sure I have all the correct images, it’s probably safer coming from you! I haven’t updated any Figure numbers in case they correspond to file names	Comment by Carol Nichols: So added!
Customize your build through release profiles
Publish libraries on https://crates.io/
Organize larger projects with workspaces
Install binaries from https://crates.io/
Extend Cargo withusing your own custom commands
Cargo can do even more than what we can cover in this chapter too, so for a full explanation of all its features, see its documentation at https://doc.rust-lang.org/cargo/.
[bookmark: customizing-builds-with-release-profiles][bookmark: _Toc499037503]Customizing Builds with Release Profiles
In Rust, release profiles are pre-defined, and customizable, profiles with different configurations, tothat allow thea programmer to have more control over various options for compiling your code. Each profile is configured independently of the others.
Cargo has two main profiles you should know about: the dev profile Cargo uses when you run cargo build, and the release profile Cargo uses when you run cargo build --release. The dev profile is defined with good defaults for developing, and likewise the release profile has good defaults for release builds.
These profile names mayight be familiar from the output of your builds, which shows the profile used in the build:
$ cargo build
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
$ cargo build --release
 Finished release [optimized] target(s) in 0.0 secs
The “dev” and “release” notifications shown herein this build output indicate that the compiler is using different profiles.
[bookmark: customizing-release-profiles]Customizing Release Profiles
Cargo has default settings for each of the profiles that apply when there aren’t any [profile.*] sections in the project’s Cargo.toml file. By adding [profile.*] sections for any profile we want to customize, we can choose to override any subset of the default settings. For example, here are the default values for the opt-level setting for the dev and release profiles:
Filename: Cargo.toml
[profile.dev]
opt-level = 0

[profile.release]
opt-level = 3
The opt-level setting controls how many the number of optimizations Rust will apply to your code, with a range of zero to three. Applying more optimizations makes extends compilation ing take longerime, so if you’re in development and compiling your code very often, you’d want faster compiling even to be fast at the expense of the resulting code running slower. That’ is whythe reason the default opt-level for dev is 0. When you’re ready to release your code, it’s bestter to spend more time compiling. You’ll only be compileing in release mode once, and running the compiled program many times, so release mode trades longer compile time for code that runs faster. That’ is whythe reason the default opt-level for the release profile is 3.
We can choose to override any default setting by adding a different value for them it in Cargo.toml. For example, Iif we wanted to use optimization level 1 in the development profile, for example, we can add these two lines to our project’s Cargo.toml file:
Filename: Cargo.toml
[profile.dev]
opt-level = 1
This code overrides the default setting of 0. Now when we run cargo build, Cargo will use the defaults for the dev profile plus our customization to opt-level. Because we set opt-level to 1, Cargo will apply more optimizations than the default, but not as many as a release build.
For the full list of configuration options and defaults for each profile, see Cargo’s documentation at https://doc.rust-lang.org/cargo/.
[bookmark: publishing-a-crate-to-crates.io][bookmark: _Toc499037504]Publishing a Crate to Crates.io
We’ve used packages from https://crates.io/ as dependencies of our project, but you can also share your code for other people to use by publishing your own packages. The crate registry at Crates.io https://crates.io/ distributes the source code of your packages, so it primarily hosts code that’ is open source.	Comment by AnneMarieW: Had to change to URL here. Edit okay?	Comment by Carol Nichols: Yep!
Rust and Cargo have features that help make your published package easier for people to use and to find in the first place to find and use. We’ll talk about some of theose features next, and then cover explain how to publish a package.	Comment by AnneMarieW: or later in the chapter?	Comment by AnneMarieW: Au: Perhaps use a transition sentence here? Something like, "But first let’s look at the benefits of using documentation comments in your code."	Comment by Carol Nichols: Documentation comments are part of “making your published package easier for people to... use”. I changed “shortly” to “next” to perhaps make this clearer, but I’m not sure why it wasn’t clear in the first place so I’m not sure how to fix it. Perhaps the “and use” was too subtle? I’ve tried rewording to put that before “to find”...
[bookmark: making-useful-documentation-comments][bookmark: _Toc499037505]Making Useful Documentation Comments
Accurately documenting your packages will help other users know how and when to use them, so it’s worth spending some time to writeing documentation. In Chapter 3, we discussed how to comment Rust code withusing //. Rust also has a particular kind of comment for documentation, which is known conveniently as documentation comments, that will generate HTML documentation. The HTML displays the contents of documentation comments for public API items, intended for programmers interested in knowing how to use your crate, as opposed to how your crate is implemented.
prod: xref ok
Documentation comments use /// instead of // and support Markdown notation for formatting the text if you’d like want to use it. You place documentation comments just before the item they a’re documenting. Listing 14-1 shows documentation comments for an add_one function in a crate named my_crate:	Comment by AnneMarieW: Au: I had to renumber listings, so please check all listing cross-refs.	Comment by Carol Nichols: Checked!
Filename: src/lib.rs
/// Adds one to the number given.
///
/// # Examples
///
/// ```
/// let five = 5;
///
/// assert_eq!(6, my_crate::add_one(5));
/// ```
pub fn add_one(x: i32) -> i32 {
 x + 1
}
Listing 14-1: A documentation comment for a function
Here, we give a description of what the add_one function does, then start a section with the heading “Examples”, and then provide code that demonstrates how to use the add_one function. We can generate the HTML documentation from this documentation comment by running cargo doc. This command runs the rustdoc tool distributed with Rust and puts the generated HTML documentation in the target/doc directory.
For convenience, running cargo doc --open will build the HTML for your current crate’s documentation (as well as the documentation for all of your crate’s dependencies) and open the result in a web browser. Navigate to the add_one function and you’ll see how the text in the documentation comments getis rendered, as shown here in Figure 14-12::	Comment by janelle: Please also double-check figure numbering 	Comment by Carol Nichols: Checked!
[image: ../../src/img/trpl14-03.png]
Figure 14-12: HTML documentation for the add_one function
 au to add image
[bookmark: commonly-used-sections][bookmark: _Toc499037506]Commonly Used Sections
We used the # Examples Mmarkdown heading in Listing 14-1 to create a section in the HTML with the title “Examples.”. Some other sections that crate authors commonly use in their documentation include:	Comment by AnneMarieW: Cap as Markdown?	Comment by Carol Nichols: Ah, yes.
Panics: The scenarios in which theis function being documented could panic!. Callers of theis function who don’t want their programs to panic should make sure that they don’t call theis function in these situations.	Comment by AnneMarieW: Au: Perhaps use “a certain function” instead of “this function” in all three bullet items?	Comment by Carol Nichols: Changed to “the function being documented” the first time, and “the function” afterward, is that ok?
Errors: If theis function returns a Result, describing the kinds of errors that might occur and what conditions might cause those errors to be returned can be helpful to callers so that they can write code to handle the different kinds of errors in different ways.
Safety: If theis function is unsafe to call (we will discuss unsafety in Chapter 19), there should be a section explaining why the function is unsafe and covering the invariants that theis function expects callers to uphold.
prod: confirm xref
Most documentation comment sections don’t need all of these sections, but this iit’s a good list to check to remind you of the kinds of thingsaspects of your code that people calling your code will be interested in knowing about.
[bookmark: documentation-comments-as-tests][bookmark: _Toc499037507]Documentation Comments as Tests
Adding examples in code blocks in your documentation comments is a way to can clearly demonstrate how to use your library, butand doing so it has an additional bonus: running cargo test will run the code examples in your documentation as tests! Nothing is better than documentation with examples. But Nnothing is worse than examples that don’t actually work because the code has changed since the documentation has been was written. Try rRunning cargo test with the documentation for the add_one function like infrom Listing 14-1; you should see a section in the test results like this:
 Doc-tests my_crate

running 1 test
test src/lib.rs - add_one (line 5) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Now try changeing either the function or the example so that the assert_eq! in the example will panics. Run cargo test again, and; you’ll see that the doc tests catch that the example and the code are out of sync from one another!
[bookmark: commenting-contained-items][bookmark: _Toc499037508]Commenting Contained Items
There’s aAnother style of doc comment, //!, that adds documentation to the item that contains the comments, rather than adding documentation to the items following the comments. We typically use Tthese doc comments are typically used inside the crate root file (src/lib.rs by convention) or inside a module to document the crate or the module as a whole.
For example, if we wanted to add documentation that describeds the purpose of the my_crate crate that contains the add_one function, we can add documentation comments that start with //! to the beginning of the src/lib.rs file, as shown in Listing 14-23:
Filename: src/lib.rs
//! # My Crate
//!
//! `my_crate` is a collection of utilities to make performing certain
//! calculations more convenient.

/// Adds one to the number given.
// ...--snip--...
Listing 14-23: Documentation for the my_crate crate as a whole
Notice there isn’t any code after the last line that begins with //!.. Because we started the comments with //! instead of ///, we’re documenting the item that contains this comment rather than an item that follows this comment. In this case, the item that contains this comment is the src/lib.rs file, which is the crate root. These comments describe the entire crate.
IfWhen we run cargo doc --open, we’ll see these comments will displayed on the front page of the documentation for my_crate above the list of public items in the crate, as shown in Figure 14-24:	Comment by Carol Nichols: Note this image is different than the image we sent previously with this chapter; the previous image contained a typo. Please let me know if you would like the file sent separately from this word doc.
[image: ../../src/img/trpl14-05.png]
AU: add image
Figure 14-42: Rendered documentation for my_crate including the comment describing the crate as a whole
Documentation comments within items are useful for describing crates and modules especially. Use them to talk about explain the purpose of the container overall to help users of your crate users understand your organization.
[bookmark: exporting-a-convenient-public-api-with-`][bookmark: _Toc499037509]Exporting a Convenient Public API with pub use	Comment by AnneMarieW: Au: Does this Head C section start your explanation of making it easier for others to find a package? The heading is under “Making Useful Documentation Comments.” Should this be a Head B instead?	Comment by Carol Nichols: This should be a Head B. This is a continuation of the explanation of making it easier for others to use a package.
In Chapter 7, we covered how to organize our code into modules withusing the mod keyword, how to make items public withusing the pub keyword, and how to bring items into a scope with the use keyword. However, Tthe structure that makes sense to you while you’re developing a crate mayight not be very convenient for your users, however. You mayight wishant to organize your structs in a hierarchy containing multiple levels, but people thatwho want to use a type you’ve defined deep in the hierarchy might have trouble finding out that those types exist. They might also be annoyed at having to type enter use my_crate::some_module::another_module::UsefulType; rather than use my_crate::UsefulType;.
prod: xref OK
The structure of your public API is a major consideration when publishing a crate. People who use your crate are less familiar with the structure than you are, and might have trouble difficulty finding the pieces they want to use if your crate has a largethe module hierarchy is large.
The good news is that, if the structure isn’t convenient for others to use from another library, you don’t have to rearrange your internal organization: instead, you can choose to re--export items to make a public structure that’s different tohan your private structure, by using pub use. Re--exporting takes a public item in one location and makes it public in another location, as if it was defined in the other location instead. 	Comment by janelle: I think we ought to keep the hyphen. Reexport doesn’t look right.	Comment by Carol Nichols: I agree re-export looks better. I just noticed the screenshots of the generated docs use Reexport though Oh well, it’s too late for the screen shot, that’s what Rust 1.21.0 produces... I’ll work on fixing this for the future though. Nothing for you to do here other than ignore “Reexport” in Figure 14-4!
For example, say we made a library named art for modeling artistic concepts. Within this library isare two modules: a kinds module containing two enums named PrimaryColor and SecondaryColor , and a utils module containing a function named mix , as shown in Listing 14-35:
Filename: src/lib.rs
//! # Art
//!
//! A library for modeling artistic concepts.

pub mod kinds {
 /// The primary colors according to the RYB color model.
 pub enum PrimaryColor {
 Red,
 Yellow,
 Blue,
 }

 /// The secondary colors according to the RYB color model.
 pub enum SecondaryColor {
 Orange,
 Green,
 Purple,
 }
}

pub mod utils {
 use kinds::*;

 /// Combines two primary colors in equal amounts to create
 /// a secondary color.
 pub fn mix(c1: PrimaryColor, c2: PrimaryColor) -> SecondaryColor {
 // --snip--...snip...
 }
}
Listing 14-35: An art library with items organized into kinds and utils modules
Figure 14-3 shows what Tthe front page of the documentation for this crate generated by cargo doc would look like Figure 14-6::
[image: C:\Users\egcha\Google Drive\Liz NSP\Rust\Images\trpl14-07.png]
au to add picture
Figure 14-63: Front page of the documentation for art that lists the kinds and utils modules
Note that the PrimaryColor and SecondaryColor types aren’t listed on the front page, nor is the mix function. We have to click on kinds and utils in order to see them.
Another crate that dependsdepending on this library would need use statements that import the items from art , including specifying the module structure that’s currently defined. Listing 14-47 shows an example of a crate that uses the PrimaryColor and mix items from the art crate:
Filename: src/main.rs
extern crate art;

use art::kinds::PrimaryColor;
use art::utils::mix;

fn main() {
 let red = PrimaryColor::Red;
 let yellow = PrimaryColor::Yellow;
 mix(red, yellow);
}
Listing 14-47: A crate using the art crate’s items with its internal structure exported
The author of the code in Listing 14-47, which that uses the art crate, had to figure out that PrimaryColor is in the kinds module and mix is in the utils module. The module structure of the art crate is more relevant to developers working on the art crate than developers using the art crate. The internal structure that organizes parts of the crate into the kinds module and the utils module doesn’t addcontain any useful information tofor someone trying to understand how to use the art crate. Instead, Tthe art crate’s module structure addcauses confusion because developers in haveing to figure out where to look, and the structure is inconveniencet because developers in having to must specify the module names in the use statements.
To remove the internal organization from the public API, we can takemodify the art crate code fromin Listing 14-35 and to add pub use statements to re--export the items at the top level, as shown in Listing 14-58:	Comment by AnneMarieW: Au: Please check this cross-ref	Comment by Carol Nichols: This is correct
Filename: src/lib.rs
//! # Art
//!
//! A library for modeling artistic concepts.

pub use kinds::PrimaryColor;
pub use kinds::SecondaryColor;
pub use utils::mix;

pub mod kinds {
 // ...snip...--snip--
}

pub mod utils {
 // ...snip...--snip--
}
Listing 14-58: Adding pub use statements to re--export items
The API documentation that generated with cargo doc generates for this crate will now list and link re--exports on the front page, as shown in Figure 14-49, which makes the PrimaryColor and SecondaryColorse types and the mix function easier to find:.	Comment by AnneMarieW: Which types are you referring to?	Comment by Carol Nichols: Clarified
Au to add figure
[image: C:\Users\egcha\Google Drive\Liz NSP\Rust\Images\trpl14-10.png]
Figure 14-49: The fFront page of the documentation for art that lists the re--exports
Users of tThe art crate users can still see and choose to use the internal structure as in from Listing 14-3 as demonstrated in Listing 14-47, or they can use the more convenient structure from in Listing 14-85, as shown in Listing 14-610:	Comment by AnneMarieW: Au: Please check this cross-ref	Comment by Carol Nichols: Corrected and clarified	Comment by AnneMarieW: Au: Please check this cross-ref	Comment by Carol Nichols: This is correct
Filename: src/main.rs
extern crate art;

use art::PrimaryColor;
use art::mix;

fn main() {
 // ...snip...--snip--
}
Listing 14-610: A program using the re--exported items from the art crate
In cases where there are many nested modules, re--exporting the types at the top level with pub use can make a bigsignificant difference in the experience of people who use the crate.
Creating a useful public API structure is more of an art than a science, and you can iterate to find the API that works best for your users. Choosing pub use gives you flexibility in how you structure your crate internally, and decouples that internal structure with what you present to your users. Take a lLook at some of the code of crates you’ve installed to see if their internal structure differs from their public API.
[bookmark: setting-up-a-crates.io-account][bookmark: _Toc499037510]Setting Uup a Crates.io Account
Before you can publish any crates, you need to create an account on https://crates.io/ and get an API token. To do so, visit the home page at https://crates.io/ and log in via a GitHub account: —the GitHub account is currently a requirement for now, but the site mayight support other ways of creating an account in the future. Once you’re logged in, visit your account settings at https://crates.io/me/ and retrieve your API key. Then run the cargo login command with your API key, like this:
$ cargo login abcdefghijklmnopqrstuvwxyz012345
This command will inform Cargo of your API token and store it locally in ~/.cargo/credentials. Note that this token is a secret : do and should not be shared it with anyone else. If you do it is shared it with anyone for any reason, you should revoke it and generate a new token on Crates.iohttps://crates.io/.
[bookmark: before-publishing-a-new-crate][bookmark: _Toc499037511]Before Publishing a New Crate
Now that you have an account, and let’s say you already have a crate you want to publish. Before publishing, you’ll need to add some metadata to your crate by adding it to the [package] section of the crate’s Cargo.toml file..
Your crate will first need a unique name. While you’re working on a crate locally, you maycan name a crate whatever you’d like. However, crate names on Crates.io https://crates.io/ are allocated on a first-come, -first-served basis. Once a crate name is taken, no one else may can publish a crate with that name. Search for the name you’d like want to use on the site to find out if it has been takenused. If it hasn’t, edit the name in the Cargo.toml file under [package] to have the name you want to use the name for publishing, like so:
Filename: Cargo.toml
[package]
name = "guessing_game"
Even if you’ve chosen a unique name, if when you try to run cargo publish to publish the crate at this point, you’ll get a warning and then an error:
$ cargo publish
 Updating registry `https://github.com/rust-lang/crates.io-index`
warning: manifest has no description, license, license-file, documentation,
homepage or repository.
...snip...--snip--
error: api errors: missing or empty metadata fields: description, license.
This is becausee reason is that weyou’re missing some crucial information: a description and license are required so that people will know what your crate does and under what terms they maycan use it. To rectify this error, weyou need to include this information in the Cargo.toml .file.
AddMake a description that’ is just a sentence or two, asbecause it will appear with your crate in search results and on your crate’s page. For the license field, you need to give a license identifier value. The Linux Foundation’s Software Package Data Exchange (SPDX) at http://spdx.org/licenses/ lists the identifiers you can use for this value. For example, to specify that you’ve licensed your crate using the MIT License, add the MIT identifier:
Filename: Cargo.toml
[package]
name = "guessing_game"
license = "MIT"
If you want to use a license that doesn’t appear in the SPDX, you need to place the text of that license in a file, include the file in your project, and then use license-file to specify the name of that file instead of using the license key.
Guidance on which license is rightappropriate for your project is out ofbeyond the scope forof this book. Many people in the Rust community choose to license their projects in the same way as Rust itself, by usingwith a dual license of MIT OR /Apache-2.0, which—this demonstrates that you can also specify multiple license identifiers separated by OR to have multiple licenses for your projecta slash.
So, wWith a unique name, the version, and the author details that cargo new added when you created the crate, your description, and the a license you chose added, the Cargo.toml file for a project that’ is ready to publish might look like this:
Filename: Cargo.toml
[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
description = "A fun game where you guess what number the computer has chosen."
license = "MIT OR /Apache-2.0"

[dependencies]
Cargo’s documentation at https://doc.rust-lang.org/cargo/ describes other metadata you can specify to ensure others can discover and use your crate can be discovered and used more easily!
[bookmark: publishing-to-crates.io][bookmark: _Toc499037512]Publishing to Crates.io
Now that you’ve created an account, saved your API token, chosen a name for your crate, and specified the required metadata, you’re ready to publish! Publishing a crate uploads a specific version to https://crates.io/ for others to use.
Take care Be careful when publishing a crate, because a publish is permanent. The version can never be overwritten, and the code cannot be deleted. One major goal of Crates.iohttps://crates.io/ is to act as a permanent archive of code so that builds of all projects that depend on crates from Crates.io https://crates.io/ will continue to work. Allowing deletion of versions deletions would make fulfilling that goal impossible. However, there is no limit to the number of crate versions of a crate you can publish.
Let’s rRun the cargo publish command again. It should succeed now:
$ cargo publish
 Updating registry `https://github.com/rust-lang/crates.io-index`
Packaging guessing_game v0.1.0 (file:///projects/guessing_game)
Verifying guessing_game v0.1.0 (file:///projects/guessing_game)
Compiling guessing_game v0.1.0
(file:///projects/guessing_game/target/package/guessing_game-0.1.0)
 Finished dev [unoptimized + debuginfo] target(s) in 0.19 secs
Uploading guessing_game v0.1.0 (file:///projects/guessing_game)
Congratulations! You’ve now shared your code with the Rust community, and anyone can easily add your crate as a dependency of their project.
[bookmark: publishing-a-new-version-of-an-existing-][bookmark: _Toc499037513]Publishing a New Version of an Existing Crate
When you’ve made changes to your crate and are ready to release a new version, you change the version value specified in your Cargo.toml file and republish. Use the Semantic Versioning rules at http://semver.org/ to decide what an appropriate next version number is based on the kinds of changes you’ve made. Then run cargo publish to upload the new version.
[bookmark: removing-versions-from-crates.io-with-`c][bookmark: _Toc499037514]Removing Versions from Crates.io with cargo yank
While Although you can’t remove previous versions of a crate, you can prevent any future projects from adding them as a new dependency. This is useful when a crate version of a crate ends up being is broken for one reason or another. For In such situations such as this, Cargo supports yanking a crate version of a crate.
Yanking a version prevents new projects from starting to depend on that version while allowing all existing projects that depend on it to continue to download and depend on that version. Essentially, a yank means that all projects with a Cargo.lock will not break, whileand any future Cargo.lock files generated will not use the yanked version.
To yank a version of a crate, run cargo yank and specify which version you want to yank:
$ cargo yank --vers 1.0.1
By adding --undo to the command, Yyou can also undo a yank, and allow projects to start depending on a version again, by adding --undo to the command:
$ cargo yank --vers 1.0.1 --undo
A yank does not delete any code. For example, tThe yank feature is not intended for deleting accidentally uploaded secrets, for example. If that happens, you must reset those secrets immediately.
[bookmark: cargo-workspaces][bookmark: _Toc499037515]Cargo Workspaces
In Chapter 12, we built a package that included both a binary crate and a library crate. As your project develops, Yyou mayight find, as your project develops, that the library crate continues to get bigger and you want to split up your package up further into multiple library crates. In this situation, Cargo hasoffers a feature called workspaces that can help manage multiple related packages that are developed in tandem.
prod: confirm xref
A workspace is a set of packages that will all share the same Cargo.lock and output directory. Let’s make a project using a workspace, and useing trivial code so we can concentrate on the structure of athe workspace. There are multiple ways to structure a workspace; we’re going to show a common way. We’ll have a workspace containing a binary that usesand two libraries. The binary will provide the main functionality to be used as a command line tool, and it will depend on the two libraries.: o One library that will will provide an add_one function, and a second library that will will provide an add_two function. These three crates will all be part of the same workspace. We’ll start by creating a new crate directory for the binaryworkspace:
$ mkdir add
$ cd add
In the add directory, create a Cargo.toml file. This is the Cargo.toml file that configures the entire workspace. It won’t have a [package] section or metadata we’ve seen in other Cargo.toml files. Instead, we’ll start with a [workspace] section and add a member to the workspace by specifying the path adder, which is where we’ll put our binary crate:
Cargo.toml
[workspace]

members = [
 "adder",
]
Next, we’ll create the adder binary crate by running cargo new within the add directory:
$ cargo new --bin adder
 Created binary (application) `adder` project
$ cd adder
At this point, we can build the workspace by running cargo build. The files in your add directory should look like this:
├── Cargo.lock	Comment by Carol Nichols: Janelle, whatever you did in Chapter 7 for directory listings (like on page 100, 101, 104, 105, 106) was perfect, could you do that again here?
├── Cargo.toml
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target
[bookmark: _GoBack]The workspace has one target directory at the top level; the adder crate doesn’t have its own target directory. Even if we go into the adder directory and run cargo build, the compiled artifacts end up in add/target rather than add/adder/target. The crates in a workspace are meant to depend on each other. If each crate had its own target directory, each crate in the workspace would have to recompile each of the other crates in the workspace to have the artifacts in its own target directory. By sharing one target directory, the crates in the workspace can avoid rebuilding the other crates in the workspace more than necessary.
We need to modify the binary package’s Cargo.toml and add a [workspace] section to tell Cargo the adder package is a workspace. Add this at the bottom of the file:
Filename: Cargo.toml
[workspace]
Like many Cargo features, workspaces support convention over configuration: we don’t need to add anything more than this to Cargo.toml to define our workspace as long as we follow the convention.
[bookmark: specifying-workspace-dependencies][bookmark: _Toc499037516]Specifying Workspace Dependencies
By default, Cargo will include all transitive path dependencies. A path dependency is when any crate, whether in a workspace or not, specifies that it has a dependency on a crate in a local directory by using the path attribute on the dependency specification in Cargo.toml. If a crate has the [workspace] key, or if the crate is itself part of a workspace, and we specify path dependencies where the paths are subdirectories of the crate’s directory, those dependent crates will be considered part of the workspace. Let’s specify in the Cargo.toml for the top-level adder crate that it will have a dependency on an add-one crate that will be in the add-one subdirectory, by changing Cargo.toml to look like this:
Filename: Cargo.toml
[dependencies]
add-one = { path = "add-one" }
If we add dependencies to Cargo.toml that don’t have a path specified, those dependencies will be normal dependencies that aren’t in this workspace and are assumed to come from Crates.io.
[bookmark: creating-the-second-crate-in-the-workspa][bookmark: _Toc499037517]Creating the Second Crate in the Workspace
Next, let’s specify another member crate in the workspace. This crate will be in the add-one directory, so change the top-level Cargo.toml to have the add-one path as well:
Cargo.toml
[workspace]

members = [
 "adder",
 "add-one",
]
Then generate a new library crate named add-one:
while in the adder directory, generate an add-one crate:
$ cargo new add-one
 Created library `add-one` project
Your adder directory should now have these directories and files:
├── Cargo.lock	Comment by Carol Nichols: Same here—please give this the Chapter 7 treatment
├── Cargo.toml
├── add-one
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target
├── Cargo.toml	Comment by Carol Nichols: Janelle, whatever you did in Chapter 7 for directory listings (like on page 100, 101, 104, 105, 106) was perfect, could you do that again here?
├── add-one
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
└── src
 └── main.rs
In the add-one/src/lib.rs file, let’s add an add_one function:
Filename: add-one/src/lib.rs
pub fn add_one(x: i32) -> i32 {
 x + 1
}
Now that we have a library crate in the workspace, let’s have the binary crate adder depend on the library crate add-one. First, we’ll need to add a path dependency on add-one to adder/Cargo.toml:
adder/Cargo.toml
[dependencies]

add-one = { path = "../add-one" }
Crates in a workspace don’t have to depend on each other, so we still need to be explicit about the dependency relationships between the crates in a workspace.
Next, let’s use the add_one function from the add-one crate in the adder crate. Open up the sadder/src/main.rs file for adder and add an extern crate line at the top of the file to bring the new add-one library crate into scope. Then change the main function to call the add_one function, as in Listing 14-711:
adder/Filename: src/main.rs
extern crate add_one;

fn main() {
 let num = 10;
 println!("Hello, world! {} plus one is {}!", num, add_one::add_one(num));
}
Listing 14-711: Using the add-one library crate from the adder crate
Let’s build the workspace by the adder crate by running cargo build in the adder directory!	Comment by janelle: Au: note italics here	Comment by Carol Nichols: This is correct
$ cargo build
 Compiling add-one v0.1.0 (file:///projects/adder/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.68 secs
To run the binary crate from the top-level add directory, we need to specify which package in the workspace we want to use by using the -p argument and the package name with cargo run:
$ cargo run -p adder
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/adder`
Hello, world! 10 plus one is 11!
This runs the code in adder/src/main.rs, which depends on the add-one crate.
Note that this builds both the adder crate and the add-one crate in adder/add-one. Now your adder directory should have these files:
├── Cargo.lock	Comment by Carol Nichols: Same here—please give this the Chapter 7 treatment
├── Cargo.toml
├── add-one
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── src
│ └── main.rs
└── target
The workspace has one target directory at the top level; add-one doesn’t have its own target directory. Even if we go into the add-one directory and run cargo build, the compiled artifacts end up in adder/target rather than adder/add-one/target. The crates in a workspace depend on each other. If each crate had its own target directory, each crate in the workspace would have to recompile each other crate in the workspace in order to have the artifacts in its own target directory. By sharing one target directory, the crates in the workspace can avoid rebuilding the other crates in the workspace more than necessary.
[bookmark: depending-on-an-external-crate-in-a-work][bookmark: _Toc499037518]Depending on an External Crate in a Workspace
Also nNotice that the workspace only has only one Cargo.lock, file at the top level of the workspace rather than having a top-level Cargo.lock in each crate’s directoryand add-one/Cargo.lock. This ensures that all crates are using the same version of all dependencies. If we add the rand crate to both the Cadder/Cargo.toml and add-one/Cargo.toml files, Cargo will resolve both of those to one version of rand and record that in the one Cargo.lock. Making all crates in the workspace use the same dependencies means the crates in the workspace will always be compatible with each other. Let’s try this out now.
Let’s add the rand crate to the [dependencies] section in the add-one/Cargo.toml filein order to be able to use the rand crate in the add-one crate:
Filename: add-one/Cargo.toml
[dependencies]

rand = "0.3.14"
We can now add extern crate rand; to the add-one/src/lib.rs file,, and building the whole workspace by running cargo build in the adder directory will bring in and compile the rand crate:
$ cargo build
 Updating registry `https://github.com/rust-lang/crates.io-index`
 Downloading rand v0.3.14
 ...snip...--snip--
 Compiling rand v0.3.14
 Compiling add-one v0.1.0 (file:///projects/adder/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 10.18 secs
The top- level Cargo.lock now contains information about add-one’s the dependency of add-one on rand. However, even though rand is used somewhere in the workspace, we can’t use it in other crates in the workspace unless we add rand to their Cargo.toml files as well. For example, Iif we add extern crate rand; to the sadder/src/main.rs file for the top level adder crate, for example, we’ll get an error:
$ cargo build
 Compiling adder v0.1.0 (file:///projects/add/adder)
error: use of unstable library feature 'rand': use `rand` from crates.io (see issue #27703)
 error[E0463]: can't find crate for `rand`
--> adder/src/main.rs:1:1
 --> src/main.rs:1:1
 |
1 | extern crate rand;
 | ^^^^^^^^^^^^^^^^^^^ can't find crate
To fix this, edit the Cargo.toml file for the top level adder crate and indicate that rand is a dependency for that crate as well. Building the adder crate will add rand to the list of dependencies for adder in Cargo.lock, but no additional copies of rand will be downloaded. Cargo has ensured for us that any crate in the workspace using the rand crate will be using the same version. Using the same version of rand across the workspace saves space sincbecause we won’t have multiple copies and ensures that the crates in the workspace will be compatible with each other.
[bookmark: adding-a-test-to-a-workspace][bookmark: _Toc499037519]Adding a Test to a Workspace
For another enhancement, let’s add a test of the add_one::add_one function within the add_one crate:
Filename: add-one/src/lib.rs
pub fn add_one(x: i32) -> i32 {
 x + 1
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn it_works() {
 assert_eq!(3, add_one(2));
 }
}
Now run cargo test in the top-level adder directory:
$ cargo test
 Compiling add-one v0.1.0 (file:///projects/add/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.27 secs
 Running target/debug/deps/add_oneadder-f0253159197f7841

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/adder-f88af9d2cc175a5e

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests add-one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured
The first section of the output shows that the it_works test in the add-one crate passed. The next section shows that 0 tests were found in the adder crate, and then the last section shows 0 documentation tests were found in the add-one crate. RunningWait a second, zero tests? We just added one! If we look at the output, we can see that cargo test in a workspace structured like this one will run the tests for all the crates in the workspace. workspace only runs tests for the top level crate. To run tests for all of the crates in the workspace, we need to pass the --all flag:
$ cargo test --all
 Finished dev [unoptimized + debuginfo] target(s) in 0.37 secs
 Running target/debug/deps/add_one-abcabcabc

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/adder-abcabcabc

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests add-one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
When passing --all, cargo test will run the tests for all of the crates in the workspace. We can also choose to run tests for one particular crate in a workspace from the top- level directory by using the -p flag and specifying the name of the crate we want to test:
$ cargo test -p add-one
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/deps/add_one-b3235fea9a156f74

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests add-one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
This output shows cargo test only ran the tests for the add-one crate and didn’t run the adder crate tests.
If you choose to publish the crates in the workspace to https://crates.io/, each crate in the workspace will need to getbe published separately. The cargo publish command does not have an --all flag or a -p flag, so it is necessary to you must change to each crate’s directory and run cargo publish on each crate in the workspace in order to publish them.
For additional practice, Now try adding an add-two crate to this workspace in a similar way as the add-one crate for some more practice!
As your project grows, consider using a workspace: it’s easier to understand smaller, individual components are easier to understand individually than one big blob of code. Keeping the crates in a workspace can make coordination among between them easier if they work together and are often changed at the same time.	Comment by janelle: Au: please make sure I didn’t change your meaning with these edits	Comment by Carol Nichols: This is fine
[bookmark: installing-binaries-from-crates.io-with-][bookmark: _Toc499037520]Installing Binaries from Crates.io with cargo install
The cargo install command allows you to install and use binary crates locally. This isn’t intended to replace system packages; it’s meant to be a convenient way for Rust developers to install tools that others have shared on https://crates.io/. You can Oonly install packages that have binary targets can be installed. A binary target is the runnable program that getis created if the crate has a src/main.rs file or another file specified as a binary, as opposed to a library target that isn’t runnable on its own but is suitable for including within other programs. Usually, crates have information in the README file about whether a crate is a library, has a binary target, or both.
All binaries frominstalled with cargo install are putstored into the installation root’s bin folder. If you installed Rust using rustup.rs and don’t have any custom configurations, this directory will be $HOME/.cargo/bin. Ensure that directory is in your $PATH to be able to run programs you’ve gotten installed withthrough cargo install.
For example, we mentioned in Chapter 12 we mentioned that there’s a Rust implementation of the grep tool called ripgrep for searching files called ripgrep. If we want to install ripgrep, we can run the following:
prod: confirm xref
$ cargo install ripgrep
Updating registry `https://github.com/rust-lang/crates.io-index`
 Downloading ripgrep v0.3.2
 ...snip...--snip--
 Compiling ripgrep v0.3.2
 Finished release [optimized + debuginfo] target(s) in 97.91 secs
 Installing ~/.cargo/bin/rg
The last line of the output shows the location and the name of the installed binary, which in the case of ripgrep is rg. As long as the installation directory is in your $PATH , as mentioned abovepreviously, you can then run rg --help and start using a faster, rustier tool for searching files!
[bookmark: extending-cargo-with-custom-commands][bookmark: _Toc499037521]Extending Cargo with Custom Commands
Cargo is designed so you can extend it with new subcommands without having to modify Cargo itself. If a binary in your $PATH is named cargo-something, you can run it as if it werase a Cargo subcommand by running cargo something. Custom commands like this are also listed when you run cargo --list. Being able to use cargo install to install extensions and then run them just like the built-in Cargo tools is a super convenient benefit of Cargo’s design!
[bookmark: summary][bookmark: _Toc499037522]Summary
Sharing code with Cargo and https://crates.io/ is part of what makes the Rust ecosystem useful for many different tasks. Rust’s standard library is small and stable, but crates are easy to share, use, and improve on a timeline different from the language itself. Don’t be shy about sharing code that’s useful to you on Crates.iohttps://crates.io/; it’s likely that it will be useful to someone else as well!
image1.png

image2.png

image3.png

image4.png

