
SLAT: Information Flow Analysis in Security Enhanced Linux∗

Joshua D. Guttman Amy L. Herzog John D. Ramsdell

November 6, 2004

This paper describes the theoretical foundation of
the Security Enhanced Linux policy analysis tool
Slat [2]. The goal of this paper is an accurate and
complete treatment of the subject, and is not in-
tended as an introduction to this topic.

1 Information Flow Policy

The SELinux security server makes decisions about
system calls, for instance whether a process should
be allowed to write to a particular file, or whether a
process should be allowed to overlay its memory with
the binary image contained at a particular pathname,
and continue executing the result. For each system
call, SELinux specifies one or more checks that must
be satisfied in order for the call to be allowed. Each
check is labeled by a pair consisting of a class and
a permission. The class describes a kind of resource
that the access involves, such as file, process, or
filesystem. The permission describes the action it-
self, such as read, write, mount, or execute. We
will use the term resource to cover any object in an
SELinux system; processes, files, sockets, etc. are all
regarded as resources. Each resource has a security
context which summarizes its security relevant status.

In making a check, the security server receives as
input two facts, the security contexts of the process
and of another resource involved in the system call.
A security context is a tuple consisting of three com-
ponents,1 called a type, a role, and a user. The user

∗This work was funded by the United States National Se-
curity Agency. Authors’ address: The MITRE Corporation,
202 Burlington Road, Bedford MA, 01730-1420.

1or four components, if the system is compiled with sup-
port for multi-level security as it can be, but normally is not.

is similar in intent to the normal Unix notion of user,
and represents the person on behalf of whom the sys-
tem is executing a process or maintaining a resource.
The role, derived from the literature on role-based
access control, is an intermediate notion intended to
specify that collections of users should be permit-
ted to execute corresponding collections of programs.
The main purpose of the user component is to specify
what roles that user is permitted; the main purpose
of the role is to specify what types of processes those
users are permitted to execute. The type specifica-
tions do the remainder of the work.

A labeled-transition system is used to model the in-
formation flow policy specified by SELinux policy file.
A security context is a state in the transition system,
and an event labels each transition. We now formally
define an information flow policy. The derivation of
an information flow policy from an SELinux policy file
is described in Section 2.

As stated above, security context is a type-role-
user triple. For a given information flow policy, let T
be the set of names for types, R be the set of names
for roles, and U be the set of names for users, so that
the set of security contexts S is T ×R× U .

An event is a class-permission pair. Let C be the
set of names for classes, and P be the set of names
for permissions, so that the set of events G is C ×P .

Formally, an information flow policy is a 4-tuple
(S,G,∆, S0), where S is a finite set of security con-
texts, G is a finite set of events, S0 ⊆ S is the set
of initial security contexts, and ∆ ⊆ S × G × S
is the information flow transition relation. When

For definiteness, we will assume MLS support is not compiled
into the kernel in the remainder of this paper, although the
approach we describe is equally applicable if it is.

1

(s, g, s′) ∈ ∆, the information flow policy allows in-
formation to flow from an object labeled by s to one
labeled by s′ as a result of event g.

The set of information flow paths of length n, Pn,
is the subset of (S ×G)n × S, such that

(s0, g0, s1, g1, . . . , sn−1, gn−1, sn)

is in Pn if and only if s0 ∈ S0 and (si, gi, si+1) ∈ ∆
for all i < n. Note that P 0 = S0.

A path is in the set of infinite information flow
paths, P∞, if and only if s0 ∈ S0 and (si, gi, si+1) ∈
∆ for all i.

1.1 Logic of the Transition System

We use many-sorted first order logic with equality.
The sorts are T,R,U,C, and P . We assume that
the language has a constant for each defined value
of these sorts, and include axioms stating that ev-
ery value of a particular sort is equal to one of the
constants of that sort. No predicates other than
equality are needed. We are interested in formu-
las in this language involving at most the free vari-
ables t, r, u, c, p, t′, r′, u′, which we call information
flow transition formulas. Here a lowercase variable
ranges over the sort whose name is the same letter in
uppercase. Primed variables refer to the value in the
next state, and unprimed variables refer to the value
in the current state.

A state formula σ is a formula containing at most
the free variables t, r, u. A event formula γ is a for-
mula containing at most the free variables c, p. We
write δ for general information flow transition formu-
las.

For our purposes, we need not distinguish between
a set of tuples and a formula true of exactly the same
tuples. Furthermore, within formulas, we will write
t ∈ {τ1, . . . , τn} as a shorthand for t = τ1∨· · ·∨t = τn.

2 Deriving a Policy

An SELinux configuration file defines the names for
classes, permissions, types, and users, and all but one
name for the roles. The role object r is an implicit
part of a configuration.

The main component in a configuration file is the
type, accounting for at least 22,000 out of the 22,500
access control statements in the example policy file
contained in the distribution. The type is used to
specify the detailed interactions permitted between
processes and other resources. Each type specifica-
tion determines some actions that are allowed; in the
SELinux configuration file they are introduced by the
keyword allow. For a request to succeed, some allow
statement in the configuration file must authorize it.

The syntax of a type allow statement follows.

allow Ts Tt : Ca Pa;

Each allow statement specifies a set of process
(source) types Ts, a set of resource (target) types Tt,
a set of classes Ca, and a set of permissions Pa. If a
process whose type is in Ts requests an action with
a class-permission pair in Ca ×Pa against a resource
with type in Tt, then that request is authorized. As
an information flow transition relation formula, an
allow statement means:

αt[[allow Ts Tt : Ca Pa;]] =
(t ∈ Ts ∧ t′ ∈ Tt \ {self} ∧ c ∈ Ca ∧ p ∈ Pa) ∨
(self ∈ Tt ∧ t ∈ Ts ∧ t = t′ ∧ c ∈ Ca ∧ p ∈ Pa).

The special identifier self is not the name of a type,
but is instead used like a target type to indicate that
the statement should be applied between each source
type and itself. Thus, the formula generated for an
allow statement must be simplified so as to eliminate
references to self.

When a process changes security context, the role
may change, but only when permitted by another
form of the allow statement.

allow Rc Rn;

The role allow statement permits a process whose
current role is in Rc to transition to one with a new
role in Rn. As a formula, the statement means:

αr[[allow Rc Rn;]] =
c = process ∧ p = transition⇒

r ∈ Rc ∧ r′ ∈ Rn.

A role is declared with the following syntax.

role ρ types Tr;

2

In addition to declaring the role name ρ, the state-
ment defines the set of types with which the role is
permitted to be associated. As a formula, the state-
ment means:

βr[[role ρ types Tr;]] = r = ρ ∧ t ∈ Tr.

A user is declared with the following syntax.

user µ roles Ru;

In addition to declaring the user name µ, the state-
ment defines the set of roles the user is permitted to
assume. As a formula, the statement means:

βu[[user µ roles Ru;]] = u = µ ∧ r ∈ Ru.

Constraint definitions specify additional limits on
transitions with the following syntax.

constraint Cc Pc δ;

The constraint expression δ has a natural translation
as a formula as long as role operations are limited to
equality testing, the case we observe. As a formula,
the statement means:

χ[[constraint Cc Pc δ;]] = c ∈ Cc ∧ p ∈ Pc ⇒ δ.

Since we abstract from auditing and other issues
that do not affect information-flow security goals,
the configuration file defines five relations of interest.
Each relation is built up by statements contained in
the same configuration file.

• αt is the formula built up by disjoining the mean-
ing of every type allow statement.

• αr is the formula built up by disjoining the
meaning of every role allow statement.

• βr is the formula built up by disjoining the
meaning of every role statement to the formula
r = object r ∧ t /∈ Tp, where Tp is the set of
process types.

• βu is the formula built up by disjoining the
meaning of every user statement to the atomic
proposition r = object r. As a result, βu ∧ r =
object r holds for all user names.

• χ is the formula built up by conjoining the mean-
ing of every constraint statement.

In what follows, we write δ̃ to mean the formula de-
rived from δ by interchanging primed and unprimed
variables.

Some events (file write, for instance) transfer in-
formation from process to resource, while others (file
read, for instance) transfer it from resource to pro-
cess. Let ψ be a class name, and π be a permis-
sion name. SELinux has a file that describes how
each (ψ, π) transfers information, whether like a read,
like a write, in both directions, or in neither. From
it, we extract descriptions of two sets, γw and γr.
When event (ψ, π) ∈ γw, it has write-like flow, while
(ψ, π) ∈ γr means it has read-like flow. The deriva-
tion of the two sets of flow related events follows.

For class ψ, the set of compatible permissions is
declared in the policy file with the following two syn-
tactic forms.

common φ { π+ }
class ψ [inherits φ]? { π+ }

If the class statement does not include an inherits
phrase, the set of compatible permissions is just the
ones listed between the curly braces, otherwise, the
permissions in the common statement named φ are
also included.

In the SELinux file that describes the direction of
information flow, the relevant statements appear in
the following two syntactic forms.

common φ { F+ }
class ψ { F+ }

where F associates a flow direction with a permis-
sion π.

F ::= π : E.
E ::= none |D | {D} | {D,D}.
D ::= read | write.

As a write-like flow formula, the class statement
of a class that was declared without an inherits
phrase in the policy file means:

γw[[class ψ { F+ }]] =
c = ψ ∧ p ∈ {π1, . . . , πn}.

3

where {π1, . . . , πn} is the set of permissions declared
to be write-like in the body of the class statement.
For a class declared with an inherits phrase, the
write-like permissions in its associated common state-
ment are also included. The formula γw is the dis-
junction of the write-like meaning of every class
statement in the file.

The direction-flow file contains only a simple ap-
proximation. It does not take into account indirect
flows caused by error conditions or variations in tim-
ing, and it does not consider flow into other system
resources besides the process requesting the event and
the resource against which the event is requested.
This is why our analysis avoids the subtleties of covert
channels.

Information flows from an entity with security con-
text (t, r, u) to (t′, r′, u′) if an event (c, p) has write-
like flow and

αt ∧ αr ∧ βr ∧ βu ∧ β̃r ∧ β̃u ∧ χ.

When event (c, p) has read-like flow, information
flows from an entity with security context (t, r, u) to
(t′, r′, u′) if

α̃t ∧ α̃r ∧ β̃r ∧ β̃u ∧ βr ∧ βu ∧ χ̃.

The information flow transition relation formula δ
is the disjunction of the previous two formulas.

βr ∧ βu ∧ β̃r ∧ β̃u

∧ ((γw ∧ αt ∧ αr ∧ χ)
∨ (γr ∧ α̃t ∧ α̃r ∧ χ̃))

The initial states of the information flow policy are
the ones that are compatible with βr and βu so that

σ = βr ∧ βu.

Inspecting δ and σ leads to the conclusion that
every reachable state is an initial state.

3 Information Flow Diagrams

Some information flow policy goals stipulate which
sequences of causal interactions are permissible. It is

easy to visualize these causal chains using something
we call information flow diagrams.

There are four kinds of freedom in constructing the
chains. First, we can define what security contexts
appear at a stage in the process; we refer to these sets
by symbols such as σi. Second, we may characterize
what events may occur at a particular stage; we refer
to these sets by symbols such as γi. Third, we may
be interested in the consequence of a single event,
or a sequence of iterated events. We indicate these
by decorating γi by a superscript 1 or +, respectively.
Let λi be a label of one of the forms γ1

i or γ+
i . Finally,

we may specify exceptional security contexts, σe, or
exceptional events, γe, that should be ignored by the
assertion–a concept to be made precise later. Then
we can notate an information flow policy goal in the
form:

σ0
λ0−→ σ1

λ1−→ · · · λn−2−→ σn−1
λn−1−→ σn [σe; γe] (1)

An assertion of an information flow policy in the
above form is called an information flow diagram.

We interpret this information flow policy as an as-
sertion about all paths from σ0 to σn. It asserts that
this path must encounter the σi in the order given,
executing events from λi in each stage, and that there
must be just one such event if the decoration is 1 and
may be more events if the decoration is +. Addi-
tionally, any path that visits any exceptional secu-
rity contexts in σe before getting to σn, or gets there
via the exceptional events in γe, does not violate the
assertion.

An information flow diagram prohibits paths that
contain certain prefixes. An information flow policy
satisfies the information flow policy goal expressed as
an information flow diagram if the information flow
policy allows no prohibited paths. The paths prohib-
ited by an information flow diagram of length n all
must meet at least the following assertions:

sm ∈ σn, for some m,
sj ∈ σ0, for some j < m,
sk /∈ σe, for all j ≤ k < m, and
gk /∈ γe, for all j ≤ k < m.

(2)

4

3.1 Order Assertions

One form of path prohibited by an information flow
diagram is one that visits states in the wrong order.
A path satisfying Eqn. 2 is prohibited if there exists
an i < n such that the path visits a state in σi+1

without having previously visited a state in σi. In
other words, let sm ∈ σn and sj ∈ σ0. A path is
prohibited if there is some k with j ≤ k ≤ m, that
satisfies:

sk ∈ σi+1 ∧ s` /∈ σi for all j ≤ ` < k. (3)

3.2 Event Assertions

The other form of path prohibited by an information
flow diagram is one that wanders from its bounds. A
path satisfying Eqn. 2 is prohibited if having reached
a state in σi, the path fails to reach a state in σi+1

using events in γi.
Let Θi,j be the assertion that a path satisfying

Eqn. 2 properly reaches σi at step j. The assertion
Θi,j is false whenever j > m. The assertion Θ0,j is
true when sj ∈ σ0. Assertion Θi+1,j′ is true when

Θi,j ∧ gj ∈ γi ∧ gk ∈ γi ∧ sk /∈ σi+1 ∧ sj′ ∈ σi+1,

for all k with j < k < j′. When λi = γ1
i , i.e, the

single event case, j′ = j + 1.
A path at step j wanders at σi in a single step

event (λi = γ1
i) if

Θi,j ∧ (j ≥ m ∨ gj /∈ γi ∨ sj+1 /∈ σi+i). (4)

A path at step j wanders at σi in a multiple step
event (λi = γ+

i) if Θi,j and

s` /∈ σi+1 for all j < ` ≤ m, or
gk /∈ γi while s` /∈ σi+1,

(5)

for some k and all ` such that j < ` ≤ k + 1 ≤ m.

4 Model Checking

Model checking is used to automatically show that an
information flow policy satisfies an information flow
policy goal stated as an information flow diagram.

This section explains how an information flow policy
is stated in the formalisms used by model checkers.

Following [1], we derive a Kripke structure from
the first order formulas S0 and R that represent an
information flow policy (S,G, δ, σ).

There are six forms of atomic propositions–one
form for each of the six system variables, t, r, u, c, p,
and k. The first five forms are identical to the ones
defined at the end of Section 1. The system variable
k ranges over boolean values. When k is asserted
to be false, the atomic proposition is ¬k, and when
true, the atomic proposition is written simply as k.
The boolean system variable k is used to construct
a Kripke structure with a transition relation that is
total. It asserts that a state is okay.

The formula S0 is k ⇒ σ. The formula R is k′ ⇔
k ∧ δ.

A Kripke structure can be derived from S0 and R
as follows. The set of states is T ×R×U×C×P ×B,
where B is the set of boolean values.

The formula S0 implies that the initial state of the
Kripke structure contains members of σ when k is
true. It has all members of S when k is false.

The formula R implies that the transition relation
of the Kripke structure is total. Whenever k is false,
any transition is allowed as long as k′ is false. When-
ever k is true, the relation allows a transition when
(s, g, s′) ∈ δ and k′ is true, and allows a transition
when (s, g, s′) /∈ δ and k′ is false. Clearly, this tran-
sition relation is total. Additionally, k′ ⇒ k, that is,
k is true in the next state only if it is in the current
state.

The labeling function of the Kripke structure is
obvious from this construction.

Inspecting S0 and R leads to the conclusion that
every reachable state is an initial state.

5 Diagrams as CTL Assertions

We translate the semantics of an instance of an in-
formation flow diagram into assertions in Compu-
tational Tree Logic (CTL) [1, Ch. 3]. Because all
reachable states are initial states, assertions of inter-
est assume the initial state of a path is in σ0. Had
the Kripke structure not had this property, assertions

5

would have had to be asserted globally using the AG
operator.

5.1 Order Assertions

The first set of assertions states that if we move to
σn from σ0, we visit all intermediate σi in the appro-
priate order:

σ0 ⇒ A[σ̂i R (σi+1 ⇒ A[σe ∨ γe R ¬(σn ∧ k)])], (6)

where 1 ≤ i < n, and σ̂i = σi ∨ σe ∨ γe.
To understand these assertions, consider what hap-

pens when one fails. When assertion i fails, the fol-
lowing is true:

σ0 ∧E[¬σ̂i U (σi+1 ∧E[¬(σe ∨ γe) U σn ∧ k])].

In words, the assertion says that there is some path
from an initial state in σ0, that reaches a part of
σi+1 that eventually leads to σn without visiting an
exception, and between σ0 and σi+1 avoids security
contents in σi ∨ σe, and events in γe. The properties
of the transition relation ensure that the prefix of the
path that ends in a state denoted by σn contains only
states in which k is true.

5.2 Event Assertions

The second set of assertions states that a causal chain
from σ0 to σn uses acceptable events at each step. It
uses events in γ0 until a state in σ1 is reached, and
then uses events in γ1 until a state in σ2 is reached,
and so forth.

The set of assertions is given by recurrence rela-
tions.

¬f i
0, 0 ≤ i < n, (7)

where for j < i, let γ̂i = γi ∧ ¬σe ∧ ¬γe in

f i
j = σj ∧ γ̂j ∧EX f i

j+1, if λj = γ1
j ,

f i
j = σj ∧ γ̂j ∧EXE[γ̂j U f i

j+1], if λj = γ+
j ,

and
f i

i = σi ∧ (¬γi ∧ g ∨ γ̂i ∧EXhi),

where
g = E[¬(σe ∨ γe) U σn ∧ k],

and when λi = γ1
i ,

hi = ¬σi+i ∧ g,

and when λi = γ+
i ,

hi = E[¬σ̂i+1 U ¬γi ∧ ¬σi+1 ∧ g].

To understand the assertions defined by Eqn. 7,
consider what happens when one fails. When asser-
tion i fails, f i

0 is true. In words, this assertion says
that there is some path that goes through σ0, . . . , σi

as prescribed by the information flow diagram, how-
ever, something goes wrong after this point. Asser-
tion f i

i states that after reaching σi, and while avoid-
ing σi+1, the path finds a state that leads to σn with-
out visiting an exception. This state does not have a
security context in σi+1.

If the CTL assertions in Eqns. 6 and 7 hold, then
the information flow policy expressed in a diagram
of the form shown in Eqn. 1 is true. These general
forms make security goal statements simple to pro-
duce: appropriate contexts, classes, and permissions
can simply be substituted for the variables in Eqn. 1
as appropriate.

6 Diagrams as LTL Assertions

We translate the semantics of an instance of an infor-
mation flow diagram into assertions in Linear Tem-
poral Logic (LTL) [1, Ch. 3].

6.1 Order Assertions

The first assertion states that if we move to σn from
σ0 along a non-exceptional path, a security context
in σi occurs before the first occurrence of a security
context in σi+1:

σ0 ∧ (¬σe ∧ ¬γe) U (σn ∧ k) ⇒
n−1∧
i=1

σi R ¬σi+1. (8)

The operator R (“releases”) asserts that its right
hand operand is true and remains true until its left
hand operator has been true at least once. Thus, this
formula asserts that each set σi+1 is not encountered

6

until after σi has been encountered, along paths from
σ0 to σn.

Here is another way to state the same thing.

σ0 ⇒ σ̂i R (σi+1 ⇒ (σe ∨ γe) R ¬(σn ∧ k))

where 1 ≤ i < n, and σ̂i = σi ∨ σe ∨ γe.

6.2 Event Assertions

The second assertion states that a causal chain from
σ0 to σn uses acceptable events at each step. It uses
events in γ0 until a state in σ1 is reached, and then
uses events in γ1 until a state in σ2 is reached, and
so forth:

σ0 ∧ (¬σe ∧ ¬γe) U (σn ∧ k)
⇒ γ0 O0 (σ1 ∧ γ1 O1 (σ2 . . .)).

(9)

where γiOi f = γi ∧X f for a single step event (λi =
γ1

i), and γi Oi f = γi ∧X(γi U f) for a multiple step
event (λi = γ+

i).

References

[1] Edmund M. Clarke, Jr., Orna Grumberg, and
Doron A. Peled. Model Checking. MIT Press,
2001.

[2] Joshua D. Guttman, Amy L. Herzog, and John D.
Ramsdell. Information flow in operating sys-
tems: Eager formal methods. IFIP WG 1.7 Work-
shop on Issues in the Theory of Security, April
2003. http://www.dsi.unive.it/IFIPWG1_7/
wits2003.html.

7

