
Accepting Command Line Arguments	2
Reading the Argument Values	3
Saving the Argument Values in Variables	5
Reading a File	6
Refactoring to Improve Modularity and Error Handling	8
Separation of Concerns for Binary Projects	9
Extracting the Argument Parser	10
Grouping Configuration Values	11
Creating a Constructor for Config	13
Fixing the Error Handling	14
Improving the Error Message	14
Returning a Result from new Instead of Calling panic!	15
Calling Config::new and Handling Errors	16
Extracting Logic from main	17
Returning Errors from the run Function	18
Handling Errors Returned from run in main	20
Splitting Code into a Library Crate	21
Developing the Library’s Functionality with Test Driven Development	23
Writing a Failing Test	23
Writing Code to Pass the Test	26
Iterating Through Lines with the lines Method	26
Searching Each Line for the Query	27
Storing Matching Lines	27
Using the search Function in the run Function	28
Working with Environment Variables	30
Writing a Failing Test for the Case-Insensitive search Function	30
Implementing the search_case_insensitive Function	31
Writing Error Messages to Standard Error Instead of Standard Output	36
Checking Where Errors are Written to	36
Printing Errors to Standard Error	37
Summary	38
CE: Please leave lower-case words in headings as lower-case, these are functions or variable names
Chapter 12
An I/O Project: Building a Command Line Program
This chapter is both a recap of the many skills you’ve learned so far and an exploration of a few more standard library features. We’re going to’ll build a command line tool that interacts with file and command line input/output to practice some of the Rust concepts you now have under your belt.
Rust’s speed, safety, single binary output, and cross-platform support make it an ideal good language for creating command line tools, so for our project, we’ll make our own version of the classic command line tool grep. Grep is an acronym for “(globally search a regular expression and print).” In the simplest use case, grep searches a specified file for a specified string. To do so, grep takes as its arguments a filename and a string as its arguments, and then reads the file and finds lines in that file that contain the string argument. It’ ll then prints out those lines.
Along the way, we’ll show how to make our command line tool use features of the terminal that many command line tools use. We’ll read the value of an environment variable in order to allow the user to configure the behavior of our tool. We’ll also print to the standard error console stream (stderr) instead of standard output (stdout), so that, for example, the user can choose to redirect successful output to a file while still seeing error messages on the screen.
One Rust community member, Andrew Gallant, has already created a fully- featured, very fast version of grep, called ripgrep. By comparison, our version of grep will be fairly simple, but this chapter will give you some of the background knowledge to help you need to understand a real-world project like ripgrep.
This Our grep project will bring together combine a number of concepts you’ve learned so far:
Organizing code (using what weyou learned in modules, Chapter 7)
Using vectors and strings (collections, Chapter 8)
Handling errors (Chapter 9)
Using traits and lifetimes where appropriate (Chapter 10)
Writing tests (Chapter 11)
[bookmark: __RefHeading___Toc14976_1865893667]We’ll also briefly introduce closures, iterators, and trait objects, which Chapters 13 and 17 will cover in detail.
prod: confirm xrefs
[bookmark: _Toc496541041]Accepting Command Line Arguments
[bookmark: move486326737]Let’s create a new project with, as always, cargo new. We’re’ll calling our project minigrep to distinguish it from the grep tool that you mayight already have on your system:.
$ cargo new --bin minigrep
 Created binary (application) `minigrep` project
$ cd minigrep
[bookmark: _Toc486341771]Our The first task is to make minigrep able to accept its two command line arguments: the filename and a string to search for. That is, we want to be able to run our program with cargo run, a string to search for, and a path to a file to search in, like so:
$ cargo run searchstring example-filename.txt
Right now, the program generated by cargo new cannot process arguments we give it. However, There are some existing libraries on https://crates.io/ that can help us with writing a program that accepts command line arguments, but sincbecause you’re just learning this concept, let’s implement this capability ourselves.	Comment by AnneMarieW: us or minigrep?	Comment by Carol Nichols: the crate helps us write the code, is the rewording okay?
Prod: s/b “https://crates.io/” in ital because it’s a URL. Update globally
[bookmark: __RefHeading___Toc14980_1865893667][bookmark: _Toc486341772][bookmark: reading-the-argument-values][bookmark: __RefHeading___Toc5901_1551282135][bookmark: _Toc496541042]Reading the Argument Values
We first need tTo make sure our program minigrep is able to gread et the values of command line arguments we pass to it, for which we’ll need a function provided in Rust’s standard library:, which is std::env::args. This function returns an iterator of the command line arguments that were given to our program minigrep. We haven’t discussed iterators yet, and (we’ll cover them fully in Chapter 13), but for our purposes now weyou only need to know two thingdetails about iterators: Iiterators produce a series of values, and we can call the collect function on an iterator to turn it into a collection, such as a vector, containing all of the elements the iterator produces.	Comment by AnneMarieW: read?	Comment by Carol Nichols: sure
Prod: Confirm xref
Let’s give it a try: uUse the code in Listing 12-1 to allow your minigrep program to read any command line arguments passed to it and then collect the values into a vector:.
Filename: src/main.rs
use std::env;

fn main() {
 let args: Vec<String> = env::args().collect();
 println!("{:?}", args);
}
Listing 12-1: Collecting the command line arguments into a vector and printing them out
First, we bring the std::env module into scope with a use statement so that we can use its args function. Notice that the std::env::args function is nested in two levels of modules. As we talked about discussed in Chapter 7, in cases where the desired function is nested in more than one module, it’s conventional to bring the parent module into scope, rather than the function itself. As a result, This lets uswe can easily use other functions from std::env. It’s also less ambiguous than adding use std::env::args; and then calling the function with just args; thatbecause args might easily be mistaken for a function that’s defined in the current module.
prod: confirm xref
Start box
The args Function and Invalid Unicode
Note that std::env::args will panic if any argument contains invalid Unicode. If your program needs to accept arguments containing invalid Unicode, use std::env::args_os instead. That function returns OsString values instead of String values. We’ve chosen to use std::env::args here for simplicity because OsString values differ per- platform and are more complex to work with than String values.
 End box
On the first line of main, we call env::args, and immediately use collect to turn the iterator into a vector containing all of the values produced by the iterator. We can use Tthe collect function can be used to create many kinds of collections, so we explicitly annotate the type of args to specify that we want a vector of strings. AlTthough we very rarely need to annotate types in Rust, collect is one function you do often need to annotate because Rust isn’t able to infer whatthe kind of collection you want.
Finally, we print out the vector withusing the debug formatter, :?. Let’s try running ourthe code with no arguments, and then with two arguments:
$ cargo run
--snip--
["target/debug/minigrep"]

$ cargo run needle haystack
...--snip--...	Comment by janelle: Au: Changed from “…snip…” to
“--snip--“ per our house style. OK?	Comment by Carol Nichols: yep!
["target/debug/minigrep", "needle", "haystack"]
[bookmark: __DdeLink__89417_1551282135]You may nNotice that the first value in the vector is "target/debug/minigrep", which is the name of our binary. This matches the behavior of the arguments list in C, and letsletting programs use the name by which they were invoked in their execution. It’s often convenient to have access to the program name in case we want to print it in messages or change behavior of the program based on what command line alias was used to invoke the program,. bBut for the purposes of this chapter, we’re going toll ignore it and only save only the two arguments we need.	Comment by AnneMarieW: Do we assume readers know what you are referring to here?	Comment by Carol Nichols: They don’t need to understand it, this is just meant to let readers know what the historical reason for this is. If they aren’t familiar and are interested, this gives them something to investigate on their own.
[bookmark: _Toc486341773][bookmark: saving-the-argument-values-in-variables][bookmark: _Toc496541043]Saving the Argument Values in Variables
Printing out the value of the vector of arguments has illustrated that the program is able to access the values specified as command line arguments. Now we need to save the values of the two arguments in variables so that we can use the values throughout the rest of the program. Let’s We do that as shown in Listing 12-2::
Filename: src/main.rs
use std::env;

fn main() {
 let args: Vec<String> = env::args().collect();

 let query = &args[1];
 let filename = &args[2];

 println!("Searching for {}", query);
 println!("In file {}", filename);
}
Listing 12-2: Creating variables to hold the query argument and filename argument
As we saw when we printed out the vector, the program’s name takes up the first value in the vector at args[0], so that we’re starting at index 1. The first argument minigrep takes is the string we’re searching for, so we put a reference to the first argument in the variable query. The second argument will be the filename, so we put a reference to the second argument in the variable filename.
We’re temporarily printing out the values of these variables, again to prove to ourselves that ourthe code is working as we intend. Let’s try running this program again with the arguments test and sample.txt:
$ cargo run test sample.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep test sample.txt`
Searching for test
In file sample.txt
Great, it’s the program is working! The values of the arguments we need are being saved into the right variables. Later we’ll add some error handling to deal with certain potential erroneous situations, such as when the user provides no arguments,; but for now, we’ll ignore that situation and work on adding file reading capabilities instead.
[bookmark: _Toc486341774][bookmark: reading-a-file][bookmark: _Toc496541044]Reading a File
Next,ow we’re going toll add functionality to read the file that is specified in the filename command line argument. First, we need a sample file to test it with: —the best kind of file to use to make sure that minigrep is working is one with a small amount of text over multiple lines with some repeated words. Listing 12-3 has an Emily Dickinson poem that will work well! Create a file called poem.txt at the root level of your project, and enter the poem “I’m Nnobody! Who are you?”:
Filename: poem.txt
I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us — don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!
Listing 12-3: The A poem “I’m nobody! Who are you?” by Emily Dickinson that will make a good test case.
With thate text in place, edit src/main.rs and add code to open the file, as shown in Listing 12-4::
Filename: src/main.rs
use std::env;
use std::fs::File;
use std::io::prelude::*;

fn main() {
 // ...--snip--...
 println!("In file {}", filename);

 let mut f = File::open(filename).expect("file not found");

 let mut contents = String::new();
 f.read_to_string(&mut contents)
 .expect("something went wrong reading the file");

 println!("With text:\n{}", contents);
}
Listing 12-4: Reading the contents of the file specified by the second argument
First, we add some more use statements to bring in relevant parts of the standard library: we need std::fs::File for to handledealing with files, and std::io::prelude::* contains various useful traits that are useful when for doing I/O, including file I/O. In the same way that Rust has a general prelude that brings certain types and functionshings into scope automatically, the std::io module has its own prelude of common types and functionshings you’ll need when working with I/O. Unlike the default prelude, we must explicitly add a use statement for the prelude from std::io.	Comment by AnneMarieW: Au: Can you clarify what “things” you are referring to in both instances of the word in this sentence?	Comment by Carol Nichols: done	Comment by AnneMarieW: Do you mean add a use statement? Here you’re using the Literal term as an English verb.	Comment by Carol Nichols: yes we were being cute, reworded
In main, we’ve added three thingsstatements: first, we get a mutable handle to the file by calling the File::open function and passing it the value of the filename variable. Second, we create a variable called contents and set it to a mutable, empty String. This will hold the content of the file after we read it in. Third, we call read_to_string on our file handle and pass a mutable reference to contents as an argument.
After those lines, we’ve again added a temporary println! statement that prints out the value of contents after the file is read, so that we can check that ourthe program is working so far.
Let’s try running this code with any string as the first command line argument (sincbecause we haven’t implemented the searching part yet) and ourthe poem.txt file as the second argument:
$ cargo run the poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us — don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!
Great! Our The code read in and then printed out the content of the file. But the code has We’ve got a few flawsflaws though. The main function has multiple responsibilities;: generally, functions are clearer and easier to maintain if each function is responsible for only one idea. The other problem is that we’re not handling errors as well as we could be. WhileThe our program is still small so, these flaws aren’t a big problem, but as ourthe program grows, it will be harder to fix them cleanly. It’s good practice to begin refactoring early on when developing a program, asbecause it’s much easier to refactor smaller amounts of code,. so wWe’ll do that nowext.
[bookmark: __RefHeading___Toc14986_1865893667][bookmark: _Toc486341775][bookmark: _Toc496541045]Refactoring to Improve Modularity and Error Handling
To improve our program, we’ll fixThere are four problems that that we’d like to fix to improve our program, and they have to do with the way the program’s is structured and how it’s handling potential errors.
First, our main function now performs two tasks: it parses arguments and opens up files. For such a small function, this isn’t a hugemajor problem. However, if we keepcontinue to growing our program inside of main, the number of separate tasks the main function handles will growincrease. As a function gains responsibilities, it getbecomes more difficult harder to reason about, harder to test, and harder to change without breaking one of its parts. It’s bestter to separate out functionality so that each function is responsible for one task.
This issue also ties into ourthe second problem: whilealthough query and filename are configuration variables to our program, variables like f and contents are used to perform ourthe program’s logic. The longer main getbecomes, the more variables we’re going toll need to bring into scope; the more variables we have in scope, the harder it iswill be to keep track of the purpose of each. It’s bestter to group the configuration variables into one structure to make their purpose clear.
The third problem is that we’ve used expect to print out an error message when opening the file fails, but the error message onlyjust says prints file not found. Opening a file can fail There arein a number of ways that opening a file can fail besides the file being missing: for example, the file might exist, but we might not have permission to open it. Right now, if we’re in that situation, we’d print the file not found error message that would give the user the wrong advice information!
Fourth, we use expect repeatedly to deal with handle different errors, and if the user runs our programs without specifying enough arguments, they’ll get an “index out of bounds” error from Rust that doesn’t clearly explain the problem. It would be bestter if all ourthe error handling code was in one place so that future maintainers only have only one place to consult in the code if the error handling logic needs to change. Having all the error handling code in one place will also help us to ensure that we’re printing messages that will be meaningful to our end users.
Let’s address these four problems by refactoring our project.
[bookmark: _Toc486341776][bookmark: separation-of-concerns-for-binary-projec][bookmark: _Toc496541046]Separation of Concerns for Binary Projects
The organizational problem of allocating responsibility for multiple tasks to the main function responsible is common to many binary projects,. As a result, so the Rust community has developed a kind type of guideline process for splitting up the separate concerns of a binary program when main starts getting large. The process has the following steps:
Split your program into both a main.rs and a lib.rs , and move your program’s logic into lib.rs.
While your command line parsing logic is small, it can remain in main.rs.
When the command line parsing logic starts getting complicated, extract it from main.rs and move it into lib.rs as well.
The responsibilities that remain in the main function after this process should be limited to:
Calling the command line parsing logic with the argument values
Setting up any other configuration
Calling a run function in lib.rs
Handling the error iIf run returns an error, handling that error
This pattern is all about separating concerns: main.rs handles running the program, and lib.rs handles all of the logic of the task at hand. Because we can’t test the main function directly, this structure lets us test all of our program’s logic by moving it into functions in lib.rs. The only code that remains in main.rs will be small enough to verify its correctness by reading it. Let’s re-work our program by following this process.
[bookmark: _Toc486341777][bookmark: extracting-the-argument-parser][bookmark: __RefHeading___Toc14990_1865893667][bookmark: __RefHeading___Toc5903_1551282135][bookmark: _Toc496541047]Extracting the Argument Parser
First, wWe’ll extract the functionality for parsing arguments into a function that main will call to prepare for moving the command line parsing logic to src/lib.rs. Listing 12-5 shows the new start of main that calls a new function parse_config, which we’re still going toll define in src/main.rs for the moment:.
Filename: src/main.rs
fn main() {
 let args: Vec<String> = env::args().collect();

 let (query, filename) = parse_config(&args);

 // ...--snip--...
}

fn parse_config(args: &[String]) -> (&str, &str) {
 let query = &args[1];
 let filename = &args[2];

 (query, filename)
}
Listing 12-5: Extracting a parse_config function from main
We’re still collecting the command line arguments into a vector, but instead of assigning the argument value at index 1 to the variable query and the argument value at index 2 to the variable filename within the main function, we pass the whole vector to the parse_config function. The parse_config function then holds the logic that determines which argument goes in which variable, and passes the values back to main. We still create the query and filename variables in main, but main no longer has the responsibility of determining how the command line arguments and variables correspond.
This rework may seem like overkill for our small program, but we’re refactoring in small, incremental steps. After making this change, run the program again to verify that the argument parsing still works. It’s good to check your progress often, asbecause that will help you identify the cause of problems when they occur.
[bookmark: _Toc486341778][bookmark: grouping-configuration-values][bookmark: _Toc496541048]Grouping Configuration Values
We can take another small step to improve the parse_configis function further. At the moment, we’re returning a tuple, but then we immediately break that tuple up into individual parts again. This is a sign that perhaps we don’t have the right abstraction yet.	Comment by AnneMarieW: Which function? Best to name it again here because we’re in a new section.	Comment by Carol Nichols: added
Another indicator that shows there’s room for improvement is the config part of parse_config, which implies that the two values we return are related and are both part of one configuration value. We’re not currently conveying this meaning in the structure of the data other than grouping the two values into a tuple: we could put the two values into one struct and give each of the struct fields a meaningful name. This Doing so will make it easier for future maintainers of this code to understand how the different values relate to each other and what their purpose is.
Note	: Ssome people call this anti-pattern of using primitive values when a complex type would be more appropriate primitive obsession.
Listing 12-6 shows the addition of a struct named Config defined to have fields named query and filename. We’ve also changed the parse_config function to return an instance of the Config struct, and updated main to use the struct fields rather than having separate variables::
Filename: src/main.rs
fn main() {
 let args: Vec<String> = env::args().collect();

 let config = parse_config(&args);

 println!("Searching for {}", config.query);
 println!("In file {}", config.filename);

 let mut f = File::open(config.filename).expect("file not found");

 // ...--snip--...
}

struct Config {
 query: String,
 filename: String,
}

fn parse_config(args: &[String]) -> Config {
 let query = args[1].clone();
 let filename = args[2].clone();

 Config { query, filename }
}
Listing 12-6: Refactoring parse_config to return an instance of a Config struct
The signature of parse_config now indicates that it returns a Config value. In the body of parse_config, where we used to return string slices that reference String values in args, we’ve now chosen to define Config to contain owned String values. The args variable in main is the owner of the argument values and is only letting the parse_config function borrow them, though, which means we’d violate Rust’s borrowing rules if Config tried to take ownership of the values in args.
There are a number of different ways wWe could manage the String data in a number of different ways, and but the easiest, though somewhat inefficient, route is to call the clone method on the values. This will make a full copy of the data for the Config instance to own, which does takes more time and memory than storing a reference to the string data. However, cloning the data also makes our code very straightforward sincbecause we don’t have to manage the lifetimes of the references,; so in this circumstance, giving up a little performance to gain simplicity is a worthwhile trade-off.
Start box
[bookmark: __RefHeading___Toc14994_1865893667][bookmark: the-tradeoffs-of-using-`clone`][bookmark: _Toc486341779]The Trade-Ooffs of Using clone
There’s a tendency among many Rustaceans to avoid using clone to fix ownership problems because of its runtime cost. In Chapter 13 on iterators, you’ll learn how to use more efficient methods in this kindtype of situation,. bBut for now, it’s okay to copy a few strings to keep continue making progress sincbecause we’ll only make these copies only once, and our filename and query string are both very small. It’s better to have a working program that’’s a bit inefficient than to try to hyper-optimize code on your first pass. As you getbecome more experienced with Rust, it’’ll be easier to go straight to start with the desirable methodsolution, but for now, it’s perfectly acceptable to call clone.
End box
prod: confirm xref
We’ve updated main so that it places the instance of Config returned by parse_config into a variable named config, and we updated the code that previously used the separate query and filename variables so that it now uses the fields on the Config struct instead.
Now oOur code now more clearly conveys that query and filename are related, and their purpose is to configure how the program will work. Any code that uses these values knows to find them in the config instance in the fields named for their purpose.
[bookmark: creating-a-constructor-for-`config`][bookmark: _Toc486341780][bookmark: _Toc496541049]Creating a Constructor for Config
So far, we’ve extracted the logic responsible for parsing the command line arguments from main and placed it into the parse_config function, which helped us to see that the query and filename values were related and that relationship should be conveyed in our code. We then added a Config struct to name the related purpose of query and filename, and to be able to return the values’ names as struct field names from the parse_config function.	Comment by AnneMarieW: and placed them into the parse_config function?	Comment by Carol Nichols: well, “it”, as in “the logic”, but yes
So now that the purpose of the parse_config function is to create a Config instance, we can change parse_config from being a plain function into a function named new that is associated with the Config struct. Making this change will make ourthe code more idiomatic: we can create instances of types in the standard library, such as like String , by calling String::new, and by changing parse_config into a new function associated with Config, we’ll be able to create instances of Config by calling Config::new. Listing 12-7 shows the changes we’ll need to make::
Filename: src/main.rs
fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::new(&args);

 // ...--snip--...
}

// ...--snip--...

impl Config {
 fn new(args: &[String]) -> Config {
 let query = args[1].clone();
 let filename = args[2].clone();

 Config { query, filename }
 }
}
Listing 12-7: Changing parse_config into Config::new
We’ve updated main where we were calling parse_config to instead call Config::new. We’ve changed the name of parse_config to new and moved it within an impl block, which associatemakes the new function associated with Config. Try compiling this code again to make sure it works.
[bookmark: _Toc486341781][bookmark: fixing-the-error-handling][bookmark: _Toc496541050]Fixing the Error Handling
Now we’ll work on fixing our error handling. Recall that we mentioned that attempting to access the values in the args vector at index 1 or index 2 will cause the program to panic if the vector contains fewer than 3three items. Try running the program without any arguments;; it will look like this:
$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep`
thread 'main' panicked at 'index out of bounds: the len is 1
but the index is 1', src/main.rs:29/stable-dist-rustc/build/src/libcollections/vec.rs:1307:21
note: Run with `RUST_BACKTRACE=1` for a backtrace.
The line that states index out of bounds: the len is 1 but the index is 1 is an error message intended for programmers,. It and won’t really help our end users understand what happened and what they should do instead. Let’s fix that now.
[bookmark: _Toc486341782][bookmark: improving-the-error-message][bookmark: _Toc496541051]Improving the Error Message
In Listing 12-8, we’re adding a check in the new function that will check verify that the slice is long enough before accessing index 1 and 2. If the slice isn’t long enough, the program panics, withand displays a better error message than the index out of bounds message::
Filename: src/main.rs
// ...--snip--...
fn new(args: &[String]) -> Config {
 if args.len() < 3 {
 panic!("not enough arguments");
 }
 // ...--snip--...
Listing 12-8: Adding a check for the number of arguments
This code is similar to the Guess::new function we wrote in Listing 9-98, where we called panic! was called when the value argument was out of the range of valid values. Instead of checking for a range of values here, we’re checking that the length of args is at least 3, and the rest of the function can operate under the assumption that this condition has been met. If args has fewer than 3three items, this condition will be true, and we call the panic! macro to end the program immediately.
With these extra few lines of code in new, let’s try running our the program without any arguments again and to see what the error looks like now:
$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep`
thread 'main' panicked at 'not enough arguments', src/main.rs:30:1229
note: Run with `RUST_BACKTRACE=1` for a backtrace.
[bookmark: __RefHeading___Toc15002_1865893667]This output is better,: we now have a reasonable error message. However, we also have a bunch of extraneous information we don’t want to give to our users. So pPerhaps using the technique we used in Listing 9-98 isn’t the best to use here;: a call to panic! is more appropriate for a programming problem rather than a usage problem, as we discussed in Chapter 9. Instead, we can use the other technique you also learned about in Chapter 9: —returning a Result that can indicates either success or an error.
Prod: confirm xrefs
[bookmark: returning-a-`result`-from-`new`-instead-][bookmark: _Toc486341783][bookmark: _Toc496541052]Returning a Result from new Instead of Calling panic!
We can choose to instead return a Result value that will contain a Config instance in the successful case, and will describe the problem in the error case. When Config::new is communicating to main, we can use the Result type to signal that there was a problem. Then we can change main to convert an Err variant into a more practical error for our users, without the surrounding text about thread 'main' and RUST_BACKTRACE that a call to panic! causes.
Listing 12-9 shows the changes youwe need to make to the return value of Config::new and the body of the function needed to return a Result. Note that this won’t compile until we update main as well, which we’ll do in the next listing::
Filename: src/main.rs
impl Config {
 fn new(args: &[String]) -> Result<Config, &'static str> {
 if args.len() < 3 {
 return Err("not enough arguments");
 }

 let query = args[1].clone();
 let filename = args[2].clone();

 Ok(Config { query, filename })
 }
}
Listing 12-9: Returning a Result from Config::new
Our new function now returns a Result, with a Config instance in the success case and a &'static str in the error case. Recall from “The Static Lifetime” section in Chapter 10 that &'static str is the type of string literals, which is our error message type for now.
prod: confirm xref
We’ve made two changes in the body of the new function: instead of calling panic! when the user doesn’t pass enough arguments, we now return an Err value, and we’ve wrapped the Config return value in an Ok. These changes make the function conform to its new type signature.
Returning an Err value from Config::new allows the main function to handle the Result value returned from the new function and exit the process more cleanly in the error case.
[bookmark: calling-`config::new`-and-handling-error][bookmark: _Toc486341784][bookmark: _Toc496541053]Calling Config::new and Handling Errors
In order tTo handle the error case and print a user-friendly message, we need to update main to handle the Result being returned by Config::new, as shown in Listing 12-10. We’rell also going to take the responsibility of exiting the command line tool with a nonzero error code from panic! and implement it by hand. A nonzero exit status is a convention to signal to the process that called our program that ourthe program exited with an error state.
Filename: src/main.rs
use std::process;

fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::new(&args).unwrap_or_else(|err| {
 println!("Problem parsing arguments: {}", err);
 process::exit(1);
 });

 // ...--snip--...
Listing 12-10: Exiting with an error code if creating a new Config fails
In this listing, we’reve useding a method we haven’t covered before: unwrap_or_else, which is defined on Result<T, E> by the standard library. Using unwrap_or_else allows us to define some custom, non-panic! error handling. If the Result is an Ok value, this method’s behavior is similar to unwrap: it returns the inner value Ok is wrapping. However, if the value is an Err value, this method calls the code in the closure, which is an anonymous function we define and pass as an argument to unwrap_or_else. We’ll be covering closures in more detail in Chapter 13. For now,What you just need to know for now is that unwrap_or_else will pass the inner value of the Err, which in this case is the static string not enough arguments that we added in Listing 12-9, to our closure in the argument err that appears between the vertical pipes. The code in the closure can then use the err value when it runs.
Prod: Confirm xref
We’ve added a new use line to import process from the standard library. The code in the closure that will getbe run in the error case is only two lines: we print out the err value, and then call process::exit. The process::exit function will stop the program immediately and return the number that was passed as the exit status code. This is similar to the panic!-based handling we used in Listing 12-8, but we no longer get all the extra output. Let’s try it:
$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48 secs
 Running `target/debug/minigrep`
Problem parsing arguments: not enough arguments
Great! This output is much friendlier for our users.
[bookmark: extracting-a-`run`-function][bookmark: _Toc486341785][bookmark: _Toc496541054]Extracting Logic from main
Now that we’reve finished done refactoring ourthe configuration parsing;, let’s turn to ourthe program’s logic. As we laid out stated in the “Separation of Concerns for Binary Projects” sectionon page XX, we’rell going to extract a function named run that will hold all of the logic currently in the main function that isn’ot involved with setting up configuration or handling errors. Once When we’re done, main will be concise and easy to verify by inspection, and we’ll be able to write tests for all of the other logic.
Prod: fill/confirm xref
Listing 12-11 shows the extracted run function. For now, we’re just making only the small, incremental improvement of extracting the function. We’re still defining the function in src/main.rs::
Prod: See the cross-reference above.
Filename: src/main.rs
fn main() {
 // ...--snip--...

 println!("Searching for {}", config.query);
 println!("In file {}", config.filename);

 run(config);
}

fn run(config: Config) {
 let mut f = File::open(config.filename).expect("file not found");

 let mut contents = String::new();
 f.read_to_string(&mut contents)
 .expect("something went wrong reading the file");

 println!("With text:\n{}", contents);
}

// ...--snip--...
Listing 12-11: Extracting a run function containing the rest of the program logic
The run function now contains all the remaining logic from main , starting from reading the file. The run function takes the Config instance as an argument.
[bookmark: returning-errors-from-the-`run`-function][bookmark: _Toc486341786][bookmark: _Toc496541055]Returning Errors from the run Function
With the remaining program logic separated into the run function, we can improve the error handling, as like we did with Config::new in Listing 12-9. Instead of allowing the program to panic by calling expect, the run function will return a Result<T, E> when something goes wrong. This will let us further consolidate into main the logic around handling errors in a user-friendly way. Listing 12-12 shows the changes youwe need to make to the signature and body of run::
Filename: src/main.rs
use std::error::Error;

// ...--snip--...

fn run(config: Config) -> Result<(), Box<Error>> {
 let mut f = File::open(config.filename)?;

 let mut contents = String::new();
 f.read_to_string(&mut contents)?;

 println!("With text:\n{}", contents);

 Ok(())
}
Listing 12-12: Changing the run function to return Result
We’ve made three bigsignificant changes here. First, we’re changeding the return type of the run function to Result<(), Box<Error>>. This function previously returned the unit type, (), and we keep that as the value returned in the Ok case.
For ourthe error type, we’re useding the trait object Box<Error> (and we’ve brought std::error::Error into scope with a use statement at the top). We’ll be covering trait objects in Chapter 17. For now, just know that Box<Error> means the function will return a type that implements the Error trait, but we don’t have to specify what particular type the return value will be. This gives us flexibility to return error values that may be of different types in different error cases.
Prod: confirm xref
The sSecond, change we’re makingve is removeding the calls to expect in favor of ?, likeas we talked about in Chapter 9. Rather than panic! on an error, this ? will return the error value from the current function for the caller to handle.
prod: confirm xref
Thirdly, this the run function now returns an Ok value in the success case. We’ve declared the run function’s success type as () in the signature, which means we need to wrap the unit type value in the Ok value. This Ok(()) syntax mayight look a bit strange at first, but using () like this is the idiomatic way to indicate that we’re calling run for its side effects only; it doesn’t return a value we need.	Comment by AnneMarieW: the run function?	Comment by Carol Nichols: yep!
When you run this code, it will compile, but withill display a warning:
warning: unused `std::result::Result` which must be used, #[warn(unused_must_use)] on by default
 --> src/main.rs:1839:5
 |
1839 | run(config);
 | ^^^^^^^^^^^^
= note: #[warn(unused_must_use)] on by default
Rust is tellsing us that our code ignoresd the Result value, and the Result value which might be indicateing that there was an error occurred. But Wwe’re not checking to see if whether or not there was an error or not, though, and the compiler is remindsing us that we probably meant to have some error handling code here! Let’s rectify that problem now.
[bookmark: handling-errors-returned-from-`run`-in-`][bookmark: heading][bookmark: _Toc486341787][bookmark: _Toc496541056]Handling Errors Returned from run in main
We’ll check for errors and handle them using a technique similar to the way we handled errors with Config::new in Listing 12-10, but with a slight difference::
Filename: src/main.rs
fn main() {
 // ...--snip--...

 println!("Searching for {}", config.query);
 println!("In file {}", config.filename);

 if let Err(e) = run(config) {
 println!("Application error: {}", e);

 process::exit(1);
 }
}
We use if let rather than unwrap_or_else to check whether run returns an Err value, rather than unwrap_or_else, and call process::exit(1) if it does. The run function doesn’t return a value that we want to unwrap like in the same way that Config::new returns the Config instance. Because run returns a () in the success case, we only care about detecting an error, so we don’t need unwrap_or_else to return the unwrapped value asbecause it would only be ().	Comment by janelle: Au: I don’t quite follow this sentence, I think in part because you use the literal unwrap term as an English verb. I’ve suggested a partial rephrase but I may have changed the meaning unintentionally. Please rephrase/confirm.
The bodies of the if let and the unwrap_or_else functions are the same in both cases though: we print out the error and exit.
[bookmark: _Toc486341788][bookmark: split-code-into-a-library-crate][bookmark: _Toc496541057]Splitting Code into a Library Crate
This Our minigrep project is looking pretty good so far! Now we’re going toll split the src/main.rs file up and put some code into the src/lib.rs file so that we can test it and have a src/main.rs file with fewer responsibilities.
Let’s move everything all the code that isn’t the main function from src/main.rs to a new file, src/lib.rs:
The run function definition
The relevant use statements
The definition of Config
The Config::new function definition
The contents of src/lib.rs should have the signatures shown in Listing 12-13 (we’ve omitted the bodies of the functions for brevity)::
Filename: src/lib.rs
use std::error::Error;
use std::fs::File;
use std::io::prelude::*;

pub struct Config {
 pub query: String,
 pub filename: String,
}

impl Config {
 pub fn new(args: &[String]) -> Result<Config, &'static str> {
 // ...--snip--...
 }
}

pub fn run(config: Config) -> Result<(), Box<Error>> {
 // ...--snip--...
}
Listing 12-13: Moving Config and run into src/lib.rs
We’ve made liberal use of pub here: on Config, its fields and its new method, and on the run function. We now have a library crate that has a public API that we can test!
Now we need to bring the code we moved to src/lib.rs into the scope of the binary crate in src/main.rs by using extern crate minigrep. Then we’ll add a use minigrep::Config line to bring the Config type into scope, and prefix the run function with our crate name, as shown in Listing 12-14::
Filename: src/main.rs
extern crate minigrep;

use std::env;
use std::process;

use minigrep::Config;

fn main() {
 // ...--snip--...
 if let Err(e) = minigrep::run(config) {
 // ...--snip--...
 }
}
Listing 12-14: Bringing the minigrep crate into the scope of src/main.rs
To bring the library crate into the binary crate, we use extern crate minigrep. Then we’ll add a use minigrep::Config line to bring the Config type into scope, and we’ll prefix the run function with our crate name. With thatNow, all the functionality should be connected and should work. Give it Run the program witha cargo run and make sure everything is wired up works correctly.	Comment by AnneMarieW: Au: This repeats what you just said prior to the listing.	Comment by Carol Nichols: fixed by removing most of the text before the listing
Whew! That was a lot of work, but we’ve set ourselves up for success in the future. Now it’s much easier to handle errors, and we’ve made ourthe code more modular. Almost all of our work will be done in src/lib.rs from here on out.
Let’s take advantage of this newfound modularity by doing something that would have been harddifficult with ourthe old code, but is easy with theour new code: we’ll write some tests!
[bookmark: _Toc486341789][bookmark: testing-the-library's-functionality][bookmark: _Toc496541058]Developing the Library’s Functionality with Test Driven Development
Now that we’ve extracted the logic into src/lib.rs and left the argument collecting and error handling in src/main.rs, it’s much easier for us to write tests for the core functionality of our code. We can call our functions directly with various arguments and check return values without having to call our binary from the command line. Feel free to write some tests for the functionality in the Config::new and run functions on your own if you’d like.
In this section, we’re going toll move on to adding the searching logic to the minigrep programsearching logic of minigrep by followusing the Test Driven Development (TDD) process. This is a software development technique that follows this set ofese steps:
Write a test that fails, and run it to make sure it fails for the reason you expected.
Write or modify just enough code to make the new test pass.
Refactor the code you just added or changed, and make sure the tests continue to pass.
Repeat from step 1!	Comment by janelle: Changed to NumList to reflect step numbers	Comment by Carol Nichols: looks good!	Comment by AnneMarieW: My edit correct?	Comment by Carol Nichols: yep!
This process is just one of many ways to write software, but TDD can help drive code the design as well of code. Writing the test before you write the code that makes the test pass helps to maintain high test coverage throughout the process.
We’re going toll test drive the implementation of the functionality that will actually do the searching for the query string in the file contents and produce a list of lines that match the query. We’re going toll add this functionality in a function called search.
[bookmark: _Toc486341790][bookmark: writing-a-failing-test][bookmark: _Toc496541059]Writing a Failing Test
First, sincBecause we don’t really need them any more, let’s remove the println! statements from both src/lib.rs and src/main.rs. that we used to check the program’s behavior. Then, in src/lib.rs, we’ll add a test module with a test function, as like we did in Chapter 11. The test function specifies the behavior we’d like want the search function to have: it will take a query and the text to search for the query in, and will return only the lines from the text that contain the query. Listing 12-15 shows this test::
Prod: confirm xref
Filename: src/lib.rs
#[cfg(test)]
mod test {
 use super::*;

 #[test]
 fn one_result() {
 let query = "duct";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.";

 assert_eq!(
 vec!["safe, fast, productive."],
 search(query, contents)
);
 }
}
Listing 12-15: Creating a failing test for the search function we wish we had
Theis test string we are searchesing for the string is “duct.” in this test. The text we’re searching is three lines, only one of which contains “duct.”. We assert that the value returned from the search function contains only the line we expect.
We aren’t able to run this test and watch it fail though, since because thise test doesn’t even compile: –the search function doesn’t exist yet! So now we’ll add just enough code to get the tests to compile and run: by adding a definition of the search function that always returns an empty vector, as shown in Listing 12-16. Once we have this, Then the test should compile and fail because an empty vector doesn’t match a vector containing the line "safe, fast, productive.".
Filename: src/lib.rs
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 vec![]
}
Listing 12-16: Defining just enough of the search function so that our test will compile
Notice that we need an explicit lifetime 'a defined in the signature of search and used with the contents argument and the return value. Remember fromcall in Chapter 10 that the lifetime parameters specify which argument lifetime is connected to the lifetime of the return value. In this case, we’re indicateing that the returned vector should contain string slices that reference slices of the argument contents (rather than the argument query).
Prod: Confirm xref
In other words, we’re telling Rust that the data returned by the search function will live as long as the data passed into the search function in the contents argument. This is important! The data referenced by a slice needs to be valid in order for the reference to be valid; if the compiler assumeds we we’re making string slices of query rather than contents, it wouldill do its safety checking incorrectly.
IfIf we forget the lifetime annotations and triedy to compile this function without lifetimes, we would’ll get this error:
error[E0106]: missing lifetime specifier
 --> src/lib.rs:5:5147
 |
5 | pub fn search(query: &str, contents: &str) -> Vec<&str> {
 | ^ expected lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but the
 signature does not say whether it is borrowed from `query` or `contents`
Rust can’t possibly know which of the two arguments we need, so we need to tell it. Because contents is the argument that contains all of our text and we want to return the parts of that text that match, we know contents is the argument that should be connected to the return value using the lifetime syntax.
Other programming languages don’t require you to connect arguments to return values in the signature, so although this mayight still feel seem strange, but it will get easier over time. You mayight want to compare this example with the “Validating References with LifetimesLifetime Syntax” section in Chapter 10 on page XX.	Comment by AnneMarieW: Please confirm cross-ref	Comment by Carol Nichols: Updated section title
Now let’s try running our the test:
Prod: confirm/fill cross-reference above.
$ cargo test
...--warnings--...
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.43 secs
 Running target/debug/deps/minigrep-abcabcabc

running 1 test
test test::one_result ... FAILED

failures:

---- test::one_result stdout ----
 thread 'test::one_result' panicked at 'assertion failed: `(left == right)`
(left: `["safe, fast, productive."]`,
right: `[]`)', src/lib.rs:48:816
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 test::one_result

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out

error: test failed, to rerun pass '--lib'
Great, ourthe test fails, exactly as we expected. Let’s get the test to pass!
[bookmark: writing-code-that-gets-the-test-to-pass][bookmark: _Toc486341791][bookmark: _Toc496541060]Writing Code to Pass the Test
Currently, our test is failing because we always return an empty vector. To fix that and implement search, our program needs to follow these steps:
Iterate through each line of the contents.
Check ifwhether the line contains our query string.
If it does, add it to the list of values we’re returning.
If it doesn’t, do nothing.
Return the list of results that match.
Let’s work throughtake each step at a time, starting with iterating through lines.
[bookmark: iterating-through-lines-with-the-`lines`][bookmark: _Toc486341792][bookmark: _Toc496541061]Iterating Through Lines with the lines Method
Rust has a helpful method to handle line-by-line iteration of strings, conveniently named lines, that works as shown in Listing 12-17. Note this won’t compile yet::
Filename: src/lib.rs
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 for line in contents.lines() {
 // do something with line
 }
}
Listing 12-17: Iterating through each line in contents
[bookmark: __RefHeading___Toc15024_1865893667]The lines method returns an iterator. We’ll be talking about iterators in depth in Chapter 13,, but recall that you saw but we’ve already seen this way of using an iterator in Listing 3-64 on page XX, where we used a for loop with an iterator to run some code on each item in a collection.
Prod: Confirm xref to Ch 13
Prod: Fill page xref for Listing 3-6
[bookmark: _Toc486341793][bookmark: searching-each-line-for-the-query][bookmark: _Toc496541062]Searching Each Line for the Query
Next, we’ll Next, check whether the current line contains our query stringwe’ll add functionality to check if the current line contains the query string. LuckiFortunately, strings have another helpful method named contains that does this for us! Add a call to the contains method in the search function, as shown in Listing 12-18. Note this still won’t compile yet::
Filename: src/lib.rs
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 for line in contents.lines() {
 if line.contains(query) {
 // do something with line
 }
 }
}
Listing 12-18: Adding functionality to see ifwhether the line contains the string in query
[bookmark: _Toc486341794][bookmark: storing-matching-lines][bookmark: _Toc496541063]Storing Matching Lines
Finally, wWe also need a way to store the lines that contain our query string. For that, we can make a mutable vector before the for loop and call the push method to store a line in the vector. After the for loop, we return the vector, as shown in Listing 12-19::
Filename: src/lib.rs
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.contains(query) {
 results.push(line);
 }
 }

 results
}
Listing 12-19: Storing the lines that match so that we can return them
Now the search function should be returning only the lines that contain query, and our test should pass. Let’s run the tests:
$ cargo test
--snip--
running 1 test
test test::one_result ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Our test passed, great, so we know it works!
Now that our test is passingAt this point, we could consider opportunities for refactoring the implementation of the search function while keeping the the code that passes the tests passing, in order to maintain the same functionality. The code in the search function isn’t too bad, but it isdoesn’t takeing advantage of some useful features of iterators. We’ll be coming backreturn to this example in Chapter 13 where we’ll explore iterators in detail and seelook at how to improve it.

[bookmark: using-the-`search`-function-in-the-`run`][bookmark: _Toc486341795][bookmark: _Toc496541064]Prod: confirm xref
Using the search Function in the run Function
Now that we have the search function is working and tested, we need to actually call search from our run function. We need to pass the config.query value and the contents that run reads from the file to the search function. Then run will print out each line returned from search:
Filename: src/lib.rs
pub fn run(config: Config) -> Result<(), Box<Error>> {
 let mut f = File::open(config.filename)?;

 let mut contents = String::new();
 f.read_to_string(&mut contents)?;

 for line in search(&config.query, &contents) {
 println!("{}", line);
 }

 Ok(())
}
We’re still using a for loop to getreturn each line returned from search and print it out.
Now our whole the entire program should be working! Let’s try it out, first with a word that should return exactly one line from the Emily Dickinson poem,, “frog”:
$ cargo run frog poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.38 secs
 Running `target/debug/minigrep frog poem.txt`
How public, like a frog
Cool! Nextow, let’s tryhow about a word that will match multiple lines, like “thebody”:
$ cargo run body the poem.txt	Comment by janelle: When I first read this, I didn’t understand why the line “They’d banish us, you know” didn’t return, but then I read in the next section that this is case sensitive. Maybe we should add a note that says you will learn how to make a case-insensitive search function in the next section? Or use a different repeating word like “body”?
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep bodythe poem.txt`
I’m nobody! Who are you?
Are you nobody, too?
How dreary to be somebody!
Then there’s a pair of us — don’t tell!
To tell your name the livelong day
And finally, let’s make sure that we don’t get any lines when we search for a word that isn’t anywhere in the poem, likesuch as “monomorphization”:
$ cargo run monomorphization poem.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep monomorphization poem.txt`
Excellent! We’ve built our own mini version of a classic tool, and learned a lot about how to structure applications. We’ve also learned a bit about file input and output, lifetimes, testing, and command line parsing.
To round out this project chapter, we’re going toll briefly demonstrate how to work with environment variables and how to print to standard error, both of which are useful when you’re writing command line programs. Feel free to move on to Chapter 13 if you’d like at this point..	Comment by janelle: Project or chapter? I’m leaning toward project, myself	Comment by Carol Nichols: I’m ok with project
[bookmark: _Toc486341796][bookmark: working-with-environment-variables][bookmark: _Toc496541065]Working with Environment Variables
We’re going toll improve our toolminigrep withby adding an extra feature: an option for case- insensitive searching that the user can turn on via an environment variable. We could make this feature a command line option and require that users enter it each time they want it to apply, but instead we’re going toll use an environment variable. Doing soThis allows our users to set the environment variable once and have all their searches be case insensitive in that terminal session.	Comment by AnneMarieW: Do you mean minigrep? Best to specify here.
[bookmark: writing-a-failing-test-for-the-case-inse][bookmark: _Toc486341797][bookmark: _Toc496541066]Writing a Failing Test for the Case-Insensitive search Function
We want to add a new search_case_insensitive function that we w’ill call when the environment variable is on.
We’re going toll continue to following the TDD process, so the first step is again to write a failing test. We’ll add a new test for the new case-insensitive search_case_insensitive function, and rename our old test from one_result to case_sensitive to be clearer about clarify the differences between the two tests, as shown in Listing 12-20::	Comment by AnneMarieW: Make this Literal style?	Comment by Carol Nichols: because the new function is going to be named search_case_insensitive,I’ve reworded and then made literal
Filename: src/lib.rs
#[cfg(test)]
mod test {
 use super::*;

 #[test]
 fn case_sensitive() {
 let query = "duct";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.
Duct tape.";

 assert_eq!(
 vec!["safe, fast, productive."],
 search(query, contents)
);
 }

 #[test]
 fn case_insensitive() {
 let query = "rUsT";
 let contents = "\
Rust:
safe, fast, productive.
Pick three.
Trust me.";

 assert_eq!(
 vec!["Rust:", "Trust me."],
 search_case_insensitive(query, contents)
);
 }
}
Listing 12-20: Adding a new failing test for the case- insensitive function we’re about to add
Note that we’ve edited the old test’s contents too. We’ve added a new line with the text “Duct tape”, with using a capital D, that shouldn’t match the query “duct” when we’re searching in a case- sensitive manner. Changing the old test in this way helps ensure that we don’t accidentally break the case- sensitive search functionality that we’ve already implemented;. tThis test should pass now and should continue to pass as we work on the case- insensitive search.
The new test for the case -insensitive search uses “rUsT” as its query. In the search_case_insensitive function we’re going about to add, the query “rUsT” should match both the line containing “Rust:” with a capital R and also the line “Trust me.” even though both of those have different casing than the query. This is our failing test, and it will fail to compile because we haven’t yet defined the search_case_insensitive function. Feel free to add a skeleton implementation that always returns an empty vector, in the same similar to the way that we did for the search function in Listing 12-16 in order to see the test compile and fail.
[bookmark: implementing-the-`search_case_insensitiv][bookmark: _Toc486341798][bookmark: _Toc496541067]Implementing the search_case_insensitive Function
The search_case_insensitive function, shown in Listing 12-21, will be almost the same as the search function. The only difference is that we’ll lowercase the query and each line so that whatever the case of the input arguments, they wi’ll be the same case when we check whether the line contains the query:.
Filename: src/lib.rs
fn search_case_insensitive<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
 let query = query.to_lowercase();
 let mut results = Vec::new();

 for line in contents.lines() {
 if line.to_lowercase().contains(&query) {
 results.push(line);
 }
 }

 results
}
Listing 12-21: Defining the search_case_insensitive function to lowercase both the query and the line before comparing them
First, we lowercase the query string, and store it in a shadowed variable with the same name. Calling to_lowercase on the query is necessary so that no matter ifwhether the user’s query is “rust”, “RUST”, “Rust”, or “rUsT”, we’ll treat the query as if it was “rust” and be insensitive to the case.
Note that query is now a String rather than a string slice, because calling to_lowercase creates new data rather than referencing existing data. Say the query is “rUsT”, as an example: that string slice does no’t contain a lowercase “u” or “t” for us to use, so we have to allocate a new String containing “rust”. When we pass query as an argument to the contains method now, we need to add an ampersand because the signature of contains is defined to take a string slice.
Next, we add a call to to_lowercase on each line before we check ifwhether it contains query to lowercase all characters. Now that we’ve converted both line and query to lowercase, we’ll find matches no matter what the case of the query is.
Let’s see if this implementation passes the testpasses the tests:
running 2 tests
test test::case_insensitive ... ok
test test::case_sensitive ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Great! They passed. Now, let’s actually call the new search_case_insensitive function from the run function. First, we’re going toll add a configuration option to the Config struct forto switching between case- sensitive and case -insensitive search. Adding this field will cause compiler errors since we aren’t initializing this field anywhere yet to the Config struct:	Comment by AnneMarieW: Au: Can we reword here as “First, we’ll add a configuration option to the Config struct to switch between case-sensitive and case-insensitive search .”	Comment by Carol Nichols: sure
Filename: src/lib.rs
pub struct Config {
 pub query: String,
 pub filename: String,
 pub case_sensitive: bool,
}
Note that Wwe added the case_sensitive field that holds a Bboolean. ThenNext, we need ourthe run function to check the case_sensitive field’s value and use that to decide whether to call the search function or the search_case_insensitive function, as shown in Listing 12-22. Note this still won’t compile yet::
Filename: src/lib.rs
pub fn run(config: Config) -> Result<(), Box<Error>>{
 let mut f = File::open(config.filename)?;

 let mut contents = String::new();
 f.read_to_string(&mut contents)?;

 let results = if config.case_sensitive {
 search(&config.query, &contents)
 } else {
 search_case_insensitive(&config.query, &contents)
 };

 for line in results {
 println!("{}", line);
 }

 Ok(())
}
Listing 12-22: Calling either search or search_case_insensitive based on the value in config.case_sensitive
Finally, we need to actually check for the environment variable. The functions for working with environment variables are in the env module in the standard library, so we want to bring that module into scope with a use std::env; line at the top of src/lib.rs. Then we’re going toll use the var method from the env module to check for an environment variable named CASE_INSENSITIVE, as shown in Listing 12-23::
Filename: src/lib.rs
use std::env;

// ...--snip--...

impl Config {
 pub fn new(args: &[String]) -> Result<Config, &'static str> {
 if args.len() < 3 {
 return Err("not enough arguments");
 }

 let query = args[1].clone();
 let filename = args[2].clone();

 let case_sensitive = env::var("CASE_INSENSITIVE").is_err();

 Ok(Config { query, filename, case_sensitive })
 }
}
Listing 12-23: Checking for an environment variable named CASE_INSENSITIVE
Here, we create a new variable case_sensitive. In order tTo set its value, we call the env::var function and pass it the name of the CASE_INSENSITIVE environment variable. The env::var method returns a Result that will be the successful Ok variant that contains the value of the environment variable if the environment variable is set. It will return the Err variant if the environment variable is not set.
We’re using the is_err method on the Result to check whether to see if it’s an error, and therefore unset, which means it should do a case- sensitive search. If the CASE_INSENSITIVE environment variable is set to anything, is_err will return false and it will perform a case- insensitive search. We don’t care about the value of the environment variable, just whether it’s set or unset, so we’re checking is_err rather than unwrap, expect, or any of the other methods we’ve seen on Result.
We pass the value in the case_sensitive variable to the Config instance so that the run function can read that value and decide whether to call search or search_case_insensitive as we implemented in Listing 12-22.
Let’s give it a try! First, we’ll run our program without the environment variable set and with the query “to”, which should match any line that contains the word “to” in all lowercase:
$ cargo run to poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep to poem.txt`
Are you nobody, too?
How dreary to be somebody!
Looks like that still works! Now, let’s run the program with CASE_INSENSITIVE set to 1 but with the same query “to”;, and we should get lines that contain “to” that might have uppercase letters:
$ CASE_INSENSITIVE=1 cargo run to poem.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/minigrep to poem.txt`
Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!
If you’re using PowerShell, you will need to set the environment variable and run the program in two commands rather than one:
$ $env.CASE_INSENSITIVE=1
$ cargo run to poem.txt
Excellent, we also got lines containing “To”! Our minigrep program can now do case -insensitive searching, controlled by an environment variable. Now you know how to manage options set using either command line arguments or environment variables!
Some programs allow both arguments and environment variables for the same configuration. In those cases, the programs decide that one or the other takes precedence. For another exercise on your own, try controlling case insensitivity through either a command line argument or an environment variable. Decide whether the command line argument or the environment variable should take precedence if the program is run with one set to case sensitive and one set to case insensitive.
The std::env module contains many more useful features for dealing with environment variables;: check out its documentation to see what’ is available.
[bookmark: write-to-`stderr`-instead-of-`stdout`][bookmark: _Toc486341799][bookmark: _Toc496541068]Writing Error Messages to Standard Error Instead of Standard Output
At the moment we’re writing all of our output to the terminal withusing the println! function. Most terminals provide two kinds of output: standard output (stdout) for general information (sometimes abbreviated as stdout in code), and standard error (stderr) for error messages (stderr). This distinction enables users to choose whether to direct a the successful output of a program to a file but still print error messages to the screen.
The println! function is only capable of printing to standard output, though, so we have to use something else in order to print to standard error.
[bookmark: _Toc486341800][bookmark: _Toc496541069]Checking Where Errors Aare Written to
First, let’s observe how all the content printed by minigrep is currently being written to standard output, including any error messages that we want to write to standard error instead. We’ll do that by redirecting the standard output stream to a file while we also intentionally causeing an error. We won’t redirect the standard error stream, so any content sent to standard error will continue to display on the screen.
Command line programs are expected to send error messages to the standard error stream so that we can still see error messages on the screen even if we choose to redirect the standard output stream to a file. Our program is not currently well-behaved;: we’re about to see that it saves the error message output to thea file instead!
The way to demonstrate this behavior is by running the program with > and the filename, output.txt, that we want to redirect the standard output stream to. We w’re non’t going to pass any arguments, which should cause an error:
$ cargo run > output.txt
The > syntax tells the shell to write the contents of standard output to output.txt instead of the screen. We didn’t see the error message we were expecting printed on the screen, so that means it must have ended up in the file. This is Let’s see what output.txt contains:
Problem parsing arguments: not enough arguments
Yup, our error message is being printed to standard output. It’s much more useful for error messages like this to be printed to standard error, and have only data from a successful run end up in the file when we redirect standard output in this way. We’ll change that.
[bookmark: _Toc486341801][bookmark: _Toc496541070]Printing Errors to Standard Error
We’ll use the code in Listing 12-24 to Let’s change how error messages are printed using the code in Listing 12-24. Because of the refactoring we did earlier in this chapter, all the code that prints error messages is in one function, in main. The standard library provides the eprintln! macro that prints to the standard error stream, so let’s change the two places we were calling println! to print errors so that these spots to use eprintln! instead::	Comment by AnneMarieW: Au: If main is the function, no need for “in” here. But if the function you are referring to is “in main,” then it’s appropriate to use “in”	Comment by Carol Nichols: it’s the former, I’ve updated
Filename: src/main.rs
fn main() {
 let args: Vec<String> = env::args().collect();

 let config = Config::new(&args).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {}", err);
 process::exit(1);
 });

 if let Err(e) = minigrep::run(config) {
 eprintln!("Application error: {}", e);

 process::exit(1);
 }
}
Listing 12-24: Writing error messages to standard error instead of standard output using eprintln!
After changing println! to eprintln!, let’s try running the program again in the same way, without any arguments and redirecting standard output with >:
$ cargo run > output.txt
Problem parsing arguments: not enough arguments
Now we see ourthe error on the screen and output.txt contains nothing, which is the behavior we expected of command line programs.
If weLet’s run the program again with arguments that don’t cause an error, but still redirect standard output to a file, like so:
[bookmark: __DdeLink__9080_1865893667]$ cargo run to poem.txt > output.txt
We won’t see any output to ourthe terminal, and output.txt will contain our results:
Filename: output.txt
Are you nobody, too?
How dreary to be somebody!
This demonstrates that we’re now using standard output for successful output and standard error for error output as appropriate.
[bookmark: _Toc486341802][bookmark: summary][bookmark: _Toc496541071]Summary
In this chapter, we’ve recapped on some of the major concepts you’ve learned so far and covered how to do common I/O operations in a Rust context. By using command line arguments, files, environment variables, and the eprintln! macro for printing errors, you’re now prepared to write command line applications. By using the concepts fromin previous chapters, your code will be well -organized, be able to store data effectively in the appropriate data structures, handle errors nicely, and be well tested.
[bookmark: _GoBack]Next, let’swe’ll explore some Rust features that were influenced by functional- languages influenced Rust features: closures and iterators.
