Box<T> Points to Data on the Heap and Has a Known Size	3
Using a Box<T> to Store Data on the Heap	4
Boxes Enable Recursive Types	4
More Information About the Cons List	4
Computing the Size of a Non-Recursive Type	6
Using Box<T> to Get a Recursive Type with a Known Size	8
Treating Smart Pointers Like Regular References with the Deref Trait	10
Following the Pointer to the Value with *	11
Using Box<T> Like a Reference	11
Defining Our Own Smart Pointer	12
Treating a Type Like a Reference by Implementing the Deref Trait	13
Implicit Deref Coercions with Functions and Methods	15
How Deref Coercion Interacts with Mutability	16
The Drop Trait Runs Code on Cleanup	17
Dropping a Value Early with std::mem::drop	19
Rc<T>, the Reference Counted Smart Pointer	21
Using Rc<T> to Share Data	22
Cloning an Rc<T> Increases the Reference Count	24
RefCell<T> and the Interior Mutability Pattern	26
Enforcing Borrowing Rules at Runtime with RefCell<T>	26
Interior Mutability: A Mutable Borrow to an Immutable Value	28
A Use Case for Interior Mutability: Mock Objects	28
RefCell<T> Keeps Track of Borrows at Runtime	33
Having Multiple Owners of Mutable Data by Combining Rc<T> and RefCell<T>	35
Reference Cycles Can Leak Memory	37
Creating a Reference Cycle	37
Preventing Reference Cycles: Turn an Rc<T> into a Weak<T>	41
Creating a Tree Data Structure: a Node with Child Nodes	41
Adding a Reference from a Child to Its Parent	42
Visualizing Changes to strong_count and weak_count	44
Summary	46
Box<T> Points to Data on the Heap and Has a Known Size	3
Using a Box<T> to Store Data on the Heap	3
Boxes Enable Recursive Types	4
More Information About the Cons List	4
Computing the Size of a Non-Recursive Type	6
Using Box<T> to Get a Recursive Type with a Known Size	8
Treating Smart Pointers like Regular References with the Deref Trait	10
Following the Pointer to the Value with *	11
Using Box<T> Like a Reference	11
Defining Our Own Smart Pointer	12
Treating a Type Like a Reference by Implementing the Deref Trait 	13
Implicit Deref Coercions with Functions and Methods	15
How Deref Coercion Interacts with Mutability	18
The Drop Trait Runs Code on Cleanup	18
Dropping a Value Early with std::mem::drop	20
Rc<T>, the Reference Counted Smart Pointer	22
Using Rc<T> to Share Data	23
Cloning an Rc<T> Increases the Reference Count	26
RefCell<T> and the Interior Mutability Pattern	27
Enforcing Borrowing Rules at Runtime with RefCell<T>	28
Interior Mutability: A Mutable Borrow to an Immutable Value	29
A Use Case for Interior Mutability: Mock Objects	30
RefCell<T> Keeps Track of Borrows at Runtime	35
Having Multiple Owners of Mutable Data by Combining Rc<T> and RefCell<T>	37
Reference Cycles Can Leak Memory	39
Creating a Reference Cycle	39
Preventing Reference Cycles: Turn an Rc<T> into a Weak<T>	42
Creating a Tree Data Structure: a Node with Child Nodes	43
Adding a Reference from a Child to its Parent	45
Visualizing Changes to strong_count and weak_count	47
Summary	49
Chapter 15
Smart Pointers
A pointer is a general concept for a variable that contains an address in memory. This address refers to, or “points at,”, some other data. The most common kind of pointer in Rust is a reference, which weyou learned about in Chapter 4. References are indicated by the & symbol and borrow the value that they point to. They don’t have any special capabilities other than referring to data. . They aAlso, they don’t have any overhead and, so they’ are the kind of pointer we used the most often.
prod: confirm xref
Smart pointers, on the other hand, are data structures that act like a pointer, but they also have additional metadata and capabilities. The concept of smart pointers isn’t unique to Rust: smart pointers ; it originated in C++ and exists in other languages as well. In Rust, Tthe different smart pointers defined in Rust’s in the standard library provide extra functionality beyond what that provided by references provide. One example that we’ll explore in this chapter is the reference counting smart pointer type,. This pointer which enables you to have multiple owners of data by . The reference counting smart pointer keepings track of how the number of many owners there are, and, when there aren’t any no owners remaining, taking care of the smart pointer takes care of cleaning up the data.
In Rust, where we have the concept of ownership and borrowing, an additional difference between references and smart pointers is that references are a kind of pointers that only borrow data; byin contrast, in many cases, smart pointers own the data that they point to.
We’ve actually already encountered a few smart pointers in this book, such as String and Vec<T> fromin Chapter 8, although we didn’t call them smart pointers at the time. Both these types count as smart pointers because they own some memory and allow you to manipulate it. They also have metadata (such as their capacity) and extra capabilities or guarantees (such as with String ensuring its data will always be valid UTF-8).
prod: confirm xref
Smart pointers are usually implemented using structs. The characteristics that distinguishes a smart pointer from an ordinary struct areis that smart pointers implement the Deref and Drop traits. The Deref trait allows an instance of the smart pointer struct to behave like a reference so that we can write code that works with either references or smart pointers. The Drop trait allows us to customize the code that getis run when an instance of the smart pointer goes out of scope. In this chapter, we’ll be discussing both of those traits and demonstrateing why they’re important to smart pointers.
Given that the smart pointer pattern is a general design pattern used frequently in Rust, this chapter won’t cover every existing smart pointer that exists. Many libraries have their own smart pointers, and you can even write some your ownyourself. We’ll just cover the most common smart pointers fromin the standard library:
Box<T> for allocating values on the heap
Rc<T>, a reference counted type that enables multiple ownership
Ref<T> and RefMut<T>, accessed through RefCell<T>, a type that enforces the borrowing rules at runtime instead of compile time
 Along the wayIn addition, we’ll cover the interior mutability pattern where an immutable type exposes an API for mutating an interior value. We’ll also discuss reference cycles:, how they can leak memory, and how to prevent them.
Let’s dive in!
[bookmark: `box`-points-to-data-on-the-heap-and-has][bookmark: _Toc503815262]Box<T> Points to Data on the Heap and Has a Known Size
The most straightforward smart pointer is a box, whose type is written Box<T>. Boxes allow you to store data on the heap rather than the stack. What remains on the stack is the pointer to the heap data. Refer back to Chapter 4 if you’d like to review the difference between the stack and the heap.
prod: confirm xref
Boxes don’t have performance overhead, other than storing their data being on the heap instead of on the stack,. bBut they don’t have a lot of many extra capabilities either. You’ll use themThey’re most often used in these situations:
When you have a type whose size can’t be known at compile time, and you want to use a value of that type in a context that needs to know an exact size
When you have a large amount of data and you want to transfer ownership but ensure the data won’t be copied when you do so
When you want to own a value and only care that it’s a type that implements a particular trait rather than knowing the concrete type itself
We’re going toll demonstrate the first casesituation in the rest of this section. But before we do so, we’llTo elaborate on the other two situations a bit more: in the second case, transferring ownership of a large amount of data can take a long time because the data getis copied around on the stack. To improve performance in this situation, we can store the large amount of data on the heap in a box. Then, only the small amount of pointer data is copied around on the stack, and the data stays in one place on the heap. The third case is known as a trait object, and Chapter 17 hasdevotes an entire section devoted just to that topic. So know that what you learn here you’llwill be appliedy again in Chapter 17!
prod: confirm xrefs
[bookmark: using-a-`box`-to-store-data-on-the-heap][bookmark: _Toc503815263]Using a Box<T> to Store Data on the Heap
[bookmark: _GoBack]Before we get into discuss thisa use case for Box<T>, let’s get familiar withwe’ll cover the syntax and how to interact with values stored within a Box<T>.
Listing 15-1 shows how to use a box to store an i32 value on the heap:
Filename: src/main.rs
fn main() {
 let b = Box::new(5);
 println!("b = {}", b);
}
Listing 15-1: Storing an i32 value on the heap using a box
We define the variable b to have the value of a Box that points to the value 5, which is allocated on the heap. This program will print b = 5; in this case, we can access the data in the box in a similar way as we would if this data was on the stack. Just like any owned valuevalue that has ownership of data, when a box goes out of scope like b does at the end of main, it will be deallocated. The deallocation happens for both the box (stored on the stack) and the data it points to (stored on the heap).
Putting a single value on the heap isn’t very useful, so you won’t use boxes by themselves in the way that Listing 15-1 does this way very often. Having values like a single i32 on the stack, where they’re stored by default, is more appropriate in the majority of casesituations. Let’s get into look at a case where boxes allow us to define types that we wouldn’t be allowed to if we didn’t have boxes.
[bookmark: boxes-enable-recursive-types][bookmark: _Toc503815264]Boxes Enable Recursive Types
At compile time, Rust needs to know at compile time how much space a type takes up. One kind of type whose size can’t be known at compile time is a recursive type, where a value can have as part of itself another value of the same type. Because Tthis nesting of values could theoretically continue infinitely, so Rust doesn’t know how much space a value of a recursive type needs. However, Bboxes have a known size, however, so by inserting a box in a recursive type definition, we are allowed to can have recursive types.
Let’s explore the cons list, which is a data type common in functional programming languages, to illustrateas this an example of a recursive typeconcept. The cons list type we’re going toll define is straightforward except for the recursion,; therefore, so the concepts in thise example we’ll work with will be useful any time you get into more complex situations involving recursive types.	Comment by AnneMarieW: Au: which concept?	Comment by Carol Nichols: clarified
 A cons list is a list where each item in the list contains two things: the value of the current item and the next item. The last item in the list contains only a value called Nil without a next item.
[bookmark: more-information-about-the-cons-list][bookmark: _Toc503815265]More Information About the Cons List
A cons list is a data structure that comes from the Lisp programming language and its dialects. In Lisp, the cons function (short for “construct function”) constructs a new pairlist from its two arguments, which usually are a single value and another pair. These pairs containing pairs form a listlist.
The cons function concept has made its way into more general functional programming jargon;: “to cons x onto y” informally means to construct a new container instance by putting the element x at the start of this new container, followed by the container y.
Each item in a cons list contains two elements: the value of the current item and the next item. The last item in the list contains only a value called Nil without a next item. A cons list is produced by recursively calling the cons function. The canonical name to denote the base case of the recursion is Nil, which announces the end of the list. Note that this is not the same as the “null” or “nil” concept fromin Chapter 6, which is an invalid or absent value.
confirm xref
Note that whileAlthough functional programming languages use cons lists frequently, thisit isn’t a commonly used data structure in Rust. Most of the time when you have a list of items in Rust, Vec<T> is a better choice to use. Other, more complex recursive data types are useful in various situations in Rust, but by starting with the cons list, we can explore how boxes let us define a recursive data type without much distraction.
 Listing 15-2 contains an enum definition for a cons list. Note that this code won’t compile quite yet because thise List is type doesn’t have a known size, which we’ll demonstrate:	Comment by AnneMarieW: Au: Does “this type” refer to a “cons list”?	Comment by Carol Nichols: It’s referring to the specific implementation of the cons list as the List type, I’ve clarified
Filename: src/main.rs
enum List {
 Cons(i32, List),
 Nil,
}
Listing 15-2: The first attempt ofat defining an enum to represent a cons list data structure of i32 values	Comment by AnneMarieW: Not sure why this is Literal style. Should it be EmphasisItalic?	Comment by Carol Nichols: It was not in literal style last time we sent this chapter over, it should be just part of the listing
Note	: We’re choosing to implementing a cons list that only holds i32 values for the purposes of this example. We could have implemented it using generics, as we discussed in Chapter 10, in order to define a cons list type that could store values of any type.
confirm xref
Using ourthe Lcons list type to store the list 1, 2, 3 would look like the code in Listing 15-3:
Filename: src/main.rs
use List::{Cons, Nil};

fn main() {
 let list = Cons(1, Cons(2, Cons(3, Nil)));
}
Listing 15-3: Using the List enum to store the list 1, 2, 3
The first Cons value holds 1 and another List value. This List value is another Cons value that holds 2 and another List value. This List value is one more Cons value that holds 3 and a List value, which is finally Nil, the non-recursive variant that signals the end of the list.	Comment by AnneMarieW: OK to add this?	Comment by Carol Nichols: Yep
If we try to compile the above code in Listing 15-3, we get the error shown in Listing 15-4:
error[E0072]: recursive type `List` has infinite size
 --> src/main.rs:1:1
 |
1 | enum List {
 | ^^^^^^^^^ recursive type has infinite size
2 | Cons(i32, List),
 | --------------- ----- recursive without indirection
 |
 = help: insert indirection (e.g., a `Box`, `Rc`, or `&`) at some point to
 make `List` representable
Listing 15-4: The error we get when attempting to define a recursive enum
The error sayhows this type “‘has infinite size.”’. The reason ise reason is the way that we’ve defined List is with a variant that is recursive: it holds another value of itself directly. As a result,This means Rust can’t figure out how much space it needs in order to store a List value. Let’s break down thiswhy we get this error down a bit: first, let’s look at how Rust decides how much space it needs to store a value of a non-recursive type.	Comment by AnneMarieW: Edit OK, or are we breaking down the error?	Comment by Carol Nichols: It’s the reason for the error we’re digging into, I’ve clarified
[bookmark: computing-the-size-of-a-non-recursive-ty][bookmark: _Toc503815266]Computing the Size of a Non-Recursive Type
Recall the Message enum we defined in Listing 6-2 when we discussed enum definitions in Chapter 6:
confirm xref
enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}
To determine how much space to allocate for a Message value, Rust goes through each of the variants to see which variant needs the most space. Rust sees that Message::Quit doesn’t need any space, Message::Move needs enough space to store two i32 values, and so forth. SincBecause only one variant will end up being used, the most space a Message value will need is the space it would take to store the largest of its variants.
Contrast this to what happens when Rust tries to determine how much space a recursive type like the List enum in Listing 15-2 needs. The compiler starts by looking at the Cons variant, which holds a value of type i32 and a value of type List. Therefore, Cons needs an amount of space equal to the size of an i32 plus the size of a List. To figure out how much memory the List type needs, the compiler looks at the variants, starting with the Cons variant. The Cons variant holds a value of type i32 and a value of type List, and this process continues infinitely, as shown in Figure 15-15:.
Insert image trpl15-01
 [image:]
Figure 15-51: An infinite List consisting of infinite Cons variants
[bookmark: using-`box`-to-get-a-recursive-type-with][bookmark: _Toc503815267]Using Box<T> to Get a Recursive Type with a Known Size
Rust can’t figure out how much space to allocate for recursively defined types, so the compiler gives the error in Listing 15-4. But Tthe error does include this helpful suggestion:
 = help: insert indirection (e.g., a `Box`, `Rc`, or `&`) at some point to
 make `List` representable
In this suggestion, “indirection” means that instead of storing a value directly, we’re going toll change the data structure to store the value the value indirectly by storing a pointer to the value instead.	Comment by AnneMarieW: Do you mean Rust?	Comment by Carol Nichols: Not really, I’m trying to talk about the Rust code that we’re writing. I’ve hopefully clarified
Because a Box<T> is a pointer, Rust always knows how much space a Box<T> needs: a pointer’s size doesn’t change based on the amount of data it’s pointing to. This means . So we can put a Box<T> inside the Cons variant instead of another List value directly. The Box<T> will point to the next List value that will be on the heap, rather than inside the Cons variant. Conceptually, we still have a list, created by with lists “holding” other lists, but the way this concept is implementedation is now more like the items being next to one another rather than inside one another.
We can change the definition of the List enum fromin Listing 15-2 and the usage of the List fromin Listing 15-3 to the code in Listing 15-56, which will compile:	Comment by AnneMarieW: Au: Listing numbering is off. This should be Listing 15-5. I’ll renumber all listings and cross-refs, but please check all cross-references carefully.	Comment by Carol Nichols: So checked.
Filename: src/main.rs
enum List {
 Cons(i32, Box<List>),
 Nil,
}

use List::{Cons, Nil};

fn main() {
 let list = Cons(1,
 Box::new(Cons(2,
 Box::new(Cons(3,
 Box::new(Nil))))));
}
Listing 15-56: Definition of List that uses Box<T> in order to have a known size
The Cons variant will need the size of an i32 plus the space to store the box’s pointer data. The Nil variant stores no values, so it needs less space than the Cons variant. We now know that any List value will take up the size of an i32 plus the size of a box’s pointer data. By using a box, we’ve broken the infinite, recursive chain, so the compiler is able to can figure out the size it needs to store a List value. Figure 15-2 shows what the Cons variant looks like now::
 [image:]
Figure 15-2: A List that is not infinitely sized sincbecause Cons holds a Box
Boxes only provide the indirection and heap allocation; they don’t have any other special capabilities, like those we’ll see with the other smart pointer types. They also don’t have any performance overhead that these special capabilities incur, so they they can be useful in cases like the cons list where the indirection is the only feature we need. We’ll look at more use cases for boxes in Chapter 17, too.
confirm xref
The Box<T> type is a smart pointer because it implements the Deref trait, which allows Box<T> values to be treated like references. When a Box<T> value goes out of scope, the heap data that the box is pointing to is cleaned up as well because of the Box<T> type’s of the Drop trait implementation. Let’s explore these two traitsypes in more detail;. tThese two traits are going to will be even more important to the functionality provided by the other smart pointer types we’ll be discussing in the rest of this chapter.
[bookmark: treating-smart-pointers-like-regular-ref][bookmark: _Toc503815268]Treating Smart Pointers Llike Regular References with the Deref Trait
Implementing the Deref trait allows us to customize the behavior of the dereference operator, * (as opposed to the multiplication or glob operator). By implementing Deref in such a way that a smart pointer can be treated like a regular reference, we can write code that operates on references and use that code with smart pointers too.
Let’s first take a look at how * works with regular references, and then try andto define our own type like Box<T> and see why * doesn’t work like a reference like on our newly defined typea reference. We’ll explore how implementing the Deref trait makes it possible for smart pointers to work in a similar way as references. Finally,Then we’ll look at Rust’s the deref coercion feature of Rust and how thatit lets us work with either references or smart pointers. 	Comment by Liz Chadwick: Doesn’t work with it like a reference, or doesn’t work like a reference itself?	Comment by AnneMarieW: I understood this as * doesn’t work like a reference with the newly defined type. But please clarify.	Comment by Carol Nichols: Correct, and clarified.
[bookmark: following-the-pointer-to-the-value-with-][bookmark: _Toc503815269]Following the Pointer to the Value with *
A regular reference is a type of pointer, and one way to think of a pointer is that it’s as an arrow to a value stored somewhere else. In Listing 15-68, let’swe create a reference to an i32 value and then use the dereference operator to follow the reference to the data:
Filename: src/main.rs
fn main() {
 let x = 5;
 let y = &x;

 assert_eq!(5, x);
 assert_eq!(5, *y);
}
Listing 15-68: Using the dereference operator to follow a reference to an i32 value
The variable x holds an i32 value, 5 . We set y equal to a reference to x . We can assert that x is equal to 5 . However, if we want to make an assertion about the value in y, we have to use *y to follow the reference to the value that the reference it’s pointing to (hence de-reference) . Once we de-reference y, we have access to the integer value y is pointing to that we can compare with 5.	Comment by AnneMarieW: Au: Sometimes you spell this with a hyphen and other times without a hyphen. Please make all instances consistent.	Comment by Carol Nichols: It should be without a hyphen, so corrected.
If we triedy to write assert_eq!(5, y); instead, we’ll would get this compilation error:
error[E0277]: the trait bound `{integer}: std::cmp::PartialEq<&{integer}>` is
not satisfied
 --> <assert_eq macros>:5:19src/main.rs:6:5
 |
65 | if ! (* left_val == * right_val) {assert_eq!(5, y);
 | ^^^^^^^^^^^^^^^ ^^ can't compare `{integer}` with `&{integer}`
 |
 = help: the trait `std::cmp::PartialEq<&{integer}>` is not implemented for
 `{integer}`
Comparing a number and a reference to a numberr with a number isn’t allowed because they’re different types. We have tomust use * to follow the reference to the value it’s pointing to.
[bookmark: using-`box`-like-a-reference][bookmark: _Toc503815270]Using Box<T> Like a Reference
We can rewrite the code in Listing 15-68 to use a Box<T> instead of a reference, and the de-reference operator will work the same way as shown in Listing 15-79:
Filename: src/main.rs
fn main() {
 let x = 5;
 let y = Box::new(x);	Comment by Carol Nichols: It’s hard to tell because of the Code B Wingding styling, but this line should NOT have Literal – Gray styling and the rest of the lines in this listing SHOULD.

 assert_eq!(5, x);
 assert_eq!(5, *y);
}
Listing 15-79: Using the dereference operator on a Box<i32>
The only part difference between Listing 15-7 and of Listing 15-68 that we changed was to is that here we set y to be an instance of a box pointing to the value in x rather than a reference pointing to the value of x . In the last assertion , we can use the dereference operator to follow the box’s pointer in the same way that we did when y was a reference. Let’s Next, we’ll explore what i is special about Box<T> that enables us to do thuse the dereference operatoris by defining our own box type.
[bookmark: defining-our-own-smart-pointer][bookmark: _Toc503815271]Defining Our Own Smart Pointer
Let’s build a smart pointer similar to the Box<T> type provided that by the standard library has provided for us, in order to experience that how smart pointers don’t behave like differently to references by default. Then we’ll learn aboutook at how to add the ability to use the dereference operator.
The Box<T> type is ultimately defined as a tuple struct with one element, so Listing 15-810 defines a MyBox<T> type in the same way. We’ll also define a new function to match the new function defined on Box<T>:
Filename: src/main.rs
 struct MyBox<T>(T);

impl<T> MyBox<T> {
 fn new(x: T) -> MyBox<T> {
 MyBox(x)
 }
}
Listing 15-810: Defining a MyBox<T> type
We define a struct named MyBox and declare a generic parameter T , sincbecause we want our type to be able to hold values of any type. The MyBox type is a tuple struct with one element of type T. The MyBox::new function takes one parameter of type T and returns a MyBox instance that holds the value passed in .
Let’s try adding the main functioncode fromin Listing 15-79 to the code in Listing 15-810 and changing main it to use the MyBox<T> type we’ve defined instead of Box<T>. The code in Listing 15-911 won’t compile because Rust doesn’t know how to dereference MyBox:
Filename: src/main.rs
fn main() {
 let x = 5;
 let y = MyBox::new(x);

 assert_eq!(5, x);
 assert_eq!(5, *y);
}
Listing 15-911: Attempting to use MyBox<T> in the same way we were able to used references and Box<T>
Here’s the resultingThe compilation error we get is:
error[E0614]: type `MyBox<{integer}>` cannot be dereferenced
 --> src/main.rs:14:19
 |
14 | assert_eq!(5, *y);
 | ^^
Our MyBox<T> type can’t be dereferenced because we haven’t implemented that ability on our type. To enable dereferencing with the * operator, we ican implement the Deref trait.	Comment by AnneMarieW: can or need to?
[bookmark: implementing-the-`deref`-trait-defines-h][bookmark: _Toc503815272]Treating a Type Like a Reference by Implementing the Deref Trait Defines How To Treat a Type Like a Reference
As we discussed in Chapter 10, in order to implement a trait, we need to provide implementations for the trait’s required methods. The Deref trait, provided by the standard library, requires us to implementing one method named deref that borrows self and returns a reference to the inner data. Listing 15-102 contains an implementation of Deref to add to the definition of MyBox:
confirm xref
Filename: src/main.rs
use std::ops::Deref;

struct MyBox<T>(T);
impl<T> Deref for MyBox<T> {
 type Target = T;

 fn deref(&self) -> &T {
 &self.0
 }
}
Listing 15-102: Implementing Deref on MyBox<T>
The type Target = T; syntax defines an associated type for thise Deref trait to use. Associated types are a slightly different way of declaring a generic parameter, but that you don’t need to worry about them too much for now; we’ll cover itthem in more detail in Chapter 19.
confirm xref
We filled in the body of the deref method with &self.0 so that deref returns a reference to the value we want to access with the * operator . The main function fromin Listing 15-911 that calls * on the MyBox<T> value now compiles and the assertions pass!
Without the Deref trait, the compiler can only dereference & references. The Deref trait’s deref method gives the compiler the ability to take a value of any type that implements Deref and call the deref method in order to get a & reference that it knows how to dereference.
When we typed entered *y in Listing 15-911, behind the scenes what Rust actually ran behind the scenes was this code:
*(y.deref())
Rust substitutes the * operator with a call to the deref method and then a plain dereference so that we as programmers we don’t have to think about when whether or not we have need to call the deref method or not. This Rust feature of Rust lets us write code that functions identically whether we have a regular reference or a type that implements Deref.
The reason the deref method returns a reference to a value, and why that the plain dereference outside the parentheses in *(y.deref()) is still necessary, is because of due to the ownership system. If the deref method returned the value directly instead of a reference to the value, the value would be moved out of self. We don’t want to take ownership of the inner value inside MyBox<T> in this case and in most cases where we use the dereference operator.
Note that the replacing * is replaced with a call to the deref method and then a call to * justhappens once, each time we type a * in our code. Because The the substitution of * does not recurse infinitely. That’s how, we end up with data of type i32, which matches the 5 in the assert_eq! in Listing 15-911.
[bookmark: implicit-deref-coercions-with-functions-][bookmark: _Toc503815273]Implicit Deref Coercions with Functions and Methods
Deref coercion is a convenience that Rust performs on arguments to functions and methods. Deref coercion converts a reference to a type that implements Deref into a reference to a type that Deref can convert the original type into. Deref coercion happens automatically when we pass a reference to a particular type’s value of a particular type as an argument to a function or method that doesn’t match the parameter type of the parameter in the function or method definition,. and there’s a A sequence of calls to the deref method that will converts the type we provided into the type that the parameter needs.
Deref coercion was added to Rust so that programmers writing function and method calls don’t need to add as many explicit references and dereferences with & and *. Thise deref coercion feature also lets us write more code that can work for either references or smart pointers.
To illustrate see deref coercion in action, let’s use the MyBox<T> type we defined in Listing 15-810 as well as the implementation of Deref that we added in Listing 15-102. Listing 15-113 shows the definition of a function that has a string slice parameter:
Filename: src/main.rs
fn hello(name: &str) {
 println!("Hello, {}!", name);
}
Listing 15-113: A hello function that has the parameter name of type &str
We can call the hello function with a string slice as an argument, likesuch as hello("Rust"); for example. Deref coercion makes it possible for us to call hello with a reference to a value of type MyBox<String>, as shown in Listing 15-124:
Filename: src/main.rs
use std::ops::Deref;
#
struct MyBox<T>(T);
#
impl<T> MyBox<T> {
fn new(x: T) -> MyBox<T> {
MyBox(x)
}
}
#
impl<T> Deref for MyBox<T> {
type Target = T;
#
fn deref(&self) -> &T {
&self.0
}
}
#
fn hello(name: &str) {
println!("Hello, {}!", name);
}
#
fn main() {
 let m = MyBox::new(String::from("Rust"));
 hello(&m);
}
Listing 15-124: Calling hello with a reference to a MyBox<String> value, which works because of deref coercion
Here we’re calling the hello function with the argument &m, which is a reference to a MyBox<String> value. Because we implemented the Deref trait on MyBox<T> in Listing 15-102, Rust can turn &MyBox<String> into &String by calling deref. The standard library provides an implementation of Deref on String that returns a string slice, which we can see is in the API documentation for Deref. Rust calls deref again to turn the &String into &str, which matches the hello function’s definition.
If Rust didn’t implement deref coercion, in order to call hello with a value of type &MyBox<String>, we’ would have to write the code in Listing 15-135 instead of the code in Listing 15-124 to call hello with a value of type &MyBox<String>:
Filename: src/main.rs
use std::ops::Deref;
#
struct MyBox<T>(T);
#
impl<T> MyBox<T> {
fn new(x: T) -> MyBox<T> {
MyBox(x)
}
}
#
impl<T> Deref for MyBox<T> {
type Target = T;
#
fn deref(&self) -> &T {
&self.0
}
}
#
fn hello(name: &str) {
println!("Hello, {}!", name);
}
#
fn main() {
 let m = MyBox::new(String::from("Rust"));
 hello(&(*m)[..]);
}
Listing 15-135: The code we’ would have to write if Rust didn’t have deref coercion
The (*m) is dereferencesing the MyBox<String> into a String. Then the & and [..] are takeing a string slice of the String that is equal to the whole string to match the signature of hello. The code without deref coercions is harder to read, write, and understand with all of these symbols involved. Deref coercion makes it so that allows Rust takes care of to handle these conversions for us automatically.
When the Deref trait is defined for the types involved, Rust will analyze the types and use Deref::deref as many times as it needs in order necessary to get a reference to match the parameter’s type. The number of times that Deref::deref needs to be insertedis is resolved at compile time, so there is no run-time penalty for taking advantage of deref coercion!	Comment by AnneMarieW: What does “this” refer to? using Deref::deref as many times as necessary?	Comment by Carol Nichols: Yes, clarified.
[bookmark: how-deref-coercion-interacts-with-mutabi][bookmark: _Toc503815274]How Deref Coercion Interacts with Mutability
Similar to how we use the Deref trait to override * on immutable references, Rust provides a DerefMut trait for overriding * on mutable references.
Rust does deref coercion when it finds types and trait implementations in three cases:
From &T to &U when T: Deref<Target=U>.
From &mut T to &mut U when T: DerefMut<Target=U>.
From &mut T to &U when T: Deref<Target=U>.
The first two cases are the same except for mutability. The first case saystates that if you have a &T, and T implements Deref to some type U, you can get a &U transparently. The second case states that the same deref coercion happens for mutable references.
The lastthird case is trickier: Rust will also coerce a mutable reference to an immutable one. But Tthe reverse is not possible though: immutable references will never coerce to mutable onereferences. Because of the borrowing rules, if you have a mutable reference, that mutable reference must be the only reference to that data (otherwise, the program wouldn’t compile). Converting one mutable reference to one immutable reference will never break the borrowing rules. Converting an immutable reference to a mutable reference would require that there wais only one immutable reference to that data, and the borrowing rules don’t guarantee that. Therefore, Rust can’t make the assumption that converting an immutable reference to a mutable reference is possible.
[bookmark: the-`drop`-trait-runs-code-on-cleanup][bookmark: _Toc503815275]The Drop Trait Runs Code on Cleanup
The second trait important to the smart pointer pattern is Drop, which lets us customize what happens when a value is about to go out of scope. We can provide an implementation for the Drop trait on any type, and the code we specify can be used to release resources like files or network connections. We’re introducing Drop in the context of smart pointers because the functionality of the Drop trait is almost always used when implementing a smart pointer. For example, Box<T> customizes Drop in order to deallocate the space on the heap that the box points to.
In some languages, the programmer must call code to free memory or resources every time they finish using an instance of a smart pointer. If they forget, the system might become overloaded and crash. In Rust, we can specify that a particular bit of code should be run whenever a value goes out of scope, and the compiler will insert this code automatically.
This means As a result, we don’t need to be careful about placing clean up code everywhere in a program that an instance of a particular type is finished with, but we still won’t leak resources!
We specify the code to run when a value goes out of scope by implementing the Drop trait. The Drop trait requires us to implement one method named drop that takes a mutable reference to self. In order to be able tTo see when Rust calls drop, let’s implement drop with println! statements for now.
Listing 15-148 shows a CustomSmartPointer struct whose only custom functionality is that it will print out Dropping CustomSmartPointer! when the instance goes out of scope. This willexample demonstrates when Rust runs the drop function:
Filename: src/main.rs
struct CustomSmartPointer {
 data: String,
}

 impl Drop for CustomSmartPointer {
 fn drop(&mut self) {
 println!("Dropping CustomSmartPointer with data `{}`!", self.data);
 }
}

fn main() {
w let c = CustomSmartPointer { data: String::from("my stuff") };
x let d = CustomSmartPointer { data: String::from("other stuff") };
y println!("CustomSmartPointers created.");
z }
Listing 15-148: A CustomSmartPointer struct that implements the Drop trait, where we would put our clean up code.
The Drop trait is included in the prelude, so we don’t need to import it. We implement the Drop trait on CustomSmartPointer, u and provide an implementation for the drop method that calls println! v. The body of the drop function is where you’ would putlace any logic that you wanted to run when an instance of your type goes out of scope. We’re choosing to printing out some text here in order to demonstrate when Rust will call drop.
In main, we create a newtwo instances of CustomSmartPointer x and then print out CustomSmartPointers created. y. At the end of main z, our instance of CustomSmartPointer will go out of scope, and Rust will call the code we put in the drop method v, printing our final message. Note that we didn’t need to call the drop method explicitly.
When we run this program, we’ll see the following output:
CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!
Rust automatically called drop for us when our instance went out of scope, calling the code we specified. Variables are dropped in the reverse order of the order in which they were created, so d was dropped before c. This example is just to gives you a visual guide to how the drop method works, but usually you would specify the cleanup code that your type needs to run rather than a print message.
[bookmark: dropping-a-value-early-with-`std::mem::d][bookmark: _Toc503815276]Dropping a Value Early with std::mem::drop
Rust inserts the call to drop automatically when a value goes out of scope, and Unfortunately, it’s not straightforward to disable thise automatic drop functionality. Disabling drop isn’t usually necessary; the whole point of the Drop trait is that it’s taken care of automatically for us. Occasionally, you may find that you might want to clean up a value early. One example is when using smart pointers that manage locks;: you mayight want to force the drop method that releases the lock to run so that other code in the same scope can acquire the lock. Rust doesn’t let us call the Drop trait’s drop method manually; instead we have to call the std::mem::drop function provided by the standard library if we want to force a value to be dropped before the end of its scope.
First, lLet’s see what happens ifwhen we try to call the Drop trait’s drop method ourselves manually by modifying the main function fromin Listing 15-148, as shown in Listing 15-159:
Filename: src/main.rs
fn main() {
 let c = CustomSmartPointer { data: String::from("some data") };
 println!("CustomSmartPointer created.");
 c.drop();
 println!("CustomSmartPointer dropped before the end of main.");
}
Listing 15-159: Attempting to call the drop method from the Drop trait manually to clean up early
IfWhen we try to compile this code, we’ll get this error:
error[E0040]: explicit use of destructor method
 --> src/main.rs:145:7
 |
145 | c.drop();
 | ^^^^ explicit destructor calls not allowed
This error message saytates that we’re not allowed to explicitly call drop. The error message uses the term destructor, which is the general programming term for a function that cleans up an instance. A destructor is analogous to a constructor that creates an instance. The drop function in Rust is one particular destructor.
Rust doesn’t let us call drop explicitly because Rust would still automatically call drop on the value at the end of main,. and this This would be a double free error sincbecause Rust would be trying to clean up the same value twice.
Because wWe can’t disable the automatic insertion of drop when a value goes out of scope, and we can’t call the drop method explicitly,. So, if we need to force a value to be cleaned up early, we can use the std::mem::drop function.	Comment by AnneMarieW: Au: This is the heading topic. But here is where you first mention it in the section. Can you define it in the first paragraph and then go on to explain it?	Comment by Carol Nichols: Done
The std::mem::drop function is different than the drop method in the Drop trait. We call it by passing the value we want to force to be dropped early as an argument. The std::mem::dropfunction is in the prelude, so we can modify main fromin Listing 15-148 to call the drop function, as shown in Listing 15-160:
Filename: src/main.rs
struct CustomSmartPointer {
data: String,
}
#
impl Drop for CustomSmartPointer {
fn drop(&mut self) {
println!("Dropping CustomSmartPointer!");
}
}
#
fn main() {
 let c = CustomSmartPointer { data: String::from("some data") };
 println!("CustomSmartPointer created.");
 drop(c);
 println!("CustomSmartPointer dropped before the end of main.");
}
Listing 15-160: Calling std::mem::drop to explicitly drop a value before it goes out of scope
Running this code will print the following:
CustomSmartPointer created.
Dropping CustomSmartPointer with data `some data`!
CustomSmartPointer dropped before the end of main.
The text Dropping CustomSmartPointer with data `some data`! is printed between the CustomSmartPointer created. and CustomSmartPointer dropped before the end of main. text, showing that the drop method code is called to drop c at that point.
We can use Ccode specified in a Drop trait implementation can be used in many ways to make cleanup convenient and safe: for instance, we could use it to create our own memory allocator, for instance! With the Drop trait and Rust’s ownership system, youwe don’t have to remember to clean up after yourself, because Rust takes care of does it automatically.
We also don’t have to worry about accidentally cleaning up values still in use because that would cause a compiler error: the ownership system that makes sure references are always valid will also make ensures that drop only gets called only once when the value is no longer being used.
Now that we’ve gone over examined Box<T> and some of the characteristics of smart pointers, let’s talklook at about a few other smart pointers defined in the standard library.
[bookmark: `rc`,-the-reference-counted-smart-pointe][bookmark: _Toc503815277]Rc<T>, the Reference Counted Smart Pointer
In the majority of cases, ownership is clear: you know exactly which variable owns a given value. However, there are cases when a single value mayight have multiple owners. For example, in graph data structures, multiple edges mayight point to the same node, and that node is conceptually owned by all of the edges that point to it. A node shouldn’t be cleaned up unless it doesn’t have any edges pointing to it.
In order tTo enable multiple ownership, Rust has a type called Rc<T>. Its name is an abbreviation for reference counting. Reference counting means, which keepsing track of the number of references to a value in order to know ifwhether or not a value is still in use or not. If there are zero references to a value, the value can be cleaned up without any references becoming invalid.
Imagine it Rc<T> like as a TV in a family room. When one person enters to watch TV, they turn it on. Others can come into the room and watch the TV. When the last person leaves the room, they turn off the TV off because it’s no longer being used. If someone turns off the TV off while others are still watching it, there’ would be uproar from the remaining TV watchers!
We use the Rc<T> typeis used when we want to allocate some data on the heap for multiple parts of our program to read, and we can’t determine at compile time which part will finish using the data last. If we did kneow which part would finish last, we could just make that part the data’s owner of the data and the normal ownership rules enforced at compile time would kick in take effect.
Note that Rc<T> is only for use in single-threaded scenarios;. When we discuss concurrency in Chapter 16, we’ on concurrency will cover how to do reference counting in multithreaded programs.
confirm xref
[bookmark: using-`rc`-to-share-data][bookmark: _Toc503815278]Using Rc<T> to Share Data
Let’s return to our cons list example fromin Listing 15-56,. Recall that as we defined it using Box<T>. This time, we’ll want to create two lists that both share ownership of a third list, which conceptually will look something likeimilar to Figure 15-3::
 [image:]
Figure 15-3: Two lists, b and c, sharing ownership of a third list, a
We’ll create list a that contains 5 and then 10,. tThen we’ll make two more lists: b that starts with 3 and c that starts with 4. Both b and c lists will then continue on to the first a list containing 5 and 10. In other words, both lists will try to share the first list containing 5 and 10.
Trying to implement this scenario using our definition of List with Box<T> won’t work, as shown in Listing 15-172:
Filename: src/main.rs
enum List {
 Cons(i32, Box<List>),
 Nil,
}

use List::{Cons, Nil};

fn main() {
 let a = Cons(5,
 Box::new(Cons(10,
 Box::new(Nil))));
u let b = Cons(3, Box::new(a));
v let c = Cons(4, Box::new(a));
}
Listing 15-172: Demonstrating we’re not allowed to have two lists using Box<T> that try to share ownership of a third list
IfWhen we compile this code, we get this error:
error[E0382]: use of moved value: `a`
 --> src/main.rs:13:30
 |
12 | let b = Cons(3, Box::new(a));
 | - value moved here
13 | let c = Cons(4, Box::new(a));
 | ^ value used here after move
 |
 = note: move occurs because `a` has type `List`, which does not
 implement
 the `Copy` trait
The Cons variants own the data they hold, so when we create the b list u, a is moved into b and b owns a. Then, when we try to use a again when creating c v, we’re not allowed to because a has been moved.
We could change the definition of Cons to hold references instead, but then we’ would have to specify lifetime parameters. By specifying lifetime parameters, we’ would be specifying that every element in the list will live at least as long as the entire list itself. The borrow checker wouldn’t let us compile let a = Cons(10, &Nil); for example, sincbecause the temporary Nil value would be dropped before a could take a reference to it.
Instead, we’ll change our definition of List to use Rc<T> in place of Box<T> , as shown here in Listing 15-183. Each Cons variant will now holds a value and an Rc<T> pointing to a List. When we create b, instead of taking ownership of a, we’ll clone the Rc<List> that a is holding, which increases the number of references from 1 one to 2two and lets a and b share ownership of the data in that Rc<List>. We’ll also clone a when creating c, which increases the number of references from 2 two to 3three. Every time we call Rc::clone, the reference count to the data within the Rc<List> iswill increased, and the data won’t be cleaned up unless there are zero references to it:	Comment by AnneMarieW: OK to change this to “from one to two”	Comment by Carol Nichols: Yes, so changed	Comment by AnneMarieW: OK to change this to “from two to three”	Comment by Carol Nichols: Yes, so changed
Filename: src/main.rs
enum List {
 Cons(i32, Rc<List>),
 Nil,
}

use List::{Cons, Nil};
u use std::rc::Rc;	Comment by Carol Nichols: This line should NOT be Literal - Gray

fn main() {
v let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));	Comment by Carol Nichols: These lines should also NOT be Literal - Gray
w let b = Cons(3, Rc::clone(&a));
x let c = Cons(4, Rc::clone(&a));
}
Listing 15-183: A definition of List that uses Rc<T>
We need to add a use statement to bring Rc<T> into scope u because it’s not in the prelude. In main, we create the list holding 5 and 10 and store it in a new Rc<List> in a v. Then when we create b and c wx, we call the Rc::clone function and pass a reference to the Rc<List> in a as an argument.
We could have called a.clone() rather than Rc::clone(&a), but Rust’s convention is to use Rc::clone in this case. The implementation of cRc::clone doesn’t make a deep copy of all the data like most types’ implementations of clone do. The call to Rc::clone only increments the reference count, which doesn’t take very much time. Deep copies of data can take a lot of time. , so bBy using Rc::clone for reference counting, we can visually distinguish between the deep copy kinds of clones that might have a large impact on runtime performance and memory usage and the types kinds of clones that increase the reference count that have a comparatively small impact on runtime performance and don’t allocate new memory. When looking for performance problems in the code, we only need to consider the deep copy clones and can disregard calls to Rc::clone.	Comment by AnneMarieW: Au: Can you break up this very lengthy sentence into two or three sentences to make the concept easier to follow.	Comment by Carol Nichols: Done
[bookmark: cloning-an-`rc`-increases-the-reference-][bookmark: _Toc503815279]Cloning an Rc<T> Increases the Reference Count
Let’s change our working example fromin Listing 15-183 so that we can see the reference counts changing as we create and drop references to the Rc<List> in a.
In Listing 15-194, we’ll change main so that it has an inner scope around list c,; so thatthen we can see how the reference count changes when c goes out of scope. At each point in the program where the reference count changes, we’ll print out the reference count, which we can get by calling the Rc::strong_count function. We’ll talk about why tThis function is named strong_count rather than count because the Rc<T> type also has a weak_count; we’ll see what weak_count is used for in the “Preventing Reference Cycles” section on page XXlater in this chapter about preventing reference cycles.	Comment by AnneMarieW: Au: Please check that you do this. I don't see an explanation in that section.	Comment by Carol Nichols: Clarified to make what we meant more obvious
prod: fill xref
Filename: src/main.rs
enum List {
Cons(i32, Rc<List>),
Nil,
}
#
use List::{Cons, Nil};
use std::rc::Rc;
#
fn main() {
 let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
 println!("count after creating a = {}", Rc::strong_count(&a));
 let b = Cons(3, Rc::clone(&a));
 println!("count after creating b = {}", Rc::strong_count(&a));
 {
 let c = Cons(4, Rc::clone(&a));
 println!("count after creating c = {}", Rc::strong_count(&a));
 }
 println!("count after c goes out of scope = {}", Rc::strong_count(&a));
}
Listing 15-194: Printing out the reference count
This code will prints the following out:
count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2
We’re able to can see that the Rc<List> in a has an initial reference count of one,; then each time we call clone, the count goes up by one. When c goes out of scope, the count goes down by one. We don’t have to call a function to decrease the reference count like we have to call Rc::clone to increase the reference count;: the implementation of the Drop trait decreases the reference count automatically when an Rc<T> value goes out of scope.
What we can’t see fromin this example is that when b and then a go out of scope at the end of main, the count is then 0, and the Rc<List> is cleaned up completely at that point. Using Rc<T> allows a single value to have multiple owners, and the count will ensures that the value remains valid as long as any of the owners still exist.
Via immutable references, Rc<T> allows us to share data between multiple parts of our program for reading only, via immutable references. If Rc<T> allowed us to have multiple mutable references too, we’ dmight be able to violate one of the the borrowing rules that we discussed in Chapter 4: multiple mutable borrows to the same place can cause data races and inconsistencies. But being able to mutate data is very useful! In the next section, we’ll discuss the interior mutability pattern and the RefCell<T> type that we can use in conjunction with an Rc<T> to work with this immutability restriction on immutability.
confirm xref
[bookmark: `refcell`-and-the-interior-mutability-pa][bookmark: _Toc503815280]RefCell<T> and the Interior Mutability Pattern
Interior mutability is a design pattern in Rust forthat allowsing you to mutate data even when there are immutable references to that data,: normally, this action is disallowed by the borrowing rules. To do so, the pattern uses unsafe code inside a data structure to bend Rust’s usual rules aroundthat govern mutation and borrowing. We haven’t yet covered unsafe code; we will in Chapter 19. We can choose to use types that make use of the interior mutability pattern when we can ensure that the borrowing rules will be followed at runtime, even though the compiler can’t ensureguarantee that. The unsafe code involved is then wrapped in a safe API, and the outer type is still immutable.
confirm xref
Let’s explore this concept by looking at the RefCell<T> type that follows the interior mutability pattern.
[bookmark: enforcing-borrowing-rules-at-runtime-wit][bookmark: _Toc503815281]Enforcing Borrowing Rules at Runtime with RefCell<T>
Unlike Rc<T>, the RefCell<T> type represents single ownership over the data it holds. So, what makes RefCell<T> different than a type like Box<T>? Let’s rRecall the borrowing rules weyou learned in Chapter 4:
confirm xref
At any given time, you can have either but not both of the following:
oOne mutable reference. or
Aany number of immutable references.
References must always be valid.
With references and Box<T>, the borrowing rules’ invariants are enforced at compile time. With RefCell<T>, these invariants are enforced at runtime. With references, if you break these rules, you’ll get a compiler error. With RefCell<T>, if you break these rules, you’ll get ayour program will panic! and exit..
The advantages toof checking the borrowing rules at compile time are that errors will be caught sooner in the development process, and there is no impact on runtime performance sincbecause all the analysis is completed beforehand. For those reasons, checking the borrowing rules at compile time is the best choice forin the majority of cases, which is why this is Rust’s default.
The advantage toof checking the borrowing rules at runtime instead is that certain memory safe scenarios are then allowed, whereas they are disallowed by the compile time checks. Static analysis, like the Rust compiler, is inherently conservative. Some properties of code are impossible to detect by analyzing the code: the most famous example is the Halting Problem, which is beyond theout of scope of this book but is an interesting topic to research if you’re interested.
Because some analysis is impossible, if the Rust compiler can’t be sure the code complies with the ownership rules, it mayight reject a correct program; in this way, it i’s conservative. If Rust were to accepted an incorrect program, users would no’t be able to trust in the guarantees Rust makes. However, if Rust rejects a correct program, the programmer will be inconvenienced, but nothing catastrophic can occur. The RefCell<T> type is useful when you yourself a’re sure that your code follows the borrowing rules, but the compiler is not unable to understand and guarantee that.
Similarly to Rc<T>, RefCell<T> is only for use in single-threaded scenarios and will give you a compile time error if you try using it in a multithreaded context. We’ll talk about how to get the functionality of RefCell<T> in a multithreaded program in Chapter 16.
confirm xref
To Here is a recap of the reasons to choose Box<T>, Rc<T>, or RefCell<T>:
Rc<T> enables multiple owners of the same data; Box<T> and RefCell<T> have single owners.
Box<T> allows immutable or mutable borrows checked at compile time; Rc<T> only allows immutable borrows checked at compile time; RefCell<T> allows immutable or mutable borrows checked at runtime.
Because RefCell<T> allows mutable borrows checked at runtime, we can mutate the value inside the RefCell<T> even when the RefCell<T> is itself immutable.
Mutating the value inside an immutable valueThe last reason is the interior mutability pattern. Let’s look at a case whensituation in which interior mutability is useful and discussexamine how this iti’s possible.	Comment by AnneMarieW: Au: The last reason for what? Do you mean another reason to choose Box<T>, Rc<T>, or RefCell<T>
[bookmark: interior-mutability:-a-mutable-borrow-to][bookmark: _Toc503815282]Interior Mutability: A Mutable Borrow to an Immutable Value
A consequence of the borrowing rules is that when we have an immutable value, we can’t borrow it mutably. For example, this code won’t compile:
fn main() {
 let x = 5;
 let y = &mut x;
}
IfWhen we try to compile this code, we’ll get thise following error:
error[E0596]: cannot borrow immutable local variable `x` as mutable
 --> src/main.rs:3:18
 |
2 | let x = 5;
 | - consider changing this to `mut x`
3 | let y = &mut x;
 | ^ cannot borrow mutably
However, there are situations wherein which it would be useful for a value to be able to mutate itself in its methods, but to other code, the value would appear to be immutable. Code outside the value’s methods would not be able to mutate the value. Using RefCell<T> is one way to get the ability to have interior mutability. But RefCell<T> isdoesn’t getting around the borrowing rules completely,: but the borrow checker in the compiler allows this interior mutability, and the borrowing rules are checked at runtime instead. If we violate the rules, we’ll get a panic! instead of a compiler error.
Let’s work through a practical example where we can use RefCell<T> to make it possible to mutate an immutable value and see why that’ is useful.
[bookmark: a-use-case-for-interior-mutability:-mock][bookmark: _Toc503815283]A Use Case for Interior Mutability: Mock Objects
A test double is the general programming concept for a type that standsused in the place of another type during testing. Mock objects are specific types of test doubles that record what happens during a test so that we can assert that the correct actions took place.
While Rust doesn’t have objects in the exact same sense thatas other languages have objects, and Rust doesn’t have mock object functionality built into the standard library like some other languages do,. However, we can definitely create a struct that will serve the same purposes as a mock object.
Here’s the scenario we’d like to’ll test: we’rell createing a library that tracks a value against a maximum value, and sends messages based on how close to the maximum value the current value is. This library could be used for keeping track of a user’s quota for the number of API calls they’re allowed to make, for example.
Our library iswill only going to provide the functionality of tracking how close to the maximum a value is, and what the messages should be at what times. Applications that use our library will be expected to provide the actual mechanism for sending the messages: the application could choose to put a message in the application, send an email, send a text message, or something else. OurThe library doesn’t need to know about that detail;. aAll it needs is something that implements a trait we’ll provide called Messenger. Listing 15-2015 shows ourthe library code:
Filename: src/lib.rs
pub trait Messenger {
u fn send(&self, msg: &str);
}

pub struct LimitTracker<'a, T: 'a + Messenger> {
 messenger: &'a T,
 value: usize,
 max: usize,
}

impl<'a, T> LimitTracker<'a, T>
 where T: Messenger {
 pub fn new(messenger: &T, max: usize) -> LimitTracker<T> {
 LimitTracker {
 messenger,
 value: 0,
 max,
 }
 }

v pub fn set_value(&mut self, value: usize) {
 self.value = value;

 let percentage_of_max = self.value as f64 / self.max as f64;

 if percentage_of_max >= 0.75 && percentage_of_max < 0.9 {
 self.messenger.send("Warning: You've used up over 75% of your quota!");
 } else if percentage_of_max >= 0.9 && percentage_of_max < 1.0 {
 self.messenger.send("Urgent warning: You've used up over 90% of your quota!");
 } else if percentage_of_max >= 1.0 {
 self.messenger.send("Error: You are over your quota!");
 }
 }
}
Listing 15-2015: A library to keep track of how close to a maximum value a value is, and warn when the value is at certain levels
One important part of this code is that the Messenger trait has one method, called send, that takes an immutable reference to self and text of the message u. This is the interface our mock object will needs to have. The other important part is that we want to test the behavior of the set_value method on the LimitTracker v. We can change what we pass in for the value parameter, but set_value doesn’t return anything for us to make assertions on. What we want to be able to say is that if we create a LimitTracker with something that implements the Messenger trait and a particular value for max, when we pass different numbers for value, the messenger getis told to send the appropriate messages.
What we need is a mock object that, instead of actually sending an email or text message when we call send, will only keep track of the messages it’s told to send. We can create a new instance of the mock object, create a LimitTracker that uses the mock object, call the set_value method on LimitTracker, and then check that the mock object has the messages we expect. Listing 15-2116 shows an attempt of implementing a mock object to do just that, but that the borrow checker won’t allow:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 use super::*;

u struct MockMessenger {
v sent_messages: Vec<String>,
 }

 impl MockMessenger {
w fn new() -> MockMessenger {
 MockMessenger { sent_messages: vec![] }
 }
 }

x impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
y self.sent_messages.push(String::from(message));
 }
 }

 #[test]
z fn it_sends_an_over_75_percent_warning_message() {
 let mock_messenger = MockMessenger::new();
 let mut limit_tracker = LimitTracker::new(&mock_messenger, 100);

 limit_tracker.set_value(80);

 assert_eq!(mock_messenger.sent_messages.len(), 1);
 }
}
Listing 15-2116: An attempt to implement a MockMessenger that isn’t allowed by the borrow checker
This test code defines a MockMessenger struct u that has a sent_messages field with a Vec of String values v to keep track of the messages it’s told to send. We also defined an associated function new w to make it convenient to create new MockMessenger values that start with an empty list of messages. We then implement the Messenger trait for MockMessenger x so that we can give a MockMessenger to a LimitTracker. In the definition of the send method y, we take the message passed in as a parameter and store it in the MockMessenger list of sent_messages.
In the test, we’re testing what happens when the LimitTracker is told to set value to something that’ is overmore than 75% percent of the max value z. First, we create a new MockMessenger, which will start with an empty list of messages. Then we create a new LimitTracker and give it a reference to the new MockMessenger and a max value of 100. We call the set_value method on the LimitTracker with a value of 80, which is more than 75% percent of 100. Then we assert that the list of messages that the MockMessenger is keeping track of should now have one message in it.
However, Tthere’s one problem with this test, as shown here, however:
error[E0596]: cannot borrow immutable field `self.sent_messages` as mutable
 --> src/lib.rs:5246:13
 |
5145 | fn send(&self, message: &str) {
 | ----- use `&mut self` here to make mutable
5246 | self.sent_messages.push(String::from(message));
 | ^^^^^^^^^^^^^^^^^^ cannot mutably borrow immutable field
We can’t modify the MockMessenger to keep track of the messages because the send method takes an immutable reference to self. We also can’t take the suggestion from the error text to use &mut self instead because then the signature of send wouldn’t match the signature in the Messenger trait definition (feel free to try and see what error message you get).
This is a situation in which is where interior mutability can help! We’re going toll store the sent_messages within a RefCell<T>, and then the send message will be able to modify sent_messages to store the messages we’ve seen. Listing 15-2217 shows what that looks like:
Filename: src/lib.rs
#[cfg(test)]
mod tests {
 use super::*;
 use std::cell::RefCell;

 struct MockMessenger {
u sent_messages: RefCell<Vec<String>>,	Comment by Carol Nichols: This line should NOT be Literal - Gray
 }

 impl MockMessenger {
 fn new() -> MockMessenger {
v MockMessenger { sent_messages: RefCell::new(vec![]) }	Comment by Carol Nichols: This line should NOT be Literal - Gray
 }
 }

 impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
w self.sent_messages.borrow_mut().push(String::from(message));	Comment by Carol Nichols: This line should NOT be Literal - Gray
 }
 }

 #[test]
 fn it_sends_an_over_75_percent_warning_message() {
 // --...snip--...
let mock_messenger = MockMessenger::new();
let mut limit_tracker = LimitTracker::new(&mock_messenger, 100);
limit_tracker.set_value(75);

x assert_eq!(mock_messenger.sent_messages.borrow().len(), 1);	Comment by Carol Nichols: This line should NOT be Literal - Gray
 }
}
Listing 15-2217: Using RefCell<T> to be able to mutate an inner value while the outer value is considered immutable
The sent_messages field is now of type RefCell<Vec<String>> u instead of Vec<String>. In the new function, we create a new RefCell<Vec<String>> instance around the empty vector v.
For the implementation of the send method, the first parameter is still an immutable borrow of self, which matches the trait definition. We call borrow_mut on the RefCell<Vec<String>> in self.sent_messages w to get a mutable reference to the value inside the RefCell<Vec<String>>, which is the vector. Then we can call push on the mutable reference to the vector in order to keep track of the messages seeentn during the test.
The last change we have to make is in the assertion: in order to see how many items are in the inner vector, we call borrow on the RefCell<Vec<String>> to get an immutable reference to the vector x.
Now that weyou’ve seen how to use RefCell<T>, let’s dig into how it works!
[bookmark: `refcell`-keeps-track-of-borrows-at-runt][bookmark: _Toc503815284]RefCell<T> Keeps Track of Borrows at Runtime
When creating immutable and mutable references, we use the & and &mut syntax, respectively. With RefCell<T>, we use the borrow and borrow_mut methods, which are part of the safe API that belongs to RefCell<T>. The borrow method returns the smart pointer type Ref<T>, and borrow_mut returns the smart pointer type RefMut<T>. Both types implement Deref so we can treat them like regular references.
The RefCell<T> keeps track of how many Ref<T> and RefMut<T> smart pointers are currently active. Every time we call borrow, the RefCell<T> increases its count of how many immutable borrows are active. When a Ref<T> value goes out of scope, the count of immutable borrows goes down by one. Just like the compile time borrowing rules, RefCell<T> lets us have many immutable borrows or one mutable borrow at any point in time.
If we try to violate these rules, rather than getting a compiler error like we would with references, the implementation of RefCell<T> will panic! at runtime. Listing 15-2318 shows a modification toof the implementation of send fromin Listing 15-2217. where wWe’re deliberately trying to create two mutable borrows active for the same scope in order to illustrate that RefCell<T> prevents us from doing this at runtime:
Filename: src/lib.rs
impl Messenger for MockMessenger {
 fn send(&self, message: &str) {
 let mut one_borrow = self.sent_messages.borrow_mut();
 let mut two_borrow = self.sent_messages.borrow_mut();

 one_borrow.push(String::from(message));
 two_borrow.push(String::from(message));
 }
}
Listing 15-2318: Creating two mutable references in the same scope to see that RefCell<T> will panic
We create a variable one_borrow for the RefMut<T> smart pointer returned from borrow_mut. Then we create another mutable borrow in the same way in the variable two_borrow. This makes two mutable references in the same scope, which isn’t allowed. IfWhen we run the tests for our library, thise code in Listing 15-23 will compile without any errors, but the test will fail:
---- tests::it_sends_an_over_75_percent_warning_message stdout ----
 thread 'tests::it_sends_an_over_75_percent_warning_message' panicked at
 'already borrowed: BorrowMutError', src/libcore/result.rs:906:4
note: Run with `RUST_BACKTRACE=1` for a backtrace.
NoticeWe can see that the code panicked with the message already borrowed: BorrowMutError. This is how RefCell<T> handles violations of the borrowing rules at runtime.
Catching borrowing errors at runtime rather than compile time means that we’ would find out that we made a mistake in our code later in the development process— and possibly not even until our code was deployed to production. There’s aAlso, our code will incur a small runtime performance penalty our code will incur as a result of keeping track of the borrows at runtime rather than compile time. However, using RefCell<T> madekes it possible for us to write a mock object that can modify itself to keep track of the messages it has seen while we’re using it in a context where only immutable values are allowed. We can choose to use RefCell<T> despite its trade-offs to get more abilifunctionalityties than regular references give us.	Comment by AnneMarieW: or functionality	Comment by Carol Nichols: ok
[bookmark: having-multiple-owners-of-mutable-data-b][bookmark: _Toc503815285]Having Multiple Owners of Mutable Data by Combining Rc<T> and RefCell<T>
A common way to use RefCell<T> is in combination with Rc<T>. Recall that Rc<T> lets us have multiple owners of some data, but it only gives us immutable access to that data. If we have an Rc<T> that holds a RefCell<T>, then we can get a value that can have multiple owners and that we can mutate!
For example, recall the cons list example fromin Listing 15-183 where we used Rc<T> to let us have multiple lists share ownership of another list. Because Rc<T> only holds immutable values, we arecan’t able to change any of the values in the list once we’ve created them. Let’s add in RefCell<T> to getain the ability to change the values in the lists. Listing 15-2419 shows that by using a RefCell<T> in the Cons definition, we’re allowed to can modify the value stored in all the lists:
Filename: src/main.rs
#[derive(Debug)]
enum List {
 Cons(Rc<RefCell<i32>>, Rc<List>),
 Nil,
}

use List::{Cons, Nil};
use std::rc::Rc;
use std::cell::RefCell;

fn main() {
u let value = Rc::new(RefCell::new(5));	Comment by Carol Nichols: This line should NOT be Literal - Gray

v let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));	Comment by Carol Nichols: This line should NOT be Literal - Gray

 let b = Cons(Rc::new(RefCell::new(6)), Rc::clone(&a));
 let c = Cons(Rc::new(RefCell::new(10)), Rc::clone(&a));

w *value.borrow_mut() += 10;	Comment by Carol Nichols: This line should NOT be Literal - Gray

 println!("a after = {:?}", a);
 println!("b after = {:?}", b);
 println!("c after = {:?}", c);
}
Listing 15-2419: Using Rc<RefCell<i32>> to create a List that we can mutate
We create a value that’ is an instance of Rc<RefCell<i32> and store it in a variable named value u so we can access it directly later. Then we create a List in a with a Cons variant that holds value v. We need to clone value so that both a and value have ownership of the inner 5 value, rather than transferring ownership from value to a or having a borrow from value.
We wrap the list a in an Rc<T> so that when we create lists b and c, they can both refer to a, which is whatthe same as we did in Listing 15-183.
OnceAfter we h’ave created the lists in a, b, and c created, we add 10 to the value in value w. We do this by calling borrow_mut on value, which uses the automatic dereferencing feature we discussed in Chapter 5 (see the section “Where’s the -> Operator?” on page XX) to dereference the Rc<T> to the inner RefCell<T> value. The borrow_mut method returns a RefMut<T> smart pointer, and we use the dereference operator on it and change the inner value.
prod: fill xref
When we print out a, b, and c, we can see that they all have the modified value of 15 rather than 5:
a after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 6 }, Cons(RefCell { value: 15 }, Nil))
c after = Cons(RefCell { value: 10 }, Cons(RefCell { value: 15 }, Nil))
This technique is pretty neat! By using RefCell<T>, we have an outwardly immutable List,. bBut we can use the methods on RefCell<T> that provide access to its interior mutability so we can modify our data when we need to. The runtime checks of the borrowing rules protect us from data races, and it’s sometimes worth trading a bit of speed for this flexibility in our data structures.
The standard library has other types that provide interior mutability, too, like such as Cell<T>, which is similar except that instead of giving references to the inner value, the value is copied in and out of the Cell<T>. There’s also Mutex<T>, which offers interior mutability that’s safe to use across threads,; and we’ll be discussing its use in the next cChapter on concurrency16. Check out the standard library docs for more details on the differences between these types.
confirm xref
[bookmark: reference-cycles-can-leak-memory][bookmark: _Toc503815286]Reference Cycles Can Leak Memory
Rust’s memory safety guarantees make it difficult but not impossible to accidentally create memory that’ is never cleaned up, (known as a memory leak), but not impossible. Entirely Ppreventing memory leaks entirely is not one of Rust’s guarantees in the same way that disallowing data races at compile time is, meaning memory leaks are memory safe in Rust. We can see thisthat Rust allows memory leaks by using with Rc<T> and RefCell<T>: it’s possible to create references where items refer to each other in a cycle. This creates memory leaks because the reference count of each item in the cycle will never reach 0, and the values will never be dropped.	Comment by AnneMarieW: What does “this” refer to? this limitation, this drawback	Comment by Carol Nichols: clarified
[bookmark: creating-a-reference-cycle][bookmark: _Toc503815287]Creating a Reference Cycle
Let’s take a look at how a reference cycle might happen and how to prevent it, starting with the definition of the List enum and a tail method in Listing 15-250:
Filename: src/main.rs
use std::rc::Rc;
use std::cell::RefCell;
use List::{Cons, Nil};

#[derive(Debug)]
enum List {
u Cons(i32, RefCell<Rc<List>>),
 Nil,
}

impl List {
v fn tail(&self) -> Option<&RefCell<Rc<List>>> {
 match *self {
 Cons(_, ref item) => Some(item),
 Nil => None,
 }
 }
}
Listing 15-250: A cons list definition that holds a RefCell<T> so that we can modify what a Cons variant is referring to
We’re using another variation of the List definition fromin Listing 15-56. The second element in the Cons variant is now RefCell<Rc<List>> u, meaning that instead of having the ability to modify the i32 value like we did in Listing 15-2419, we want to be able to modify which List a Cons variant is pointing to. We’vere also addeding a tail method v to make it convenient for us to access the second item, if we have a Cons variant.
In Llisting 15-261, we’re adding a main function that uses the definitions fromin Listing 15-250. This code creates a list in a, and a list in b that points to the list in a, and then modifies the list in a to point to b, which creates a reference cycle. There are println! statements along the way to show what the reference counts are at various points in this process.:
Filename: src/main.rs
use List::{Cons, Nil};
use std::rc::Rc;
use std::cell::RefCell;
#[derive(Debug)]
enum List {
Cons(i32, RefCell<Rc<List>>),
Nil,
}
#
impl List {
fn tail(&self) -> Option<&RefCell<Rc<List>>> {
match *self {
Cons(_, ref item) => Some(item),
Nil => None,
}
}
}
#
fn main() {
u let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

 println!("a initial rc count = {}", Rc::strong_count(&a));
 println!("a next item = {:?}", a.tail());

v let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

 println!("a rc count after b creation = {}", Rc::strong_count(&a));
 println!("b initial rc count = {}", Rc::strong_count(&b));
 println!("b next item = {:?}", b.tail());

w if let Some(ref link) = a.tail() {
x *link.borrow_mut() = Rc::clone(&b);
 }

 println!("b rc count after changing a = {}", Rc::strong_count(&b));
 println!("a rc count after changing a = {}", Rc::strong_count(&a));

 // Uncomment the next line to see that we have a cycle; it will
 // overflow the stack
 // println!("a next item = {:?}", a.tail());
}
Listing 15-261: Creating a reference cycle of two List values pointing to each other
We create an Rc<List> instance holding a List value in the variable a with an initial list of 5, Nil u. We then create an Rc<List> instance holding another List value in the variable b that contains the value 10, and then points to the list in a v.
Finally, wWe modify a so that it points to b instead of Nil, which creates a cycle. We do that by using the tail method to get a reference to the RefCell<Rc<List>> in a, which we put in the variable link w. Then we use the borrow_mut method on the RefCell<Rc<List>> to change the value inside from an Rc<List> that holds a Nil value to the Rc<List> in b x.
IfWhen we run this code, keeping the last println! commented out for the moment, we’ll get this output:
a initial rc count = 1
a next item = Some(RefCell { value: Nil })
a rc count after b creation = 2
b initial rc count = 1
b next item = Some(RefCell { value: Cons(5, RefCell { value: Nil }) })
b rc count after changing a = 2
a rc count after changing a = 2
We can see that tThe reference count of the Rc<List> instances in both a and b are 2 after we change the list in a to point to b. At the end of main, Rust will try and to drop b first, which will decrease the count in each of the Rc<List> instances in a and b by one.
However, because a is still referencing the Rc<List> that was in b, that Rc<List> has a count of 1 rather than 0, so the memory the Rc<List> has on the heap won’t be dropped. The memory will just sit there with a count of one, forever.
To visualize this, we’ve created a reference cycle, we’ve created a diagram that looks like in Figure 15-4::
 [image: ../../../../../Desktop/trpl-15-04.png][image:]	Comment by Carol Nichols: This image was incorrect, I’ve inserted a png but will be attaching the correct SVG as well
Figure 15-4: A reference cycle of lists a and b pointing to each other
If you uncomment the last println! and run the program, Rust will try and to print this cycle out with a pointing to b pointing to a and so forth until it overflows the stack.
In this specific case, right after we create the reference cycle, the program ends. The consequences of this cycle aren’t sovery dire. If a more complex program allocates lots of memory in a cycle and holds onto it for a long time, the program would be useing more memory than it needs, and might overwhelm the system, and causeing it to run out of available memory.
Creating reference cycles is not easily done, but it’s not impossible either. If you have RefCell<T> values that contain Rc<T> values or similar nested combinations of types with interior mutability and reference counting, be aware that you have tomust ensure that you don’t create cycles yourself; you can’t rely on Rust to catch them. Creating a reference cycle would be a logic bug in your program that you should use automated tests, code reviews, and other software development practices to minimize.
Another solution for avoiding reference cycles is reorganizing your data structures so that some references express ownership and some references don’t. In this way As a result, weyou can have cycles made up of some ownership relationships and some non-ownership relationships, and only the ownership relationships affect whether or not a value canmay be dropped or not. In Listing 15-250, we always want Cons variants to own their list, so reorganizing the data structure isn’t possible. Let’s look at an example using graphs made up of parent nodes and child nodes to see when non-ownership relationships are an appropriate way to prevent reference cycles.	Comment by AnneMarieW: Another solution for what? to prevent reference cycles? Please clarify.	Comment by Carol Nichols: Done
[bookmark: preventing-reference-cycles:-turn-an-`rc][bookmark: _Toc503815288]Preventing Reference Cycles: Turn an Rc<T> into a Weak<T>
So far, we’ve shown demonstrated thathow calling Rc::clone increases the strong_count of an Rc<T> instance,, and that an Rc<T> instance is only cleaned up if its strong_count is 0. We can also create a weak reference to the value within an Rc<T> instance by calling Rc::downgrade and passing a reference to the Rc<T>. When we call Rc::downgrade, we get a smart pointer of type Weak<T>. Instead of increasing the strong_count in the Rc<T> instance by one, calling Rc::downgrade increases the weak_count by one. The Rc<T> type uses weak_count to keep track of how many Weak<T> references exist, similarly to strong_count. The difference is the weak_count does no’t need to be 0 in order for the Rc<T> instance to be cleaned up.
Strong references are how we can share ownership of an Rc<T> instance. Weak references don’t express an ownership relationship. They won’t cause a reference cycle sincbecause any cycle involving some weak references will be broken once the strong reference count of values involved is 0.
Because the value that Weak<T> references might have been dropped, in order to do anything with the value that a Weak<T> is pointing to, we have to check to must make sure the value is still aroundexists. We do this by calling the upgrade method on a Weak<T> instance, which will return an Option<Rc<T>>. We’ll get a result of Some if the Rc<T> value has not been dropped yet, and a result of None if the Rc<T> value has been dropped. Because upgrade returns an Option<T>, we can be sure that Rust will ensure that we handle both the Some case and the None case, and there won’t be an invalid pointer.
As an example, rather than using a list whose items know only about the next item, we’ll create a tree whose items know about their children items and their parent items.
[bookmark: creating-a-tree-data-structure:-a-`node`][bookmark: _Toc503815289]Creating a Tree Data Structure: a Node with Child Nodes
To start, we’ll building thisa tree with nodes that know about their child nodes, . we’ll We’ll create a struct named Node that holds its own i32 value as well as references to its children Node values:
Filename: src/main.rs
use std::rc::Rc;
use std::cell::RefCell;

#[derive(Debug)]
struct Node {
 value: i32,
 children: RefCell<Vec<Rc<Node>>>,
}
We want a Node to own its children, and we want to be able to share that ownership with variables so we can access each Node in the tree directly. To do this, we define the Vec<T> items to be values of type Rc<Node>. We also want to be able to modify which nodes are children of another node, so we have a RefCell<T> in children around the Vec<Rc<Node>>.
Next, let’swe’ll use our struct definition and create one Node instance named leaf with the value 3 and no children, and another instance named branch with the value 5 and leaf as one of its children, as shown in Listing 15-273:
Filename: src/main.rs
use std::rc::Rc;
use std::cell::RefCell;
#
#[derive(Debug)]
struct Node {
value: i32,
children: RefCell<Vec<Rc<Node>>>,
}
#
fn main() {
 let leaf = Rc::new(Node {
 value: 3,
 children: RefCell::new(vec![]),
 });

 let branch = Rc::new(Node {
 value: 5,
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });
}
Listing 15-273: Creating a leaf node with no children and a branch node with leaf as one of its children
We clone the Rc<Node> in leaf and store that in branch, meaning the Node in leaf now has two owners: leaf and branch. We can get from branch to leaf through branch.children, but there’s no way to get from leaf to branch. The reason is that leaf has no reference to branch and doesn’t know they a’re related. We’d want like leaf to know that branch is its parent. We’ll do that next.
[bookmark: adding-a-reference-from-a-child-to-its-p][bookmark: _Toc503815290]Adding a Reference from a Child to Iits Parent
To make the child node aware of its parent, we need to add a parent field to our Node struct definition. The trouble is in deciding what the type of parent should be. We know it can’t contain an Rc<T> because that would create a reference cycle, with leaf.parent pointing to branch and branch.children pointing to leaf, which would cause their strong_count values to never be 0.zero.	Comment by AnneMarieW: Au: Throughout the chapter you’ve been using the numeral 0, not zero, when you talk about strong_count. Make this consistent?
Thinking about the relationships another way, a parent node should own its children: if a parent node is dropped, its child nodes should be dropped as well. However, a child should not own its parent: if we drop a child node, the parent should still exist. This is a case for weak references!
So instead of Rc<T>, we’ll make the type of parent use Weak<T>, specifically a RefCell<Weak<Node>>. Now our Node struct definition looks like this:
Filename: src/main.rs
use std::rc::{Rc, Weak};
use std::cell::RefCell;

#[derive(Debug)]
struct Node {
 value: i32,
 parent: RefCell<Weak<Node>>,
 children: RefCell<Vec<Rc<Node>>>,
}
This way, Now a node will be able to refer to its parent node, but does no’t own its parent. In Listing 15-284, let’swe update main to use this new definition so that the leaf node will have a way to refer to its parent, branch:
Filename: src/main.rs
use std::rc::{Rc, Weak};
use std::cell::RefCell;
#
#[derive(Debug)]
struct Node {
value: i32,
parent: RefCell<Weak<Node>>,
children: RefCell<Vec<Rc<Node>>>,
}
#
fn main() {
 let leaf = Rc::new(Node {
 value: 3,
u parent: RefCell::new(Weak::new()),	Comment by Carol Nichols: This line should NOT be Literal - Gray
 children: RefCell::new(vec![]),
 });

v println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());	Comment by Carol Nichols: This line should NOT be Literal - Gray

 let branch = Rc::new(Node {
 value: 5,
w parent: RefCell::new(Weak::new()),	Comment by Carol Nichols: This line should NOT be Literal - Gray
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

x *leaf.parent.borrow_mut() = Rc::downgrade(&branch);	Comment by Carol Nichols: This line should NOT be Literal - Gray

y println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());	Comment by Carol Nichols: This line should NOT be Literal - Gray
}
Listing 15-284: A leaf node with a Weak reference to its parent node, branch
Creating the leaf node looks similar to how creating the leaf node looked in Listing 15-273, with the exception of the parent field: leaf starts out without a parent, so we create a new, empty Weak<Node> reference instance u.
At this point, when we try to get a reference to the parent of leaf by using the upgrade method, we get a None value. We see this in the output from the first println! statement v:

leaf parent = None
When we create the branch node, it will also have a new Weak<Node> reference in the parent field w, sincbecause branch does no’t have a parent node. We still have leaf as one of the children of branch. Once we have the Node instance in branch, we can modify leaf to give it a Weak<Node> reference to its parent tx. We use the borrow_mut method on the RefCell<Weak<Node>> in the parent field of leaf, and then we use the Rc::downgrade function to create a Weak<Node> reference to branch from the Rc<Node> in branch.
When we print out the parent of leaf again y, this time we’ll get a Some variant holding branch: now leaf can now access its parent! When we print out leaf, we also avoid the cycle that eventually ended in a stack overflow like we had in Listing 15-261: the Weak<Node> references are printed as (Weak):
leaf parent = Some(Node { value: 5, parent: RefCell { value: (Weak) },
children: RefCell { value: [Node { value: 3, parent: RefCell { value: (Weak) },
children: RefCell { value: [] } }] } })
The lack of infinite output indicates that this code didn’t create a reference cycle. We can also tell this by looking at the values we get from calling Rc::strong_count and Rc::weak_count.
[bookmark: visualizing-changes-to-`strong_count`-an][bookmark: _Toc503815291]Visualizing Changes to strong_count and weak_count
Let’s look at how the strong_count and weak_count values of the Rc<Node> instances change by creating a new inner scope and moving the creation of branch into that scope. By doing so, This will let uswe can see what happens when branch is created and then dropped when it goes out of scope. The modifications are shown in Listing 15-295:
Filename: src/main.rs
fn main() {
 let leaf = Rc::new(Node {
 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

u println!(Comment by Carol Nichols: This line should NOT be Literal - Gray
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);

v {	Comment by Carol Nichols: This line should NOT be Literal - Gray
 let branch = Rc::new(Node {
 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

w println!(Comment by Carol Nichols: This line should NOT be Literal - Gray
 "branch strong = {}, weak = {}",
 Rc::strong_count(&branch),
 Rc::weak_count(&branch),
);

x println!(Comment by Carol Nichols: This line should NOT be Literal - Gray
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
y }	Comment by Carol Nichols: This line should NOT be Literal - Gray

z println!("leaf parent = {:?}", leaf.parent.borrow().upgrade());	Comment by Carol Nichols: This line SHOULD be Literal – Gray as well ass CodeB Wingding
{ println!(Comment by Carol Nichols: This line should NOT be Literal - Gray
 "leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
}
Listing 15-295: Creating branch in an inner scope and examining strong and weak reference counts
OnceAfter leaf is created, its Rc<Node> has a strong count of 1 and a weak count of 0 u. In the inner scope v, we create branch and associate it with leaf, at which point when we print the counts w, the Rc<Node> in branch will have a strong count of 1 and a weak count of 1 (for leaf.parent pointing to branch with a Weak<TNode>). HereWhen we print the counts in leaf x, we’ll see it will havewill have a strong count of 2, because branch now has a clone of the Rc<Node> of leaf stored in branch.children, but will still have a weak count of 0.	Comment by AnneMarieW: Where are you referring to? in the inner scope? Perhaps say, “Also in the inner scope, . . . “
When the inner scope ends y, branch goes out of scope and the strong count of the Rc<Node> decreases to 0, so its Node getis dropped. The weak count of 1 from leaf.parent has no bearing on whether or not Node is dropped or not, so we don’t get any memory leaks!
If we try to access the parent of leaf after the end of the scope, we’ll get None again z. At the end of the program {, the Rc<Node> in leaf has a strong count of 1 and a weak count of 0, because the variable leaf is now the only reference to the Rc<Node> again.
All of the logic that manages the counts and value dropping is built in to Rc<T> and Weak<T> and their implementations of the Drop trait. By specifying that the relationship from a child to its parent should be a Weak<T> reference in the definition of Node, we’re able to have parent nodes point to child nodes and vice versa without creating a reference cycle and memory leaks.
[bookmark: summary][bookmark: _Toc503815292]Summary
This chapter covered how you can to use smart pointers to make different guarantees and trade-offs than those Rust makes by default with regular references. The Box<T> type has a known size and points to data allocated on the heap. The Rc<T> type keeps track of the number of references to data on the heap, so that data can have multiple owners. The RefCell<T> type with its interior mutability gives us a type that we can be used when we need an immutable type but need the ability to change an inner value of that type,; it also and enforces the borrowing rules at runtime instead of at compile time.
We aAlso discussed were the Deref and Drop traits that enable a lot of the functionality of smart pointers. We explored reference cycles that can cause memory leaks, and how to prevent them using Weak<T>.
If this chapter has piqued your interest and you want to implement your own smart pointers, check out “The RustonNomicon” at https://doc.rust-lang.org/stable/nomicon/ for even more useful information.	Comment by AnneMarieW: Au: It looks the title is actually “The Rustonomicon”	Comment by Carol Nichols: Yes, you are correct, we have been mistakenly been referring to it by its nickname. We’ll need to update Chapters 8 and 16 as well.
Next, let’s we’ll talk about concurrency in Rust. WeYou’ll even learn about a few new smart pointers.
image2.png

image3.png

image4.png

image5.png

image1.png

