
THE GENERIC MAPPING TOOLS

GMT Documentation
Release 5.1.1

P. Wessel, W. H. F. Smith,

R. Scharroo, J. Luis, and F. Wobbe

March 01, 2014

Contents

1 A Reminder 3

2 Copyright and Caveat Emptor! 5

3 Preface 7

4 New Features in GMT 5 9

4.1 New programs . 9
4.2 New common options . 10
4.3 Updated common options . 11
4.4 New default parameters . 11
4.5 General improvements . 12
4.6 Program-specific improvements . 13
4.7 Incompatibilities between GMT 5 and GMT 4 . 16

5 Switching between different GMT versions 21

5.1 Setup of gmtswitch . 21
5.2 Version selection with helper function . 22

6 Introduction 25

6.1 References . 27

7 GMT Overview and Quick Reference 29

7.1 GMT summary . 29
7.2 GMT quick reference . 31

8 General Features 35

8.1 GMT units . 35
8.2 GMT defaults . 37
8.3 Command line arguments . 39
8.4 Standardized command line options . 40
8.5 Command line history . 57
8.6 Usage messages, syntax- and general error messages 58
8.7 Standard input or file, header records . 58
8.8 Verbose operation . 59
8.9 Program output . 59
8.10 Input data formats . 59
8.11 Output data formats . 60

i

8.12 PostScript features . 60
8.13 Specifying pen attributes . 60
8.14 Specifying area fill attributes . 62
8.15 Specifying Fonts . 63
8.16 Stroke, Fill and Font Transparency . 63
8.17 Color palette tables . 64
8.18 The Drawing of Vectors . 66
8.19 Character escape sequences . 66
8.20 Grid file format specifications . 67
8.21 Modifiers for changing the grid coordinates . 69
8.22 Modifiers for COARDS-compliant netCDF files . 70
8.23 Modifiers to read and write grids and images via GDAL 72
8.24 The NaN data value . 73
8.25 Directory parameters . 74

9 GMT Coordinate Transformations 75

9.1 Cartesian transformations . 75
9.2 Linear projection with polar coordinates (-Jp -JP) . 79

10 GMT Map Projections 81

10.1 Conic projections . 81
10.2 Azimuthal projections . 84
10.3 Cylindrical projections . 93
10.4 Miscellaneous projections . 103

11 Creating GMT Graphics 111

11.1 The making of contour maps . 111
11.2 Image presentations . 113
11.3 Spectral estimation and xy-plots . 113
11.4 A 3-D perspective mesh plot . 118
11.5 A 3-D illuminated surface in black and white . 119
11.6 Plotting of histograms . 121
11.7 A simple location map . 122
11.8 A 3-D histogram . 124
11.9 Plotting time-series along tracks . 125
11.10 A geographical bar graph plot . 125
11.11 Making a 3-D RGB color cube . 126
11.12 Optimal triangulation of data . 128
11.13 Plotting of vector fields . 130
11.14 Gridding of data and trend surfaces . 132
11.15 Gridding, contouring, and masking of unconstrained areas 133
11.16 Gridding of data, continued . 135
11.17 Images clipped by coastlines . 138
11.18 Volumes and Spatial Selections . 140
11.19 Color patterns on maps . 142
11.20 Custom plot symbols . 142
11.21 Time-series of RedHat stock price . 146
11.22 World-wide seismicity the last 7 days . 147
11.23 All great-circle paths lead to Rome . 150
11.24 Data selection based on geospatial criteria . 152
11.25 Global distribution of antipodes . 152
11.26 General vertical perspective projection . 154

ii

11.27 Plotting Sandwell/Smith Mercator img grids . 155
11.28 Mixing UTM and geographic data sets . 157
11.29 Gridding spherical surface data using splines . 159
11.30 Trigonometric functions plotted in graph mode . 160
11.31 Using non-default fonts in PostScript . 162
11.32 Draping an image over topography . 165
11.33 Stacking automatically generated cross-profiles . 166
11.34 Using country polygons for plotting and shading . 167
11.35 Spherical triangulation and distance calculations . 167
11.36 Spherical gridding using Renka’s algorithms . 170
11.37 Spectral coherence between gravity and bathymetry grids 171
11.38 Histogram equalization of bathymetry grids . 174
11.39 Evaluation of spherical harmonics coefficients . 175
11.40 line simplification and area calculations . 175

12 Creating GMT Animations 179

12.1 Animation of the sine function . 180
12.2 Examining DEMs using variable illumination . 182
12.3 Orbiting a static map . 183
12.4 Flying over topography . 184

13 A. GMT Supplemental Packages 187

13.1 gshhg: GSHHG data extractor . 187
13.2 img: gridded altimetry extractor . 187
13.3 meca: seismology and geodesy symbols . 187
13.4 mgd77: MGD77 extractor and plotting tools . 188
13.5 misc: Miscellaneous tools . 188
13.6 potential: Geopotential tools . 188
13.7 segyprogs: plotting SEGY seismic data . 188
13.8 spotter: backtracking and hotspotting . 188
13.9 x2sys: track crossover error estimation . 189

14 B. GMT File Formats 191

14.1 Table data . 191
14.2 Grid files . 192
14.3 Sun raster files . 196

15 C. Including GMT Graphics into your Documents 199

15.1 Making GMT Encapsulated PostScript Files . 199
15.2 Converting GMT PostScript to PDF or raster images 200
15.3 Examples . 202
15.4 Concluding remarks . 204

16 E. Predefined Bit and Hachure Patterns in GMT 205

17 F. Chart of Octal Codes for Characters 207

18 G. PostScript Fonts Used by GMT 211

18.1 Using non-default fonts with GMT . 212

19 H. Color Space: The Final Frontier 215

19.1 RGB color system . 215
19.2 HSV color system . 216

iii

19.3 The color cube . 217
19.4 Color interpolation . 218
19.5 Artificial illumination . 219
19.6 Thinking in RGB or HSV . 219
19.7 CMYK color system . 220

20 I. Filtering of Data in GMT 221

21 J. The GMT High-Resolution Coastline Data 223

21.1 Selecting the right data . 223
21.2 Format required by GMT . 223
21.3 The long and winding road . 223
21.4 The Five Resolutions . 225

22 K. GMT on non-UNIX Platforms 231

22.1 Introduction . 231
22.2 Cygwin and GMT . 231
22.3 MINGW|MSYS and GMT . 232

23 L. Of Colors and Color Legends 233

23.1 Built-in color palette tables . 233
23.2 Labeled and non-equidistant color legends . 233

24 M. Custom Plot Symbols 237

24.1 Background . 237
24.2 The macro language . 237

25 N. Annotation of Contours and “Quoted Lines” 243

25.1 Label Placement . 243
25.2 Label Attributes . 244
25.3 Examples of Contour Label Placement . 246
25.4 Examples of Label Attributes . 248
25.5 Putting it all together . 250

26 O. Special Operations 251

26.1 Running GMT in isolation mode . 251

27 P. The GMT Vector Data Format for OGR Compatibility 253

27.1 Background . 253
27.2 The OGR/GMT format . 253
27.3 OGR/GMT Metadata . 254
27.4 OGR/GMT Data . 256
27.5 Examples . 257

iv

GMT Documentation, Release 5.1.1

The Generic Mapping Tools

Technical Reference and Cookbook

Pål (Paul) Wessel

SOEST, University of Hawai’i at Manoa

Walter H. F. Smith

Laboratory for Satellite Altimetry, NOAA/NESDIS

Remko Scharroo

EUMETSAT, Darmstadt, Germany

Joaquim F. Luis

Universidade do Algarve, Faro, Portugal

Florian Wobbe

Alfred Wegener Institute, Germany

Figure 1: The four horsemen of the GMT apocalypse: Remko Scharroo, Paul Wessel, Walter H.F. Smith,
and Joaquim Luis at the GMT Developer Summit in Honolulu, Hawaii during February 14–18, 2011.

The Generic Mapping Tools (GMT) could not have been designed without the generous support of sev-
eral people. We gratefully acknowledge A. B. Watts and the late W. F. Haxby for supporting our efforts
on the original version 1.0 while we were their graduate students at Lamont-Doherty Earth Observa-
tory. Doug Shearer and Roger Davis patiently answered many questions over e-mail. The subroutine
gauss was written and supplied by Bill Menke. Further development of versions 2.0–2.1 at SOEST
would not have been possible without the support from the HIGP/SOEST Post-Doctoral Fellowship
program to Paul Wessel. Walter H. F. Smith gratefully acknowledges the generous support of the C. H.
and I. M. Green Foundation for Earth Sciences at the Institute of Geophysics and Planetary Physics,
Scripps Institution of Oceanography, University of California at San Diego. GMT series 3.x, 4.x, and
5.x owe their existence to grants EAR-93-02272, OCE-95-29431, OCE-00-82552, OCE-04-52126, and
OCE-1029874 from the National Science Foundation, which we gratefully acknowledge.

We would also like to acknowledge feedback, suggestions and bug reports from Michael Barck, Man-
fred Brands, Allen Cogbill, Stephan Eickschen, Ben Horner-Johnson, John Kuhn, Angel Li, Andrew
Macrae, Alex Madon, Ken McLean, Greg Neumann, Ameet Raval, Georg Schwarz, Richard Signell,
Peter Schmidt, Dirk Stoecker, Eduardo Suárez, Mikhail Tchernychev, Malte Thoma, David Townsend,
Garry Vaughan, William Weibel, and many others, including their advice on how to make GMT portable
to a wide range of platforms. John Lillibridge and Stephan Eickschen provided the original examples
11 and 32, respectively; Hanno von Lom helped resolve early problems with DLL libraries for Win32;

Contents 1

GMT Documentation, Release 5.1.1

Lloyd Parkes enabled indexed color images in PostScript; Kurt Schwehr maintains the packages; Wayne
Wilson implemented the full general perspective projection; and William Yip helped translate GMT to
POSIX ANSI C and incorporate netCDF 3. The SOEST RCF staff (Ross Ishida, Pat Townsend, and
Sharon Stahl) provided valuable help on Linux and web server support.

Honolulu, HI, Silver Spring, MD, Faro, Portugal, Darmstadt and Bremerhaven, Germany, March 2014

2 Contents

CHAPTER 1

A Reminder

If you feel it is appropriate, you may consider paying us back by citing our EOS articles on GMT and
technical papers on algorithms when you publish papers containing results or illustrations obtained using
GMT. The EOS articles on GMT are

• Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, Generic Mapping Tools: Improved
Version Released, EOS Trans. AGU, 94(45), p. 409-410, 2013. doi:10.1002/2013EO450001.

• Wessel, P., and W. H. F. Smith, New, improved version of Generic Mapping Tools released, EOS

Trans. AGU, 79(47), p. 579, 1998. doi:10.1029/98EO00426.

• Wessel, P., and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans.

AGU, 76(33), 329, 1995. doi:10.1029/95EO00198.

• Wessel, P., and W. H. F. Smith, Free software helps map and display data, EOS Trans. AGU,
72(41), 445–446, 1991. doi:10.1029/90EO00319.

Some GMT programs are based on algorithms we have developed and published separately, such as

• Kim, S.-S., and P. Wessel, Directional median filtering for regional-residual separation of
bathymetry, Geochem. Geophys. Geosyst., 9, Q03005, 2008. doi:10.1029/2007GC001850.
[dimfilter, misc supplement]

• Luis, J. F. and J. M. Miranda, Reevaluation of magnetic chrons in the North Atlantic between 35N
and 47N: Implications for the formation of the Azores Triple Junction and associated plateau, J.

Geophys. Res., 113, B10105, 2008. doi:10.1029/2007JB005573. [grdredpol, potential supple-
ment]

• Smith, W. H. F., and P. Wessel, Gridding with continuous curvature splines in tension, Geophysics,
55(3), 293–305, 1990. doi:10.1190/1.1442837. [surface]

• Wessel, P., Tools for analyzing intersecting tracks: The x2sys package, Computers & Geosciences,
36, 348–354, 2010. doi:10.1016/j.cageo.2009.05.009. [x2sys supplement]

• Wessel, P., A General-purpose Green’s function-based interpolator, Computers & Geosciences,
35, 1247–1254, 2009. doi:10.1016/j.cageo.2008.08.012. [greenspline]

• Wessel, P. and J. M. Becker, Interpolation using a generalized Green’s function for a spherical sur-
face spline in tension, Geophys. J. Int., 174, 21–28, 2008. doi:10.1111/j.1365-246X.2008.03829.x.
[greenspline]

Finally, GMT includes some code supplied by others, in particular the Triangle code used for Delaunay
triangulation. Its author, Jonathan Shewchuk, says

3

http://dx.doi.org/10.1002/2013EO450001
http://dx.doi.org/10.1029/98EO00426
http://dx.doi.org/10.1029/95EO00198
http://dx.doi.org/10.1029/90EO00319
http://dx.doi.org/10.1029/2007GC001850
http://dx.doi.org/10.1029/2007JB005573
http://dx.doi.org/10.1190/1.1442837
http://dx.doi.org/10.1016/j.cageo.2009.05.009
http://dx.doi.org/10.1016/j.cageo.2008.08.012
http://dx.doi.org/10.1111/j.1365-246X.2008.03829.x
http://www.cs.berkeley.edu/~jrs/

GMT Documentation, Release 5.1.1

“If you use Triangle, and especially if you use it to accomplish real work, I would like very
much to hear from you. A short letter or email describing how you use Triangle will mean
a lot to me. The more people I know are using this program, the more easily I can justify
spending time on improvements and on the three-dimensional successor to Triangle, which
in turn will benefit you.”

A few GMT users take the time to write us letters, telling us of the difference GMT is making in their
work. We appreciate receiving these letters. On days when we wonder why we ever released GMT we
pull these letters out and read them. Seriously, as financial support for GMT depends on how well we
can “sell” the idea to funding agencies and our superiors, letter-writing is one area where GMT users
can affect such decisions by supporting the GMT project.

4 Chapter 1. A Reminder

CHAPTER 2

Copyright and Caveat Emptor!

Copyright ©1991–2014 by P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis and F. Wobbe

The Generic Mapping Tools (GMT) is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software Foundation.

The GMT package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the file LICENSE.TXT in the GMT directory or the for more details.

Permission is granted to make and distribute verbatim copies of this manual provided that the copyright
notice and these paragraphs are preserved on all copies. The GMT package may be included in a bundled
distribution of software for which a reasonable fee may be charged.

GMT does not come with any warranties, nor is it guaranteed to work on your computer. The user
assumes full responsibility for the use of this system. In particular, the University of Hawaii School
of Ocean and Earth Science and Technology, the National Oceanic and Atmospheric Administration,
EUMETSAT, the Universidade do Algarve, Alfred Wegener Institute, the National Science Foundation,
Paul Wessel, Walter H. F. Smith, Remko Scharroo, Joaquim F. Luis, Florian Wobbe or any other indi-
viduals involved in the design and maintenance of GMT are NOT responsible for any damage that may
follow from correct or incorrect use of these programs.

5

GMT Documentation, Release 5.1.1

6 Chapter 2. Copyright and Caveat Emptor!

CHAPTER 3

Preface

While GMT has served the map-making and data processing needs of scientists since 1988 1, the current
global use was heralded by the first official release in EOS Trans. AGU in the fall of 1991. Since then,
GMT has grown to become a standard tool for many users, particularly in the Earth and Ocean Sciences
but the global collective of GMT users is incredibly diverse. Development has at times been rapid,
and numerous releases have seen the light of day since the early versions. For a detailed history of the
changes from release to release, see file ChangeLog in the main GMT directory. For a nightly snapshot
of ongoing activity, see the online page. For a historical perspective of the origins and development of
GMT see the video podcast “20 Years with GMT – The Generic Mapping Tools” produced following a
seminar given by Paul Wessel on the 20th anniversary of GMT; a link is available on the GMT website.

The success of GMT is to a large degree due to the input of the user community. In fact, most of the capa-
bilities and options in GMT programs originated as user requests. We would like to hear from you should
you have any suggestions for future enhancements and modification. Please send your comments to the
GMT help list or create an issue in the bug tracker (see http://gmt.soest.hawaii.edu/projects/gmt/issues/).

1 Version 1.0 was then informally released at the Lamont-Doherty Earth Observatory.

7

http://gmt.soest.hawaii.edu/projects/gmt/issues/

GMT Documentation, Release 5.1.1

8 Chapter 3. Preface

CHAPTER 4

New Features in GMT 5

GMT 5 represents a new branch of GMT development that mostly preserves the capabilities of the pre-
vious versions while adding over 200 new features to an already extensive bag of tricks. Our PostScript
library PSL has seen a complete rewrite as well and produce shorter and more compact PostScript.
However, the big news is aimed for developers who wish to leverage GMT in their own applications.
We have completely revamped the code base so that high-level GMT functionality is now accessible
via GMT “modules”. These are high-level functions named after their corresponding programs (e.g.,
GMT_grdimage) that contains all of the functionality of that program within the function. While cur-
rently callable from C/C++ only (with some support for F77), we are making progress on the Matlab
interface as well and there are plans to start on the Python version. Developers should consult the GMT
API documentation for more details.

We recommend that users of GMT 4 consider learning the new rules and defaults since eventually (in
some years) GMT 4 will be obsolete. To ease the transition to GMT 5 you may run it in compatibility
mode, thus allowing the use of many obsolete default names and command switches (you will receive a
warning instead). This is discussed below.

Below are six key areas of improvements in GMT 5.

4.1 New programs

First, a few new programs have been added and some have been promoted (and possibly renamed) from
earlier supplements:

gmt This is the only program executable that is distributed with GMT 5. To avoid problems with names-
pace conflicts (e.g., there are other, non-GMT programs with generic names like triangulate, sur-
face, etc.) all GMT 5 modules are launched from the gmt executable via “gmt module” calls (e.g,
gmt pscoast). For backwards compatibility (see below) we also offer symbolic links with the old
executable names that simply point to the gmt program, which then can start the correct module.
Any module whose name starts with “gmt” can be abbreviated, e.g., “gmt gmtconvert” may be
called as “gmt convert”.

gmt2kml A psxy -like tool to produce KML overlays for Google Earth. Previously found in the misc
supplement.

gmtconnect Connect individual lines whose end points match within given tolerance. Previously
known as gmtstitch in the misc supplement (this name is recognized when GMT is running in
compatibility mode).

gmtget Return the values of the specified GMT defaults. Previously only implemented as a shell script
and thus not available on all platforms.

9

GMT Documentation, Release 5.1.1

gmtinfo Report information about data tables. Previously known by the name minmax (this name is
still recognized when GMT is running in compatibility mode).

gmtsimplify A line-reduction tool for coastlines and similar lines. Previously found in the misc
supplement under the name gmtdp (this name is recognized when GMT is running in compatibility
mode).

gmtspatial Perform various geospatial operations on lines and polygons.

gmtvector Perform basic vector manipulation in 2-D and 3-D.

gmtwhich Return the full path to specified data files.

grdraster Extracts subsets from large global grids. Previously found in the dbase supplement.

kml2gmt Extract GMT data tables from Google Earth KML files. Previously found in the misc sup-
plement.

sph2grd Compute grid from list of spherical harmonic coefficients [We will add its natural comple-
ment grd2sph at a later date].

sphdistance Make grid of distances to nearest points on a sphere. Previously found in the sph
supplement.

sphinterpolate Spherical gridding in tension of data on a sphere. Previously found in the sph
supplement.

sphtriangulate Delaunay or Voronoi construction of spherical lon,lat data. Previously found in
the sph supplement.

We have also added a new supplement called potential that contains these five modules:

gmtgravmag3d: Compute the gravity/magnetic anomaly of a body by the method of Okabe.

gravfft: Compute gravitational attraction of 3-D surfaces and a little more by the method of Parker.

grdgravmag3d: Computes the gravity effect of one (or two) grids by the method of Okabe.

grdredpol: Compute the Continuous Reduction To the Pole, also known as differential RTP.

grdseamount: Compute synthetic seamount (Gaussian or cone, circular or elliptical) bathymetry.

Finally, the spotter supplement has added one new module:

grdpmodeler: Evaluate a plate model on a geographic grid.

4.2 New common options

First we discuss changes that have been implemented by a series of new lower-case GMT common
options:

• Programs that read data tables can now process the aspatial metadata in OGR/GMT files with the
new -a option. These can be produced by ogr2ogr (a GDAL tool) when selecting the -f “GMT”
output format. See Appendix P. The GMT Vector Data Format for OGR Compatibility for an
explanation of the OGR/GMT file format. Because all GIS information is encoded via GMT com-
ment lines these files can also be used in GMT 4 (the GIS metadata is simply skipped).

• Programs that read or write data tables can specify a custom binary format using the enhanced -b

option.

10 Chapter 4. New Features in GMT 5

GMT Documentation, Release 5.1.1

• Programs that read data tables can control which columns to read and in what order (and optionally
supply scaling relations) with the new -i option

• Programs that read grids can use new common option -n to control grid interpolation settings and
boundary conditions.

• Programs that write data tables can control which columns to write and in what order (and option-
ally supply scaling relations) with the new -o option.

• All plot programs can take a new -p option for perspective view from infinity. In GMT 4, only
some programs could do this (e.g., pscoast) and it took a program-specific option, typically -E

and sometimes an option -Z would be needed as well. This information is now all passed via -p

and applies across all GMT plotting programs.

• Programs that read data tables can control how records with NaNs are handled with the new -s

option.

• All plot programs can take a new -t option to modify the PDF transparency level for that layer.
However, as PostScript has no provision for transparency you can only see the effect if you convert
it to PDF.

4.3 Updated common options

Some of the established GMT common options have seen significant improvements; these include:

• The completely revised -B option can now handle irregular and custom annotations (see Section
Custom axes). It also has a new automatic mode which will select optimal intervals given data
range and plot size. The 3-D base maps can now have horizontal gridlines on xz and yz back
walls.

• The -R option may now accept a leading unit which implies the given coordinates are projected
map coordinates and should be replaced with the corresponding geographic coordinates given the
specified map projection. For linear projections such units imply a simple unit conversion for the
given coordinates (e.g., km to meter).

• Introduced -fp[unit] which allows data input to be in projected values, e.g., UTM coordinates
while -Ju is given.

While just giving - (the hyphen) as argument presents just the synopsis of the command line arguments,
we now also support giving + which in addition will list the explanations for all options that are not
among the GMT common set.

4.4 New default parameters

Most of the GMT default parameters have changed names in order to group parameters into logical
groups and to use more consistent naming. However, under compatibility mode (see below) the old
names are still recognized. New capabilities have been implemented by introducing new GMT default
settings:

• DIR_DCW specifies where to look for the optional Digital Charts of the World database (for
country coloring or selections).

• DIR_GSHHG specifies where to look for the required Global Self-consistent Hierarchical High-
resolution Geography database.

4.3. Updated common options 11

GMT Documentation, Release 5.1.1

• GMT_COMPATIBILITY can be set to 4 to allow backwards compatibility with GMT 4 command-
line syntax or 5 to impose strict GMT5 syntax checking.

• IO_NC4_CHUNK_SIZE is used to set the default chunk size for the lat and lon dimension of the
z variable of netCDF version 4 files.

• IO_NC4_DEFLATION_LEVEL is used to set the compression level for netCDF4 files upon output.

• IO_SEGMENT_MARKER can be used to change the character that GMT uses to identify new
segment header records [>].

• MAP_ANNOT_ORTHO controls whether axes annotations for Cartesian plots are horizontal or
orthogonal to the individual axes.

• GMT_FFT controls which algorithms to use for Fourier transforms.

• GMT_TRIANGULATE controls which algorithm to use for Delaunay triangulation.

• Great circle distance approximations can now be fine-tuned via new GMT default parameters
PROJ_MEAN_RADIUS and PROJ_AUX_LATITUDE. Geodesics are now even more accurate by
using the Vincenty [1975] algorithm instead of Rudoe’s method.

• GMT_EXTRAPOLATE_VAL controls what splines should do if requested to extrapolate beyond
the given data domain.

• PS_TRANSPARENCY allows users to modify how transparency will be processed when converted
to PDF [Normal].

4.5 General improvements

Other wide-ranging changes have been implemented in different ways, such as

• All programs now use consistent, standardized choices for plot dimension units (cm, inch, or
point; we no longer consider meter a plot length unit), and actual distances (choose spherical arc
lengths in degree, minute, and second [was c], or distances in meter [Default], foot [new], km,
Mile [was sometimes i or m], nautical mile, and survey foot [new]).

• Programs that read data tables can now process multi-segment tables automatically. This means
programs that did not have this capability (e.g., filter1d) can now all operate on the segments
separately; consequently, there is no longer a -m option.

• While we support the scaling of z-values in grids via the filename convention
name[=ID[/scale/offset[/nan]]] mechanism, there are times when we wish to scale the x,y
domain as well. Users can now append +uunit to their gridfile names, where unit is one of non-arc
units listed in Table distunits. This will convert your Cartesian x and y coordinates from the given
unit to meters. We also support the inverse option +Uunit, which can be used to convert your grid
coordinates from meters to the specified unit.

• CPT files also support the +u|Uunit mechanism. Here, the scaling applies to the z values. By
appending these modifiers to your CPT filenames you can avoid having two CPT files (one for
meter and one for km) since only one is needed.

• Programs that read grids can now directly handle Arc/Info float binary files (GRIDFLOAT) and
ESRI .hdr formats.

• Programs that read grids now set boundary conditions to aid further processing. If a subset then
the boundary conditions are taken from the surrounding grid values.

12 Chapter 4. New Features in GMT 5

GMT Documentation, Release 5.1.1

• All text can now optionally be filled with patterns and/or drawn with outline pens. In the past, only
pstext could plot outline fonts via -Spen. Now, any text can be an outline text by manipulating
the corresponding FONT defaults (e.g., FONT_TITLE).

• All color or fill specifications may append @transparency to change the PDF transparency level
for that item. See -t for limitations on how to visualize this transparency.

• GMT now ships with 36 standard color palette tables (CPT), up from 24.

4.6 Program-specific improvements

Finally, here is a list of numerous enhancements to individual programs:

• blockmean added -Ep for error propagation and -Sn to report the number of data points per
block.

• blockmedian added -Er[-] to return as last column the record number that gave the median
value. For ties, we return the record number of the higher data value unless -Er- is given (return
lower). Added -Es to read and output source id for median value.

• blockmode added -Er[-] but for modal value. Added -Es to read and output source id for modal
value.

• gmtconvert now has optional PCRE (regular expression) support, as well as a new option to
select a subset of segments specified by segment running numbers (-Q) and improved options to
extract a subset of records (-E) and support for a list of search strings via -S+fpatternfile.

• gmtinfo has new option -A to select what group to report on (all input, per file, or per segment).
Also, use -If to report an extended region optimized for fastest results in FFTs. and -Is to report
an extended region optimized for fastest results in surface. Finally, new option -D[inc] to align
regions found via -I with the center of the data.

• gmtmath with -Nncol and input files will add extra blank columns, if needed. A new option -E

sets the minimum eigenvalue used by operators LSQFIT and SVDFIT. Option -L applies operators
on a per-segment basis instead of accumulating operations across the entire file. Many new oper-
ators have been added (BITAND, BITLEFT, BITNOT, BITOR, BITRIGHT, BITTEST, BITXOR,
DIFF, IFELSE, ISFINITE, SVDFIT, TAPER). Finally, we have implemented user macros for long
or commonly used expressions, as well as ability to store and recall using named variables.

• gmtselect Takes -E to indicate if points exactly on a polygon boundary are inside or outside,
and -Z can now be extended to apply to other columns than the third.

• grd2cpt takes -F to specify output color model and -G to truncate incoming CPT to be limited
to a given range.

• grd2xyz takes -C to write row, col instead of x,y. Append f to start at 1, else start at 0. Alter-
natively, use -Ci to write just the two columns index and z, where index is the 1-D indexing that
GMT uses when referring to grid nodes.

• grdblend can now take list of grids on the command line and blend, and now has more blend
choices (see -C). Grids no longer have to have same registration or spacing.

• grdclip has new option -Si to set all data >= low and <= high to the between value, and -Sr to
set all data == old to the new value.

• grdcontour can specify a single contour with -C+contour and -A+contour.

4.6. Program-specific improvements 13

GMT Documentation, Release 5.1.1

• grdcut can use -S to specify an origin and radius and cut the corresponding rectangular area,
and -N to extend the region if the new -R domain exceeds existing boundaries.

• grdfft can now accept two grids and let -E compute the cross-spectra. The -N option allows for
many new and special settings, including ability to control data mirroring, detrending, tapering,
and output of intermediate results.

• grdfilter can now do spherical filtering (with wrap around longitudes and over poles) for
non-global grids. We have also begun implementing Open MP threads to speed up calculations
on multi-core machines. We have added rectangular filtering and automatic resampling to input
resolution for high-pass filters. There is also -Ffweightgrd which reads the gridfile weightgrd for
a custom Cartesian grid convolution. The weightgrd must have odd dimensions. Similarly added
-Foopgrd for operators (via coefficients in the grdfile opgrd) whose weight sum is zero (hence we
do not sum and divide the convolution by the weight sum).

• grdgradient now has -Em that gives results close to ESRI’s “hillshade””’ (but faster).

• grdinfo now has modifier -Tsdz which returns a symmetrical range about zero. Also, if -Ib is
given then the grid’s bounding box polygon is written.

• grdimage with GDAL support can write a raster image directly to a raster file (-A) and may plot
raster images as well (-Dr). It also automatically assigns a color table if none is given and can use
any of the 36 GMT color tables and scale them to fit the grid range.

• grdmask has new option -Ni|I|p|P to set inside of polygons to the polygon IDs. These may come
from OGR aspatial values, segment head -LID, or a running number, starting at a specified origin
[0]. Now correctly handles polygons with perimeters and holes. Added z as possible radius value
in -S which means read radii from 3rd input column.

• grdmath added many new operators such as BITAND, BITLEFT, BITNOT, BITOR, BI-
TRIGHT, BITTEST, BITXOR, DEG2KM, IFELSE, ISFINITE, KM2DEG, and TAPER. Finally,
we have implemented user macros for long or commonly used expressions, as well as ability to
store and recall using named variables.

• grdtrack has many new options. The -A option controls how the input track is resampled when
-C is selected, the new -C, -D options automatically create an equidistant set of cross-sectional
profiles given input line segments; one or more grids can then be sampled at these locations. The
-E option allows users to quickly specify tracks for sampling without needed input tracks. Also
added -S which stack cross-profiles generated with -C. The -N will not skip points that are outside
the grid domain but return NaN as sampled value. Finally, -T will return the nearest non-NaN
node if the initial location only finds a NaN value.

• grdvector can now take -Siscale to give the reciprocal scale, i.e., cm/ unit or km/unit. Also, the
vector heads in GMT have completely been overhauled and includes geo-vector heads that follow
great or small circles.

• grdview will automatically assigns a color table if none is given and can use any of the 36 GMT
color tables and scale them to fit the grid range.

• grdvolume can let -S accept more distance units than just km. It also has a modified -T[c|h]
for ORS estimates based on max curvature or height. -Cr to compute the outside volume between
two contours (for instances, the volume of water from a bathymetry grid).

• greenspline has an improved -C option to control how many eigenvalues are used in the
fitting, and –Sl adds a linear (or bilinear) spline.

• makecpt has a new -F option to specify output color representation, e.g., to output the CPT table
in h-s-v format despite originally being given in r/g/b, and -G to truncate incoming CPT to be

14 Chapter 4. New Features in GMT 5

GMT Documentation, Release 5.1.1

limited to a given range. It also adds Di to match the bottom/top values in the input cpt file.

• mapproject has a new -N option to do geodetic/geocentric conversions; it combines with -I

for inverse conversions. Also, we have extended -A to accept -Ao| O to compute line orientations
(-90/90). In -G, prepend - to the unit for (fast) flat Earth or + for (slow) geodesic calculations.

• project has added -G...[+] so if + is appended we get a segment header with information about
the pole for the circle. Optionally, append /colat in -G for a small circle path.

• ps2raster has added a -TF option to create multi-page PDF files. There is also modification
to -A to add user-specified margins, and it automatically detects if transparent elements have been
included (and a detour via PDF might be needed).

• psbasemap has added a -D option to place a map-insert box.

• psclip has added an extended -C option to close different types of clip paths.

• pscoast has added a new option -F which lets users specify one or more countries to paint, fill,
extract, or use as plot domain (requires DCW to be installed).

• pscontour is now similar to grdcontour in the options it takes, e.g., -C in particular. In
GMT 4, the program could only read a CPT file and not take a specific contour interval.

• pshistogram now takes -D to place histogram count labels on top of each bar and -N to draw
the equivalent normal distributions.

• pslegend no longer uses system calls to do the plotting. The modified -D allows for minor
offsets, while -F offers more control over the frame and fill.

• psrose has added -Wvpen to specify pen for vector (specified in -C). Added -Zu to set all radii
to unity (i.e., for analysis of angles only).

• psscale has a new option -T that paints a rectangle behind the color bar. The +n modifier to
-E draws a rectangle with NaN color and adds a label. The -G option will truncate incoming CPT
to be limited to the specified z-range. Modification -Np indicates a preference to use polygons to
draw the color bar.

• pstext can take simplified input via new option -F to set fixed font (including size), angle, and
justification. If these parameters are fixed for all the text strings then the input can simply be x y

text. It also has enhanced -DJ option to shorten diagonal offsets by
√
2 to maintain the same radial

distance from point to annotation. Change all text to upper or lower case with -Q.

• psxy and psxyz both support the revised custom symbol macro language which has been ex-
panded considerably to allow for complicated, multi-parameter symbols; see Appendix M. Cus-
tom Plot Symbols for details. Finally, we allow the base for bars and columns optionally to be
read from data file by not specifying the base value.

• sample1d offers -A to control resampling of spatial curves (with -I).

• spectrum1d has added -L to control removal of trend, mean value or mid value.

• surface has added -r to create pixel-registered grids and knows about periodicity in longitude
(given -fg). There is also -D to supply a “sort” break line.

• triangulate now offers -S to write triangle polygons and can handle 2-column input if -Z is
given. Can also write triangle edges as line with -M.

• xyz2grd now also offers -Af (first value encountered), -Am (mean, the default), -Ar (rms), and
-As (last value encountered).

Several supplements have new features as well:

4.6. Program-specific improvements 15

GMT Documentation, Release 5.1.1

• img2grd used to be a shell script but is now a C program and can be used on all platforms.

• mgd77convert added -C option to assemble *.mgd77 files from *.h77/*.a77 pairs.

• The spotter programs can now read GPlates rotation files directly as well as write this format.
Also, rotconverter can extract plate circuit rotations on-the-fly from the GPlates rotation
file.

Note: GMT 5 only produces PostScript and no longer has a setting for Encapsulated PostScript (EPS).
We made this decision since (a) our EPS determination was always very approximate (no consideration
of font metrics, etc.) and quite often wrong, and (b) ps2raster handles it exactly. Hence, users who
need EPS plots should simply process their PostScript files via ps2raster.

4.7 Incompatibilities between GMT 5 and GMT 4

As features are added and bugs are discovered, it is occasionally necessary to break the established
syntax of a GMT program option, such as when the intent of the option is non-unique due to a modifier
key being the same as a distance unit indicator. Other times we see a greatly improved commonality
across similar options by making minor adjustments. However, we are aware that such changes may
cause grief and trouble with established scripts and the habits of many GMT users. To alleviate this
situation we have introduced a configuration that allows GMT to tolerate and process obsolete program
syntax (to the extent possible). To activate you must make sure GMT_COMPATIBILITY is set to 4 in
your gmt.conf file. When not running in compatibility mode any obsolete syntax will be considered as
errors. We recommend that users with prior GMT 4 experience run GMT 5 in compatibility mode, heed
the warnings about obsolete syntax, and correct their scripts or habits accordingly. When this transition
has been successfully navigated it is better to turn compatibility mode off and leave the past behind.
Occasionally, users will supply an ancient GMT 3 syntax which may have worked in GMT 4 but is not
honored in GMT 5.

Here are a list of known incompatibilities that are correctly processed with a warning under compatibility
mode:

• GMT default names: We have organized the default parameters logically by group and renamed
several to be easier to remember and to group. Old and new names can be found in Table ob-

solete. In addition, a few defaults are no longer recognized, such as N_COPIES, PS_COPIES,
DOTS_PR_INCH, GMT_CPTDIR, PS_DPI, and PS_EPS, TRANSPARENCY. This also means
the old common option -c for specifying PostScript copies is no longer available.

• Units: The unit abbreviation for arc seconds is finally s instead of c, with the same change for
upper case in some clock format statements.

• Contour labels: The modifiers +kfontcolor and +sfontsize are obsolete, now being part of +ffont.

• Ellipsoids: Assigning PROJ_ELLIPSOID a file name is deprecated, use comma-separated param-
eters a, f−1 instead.

• Custom symbol macros: Circle macro symbol C is deprecated; use c instead.

• Map scale: Used by psbasemap and others. Here, the unit m is deprecated; use M for statute
miles.

• 3-D perspective: Some programs used a combination of -E, -Z to set up a 3-D perspective view,
but these options were not universal. The new 3-D perspective in GMT 5 means you instead use
the common option -p to configure the 3-D projection.

16 Chapter 4. New Features in GMT 5

GMT Documentation, Release 5.1.1

• Pixel vs. gridline registration: Some programs used to have a local -F to turn on pixel registra-
tion; now this is a common option -r.

• Table file headers: For consistency with other common i/o options we now use -h instead of -H.

• Segment headers: These are now automatically detected and hence there is no longer a -m (or
the older -M option).

• Front symbol: The syntax for the front symbol has changed from -Sfspacing/size[+d][+t][:offset]
to -Sfspacing[/size][+r+l][+f+t+s+c+b][+ooffset].

• Vector symbol: With the introduction of geo-vectors there are three kinds of vectors that can
be drawn: Cartesian (straight) vectors with -Sv or -SV, geo-vectors (great circles) with -S=, and
circular vectors with -Sm. These are all composed of a line (controlled by pen settings) and 0–2
arrow heads (control by fill and outline settings). Many modifiers common to all arrows have been
introduced using the +key[arg] format. The size of a vector refers to the length of its head; all other
quantities are given via modifiers (which have sensible default values). In particular, giving size as
vectorwidth/headlength/headwidth is deprecated. See the psxy man page for a clear description
of all modifiers.

• blockmean: The -S and -Sz options are deprecated; use -Ss instead.

• filter1d: The -Nncol/tcol option is deprecated; use -Ntcol instead as we automatically deter-
mine the number of columns in the file.

• gmtconvert: -F is deprecated; use common option -o instead.

• gmtdefaults: -L is deprecated; this is now the default behavior.

• gmtmath: -F is deprecated; use common option -o instead.

• gmtselect: -Cf is deprecated; use common specification format -C- instead. Also, -N...o is
deprecated; use -E instead.

• grd2xyz: -E is deprecated as the ESRI ASCII exchange format is now detected automatically.

• grdcontour: -m is deprecated as segment headers are handled automatically.

• grdfft: -M is deprecated; use common option -fg instead.

• grdgradient: -L is deprecated; use common option -n instead. Also, -M is deprecated; use
common option -fg instead.

• grdlandmask: -N...o is deprecated; use -E instead.

• grdimage: -S is deprecated; use -nmode[+a][+tthreshold] instead.

• grdmath: LDIST and PDIST now return distances in spherical degrees; while in GMT 4 it
returned km; use DEG2KM for conversion, if needed.

• grdproject: -S is deprecated; use -nmode[+a][+tthreshold] instead. Also, -N is deprecated;
use -D instead.

• grdsample: -Q is deprecated; use -nmode[+a][+tthreshold] instead. Also, -L is deprecated; use
common option -n instead, and -Nnx>/<ny is deprecated; use -Inx+>/<ny+ instead.

• grdtrack: -Q is deprecated; use -nmode[+a][+tthreshold] instead. Also, -L is deprecated; use
common option -n instead, and -S is deprecated; use common option -sa instead.

• grdvector: -E is deprecated; use the vector modifier +jc as well as the general vector specifi-
cations discussed earlier.

4.7. Incompatibilities between GMT 5 and GMT 4 17

GMT Documentation, Release 5.1.1

• grdview: -L is deprecated; use common option -n instead.

• nearneighbor: -L is deprecated; use common option -n instead.

• project: -D is deprecated; use --FORMAT_GEO_OUT instead.

• psbasemap: -G is deprecated; specify canvas color via -B modifier +gcolor.

• pscoast: -m is deprecated and have reverted to -M for selecting data output instead of plotting.

• pscontour: -Tindexfile is deprecated; use -Qindexfile.

• pshistogram: -Tcol is deprecated; use common option -i instead.

• pslegend: Paragraph text header flag > is deprecated; use P instead.

• psmask: -D...+nmin is deprecated; use -Q instead.

• psrose: Old vector specifications in Option -M are deprecated; see new explanations.

• pstext: -m is deprecated; use -M to indicate paragraph mode. Also, -S is deprecated as fonts
attributes are now specified via the font itself.

• pswiggle: -D is deprecated; use common option -g to indicate data gaps. Also, -N is deprecated
as all fills are set via the -G option.

• psxy: Old vector specifications in Option -S are deprecated; see new explanations.

• psxyz: Old vector specifications in Option -S are deprecated; see new explanations.

• splitxyz: -G is deprecated; use common option -g to indicate data gaps. Also, -M is depre-
cated; use common option -fg instead.

• triangulate: -m is deprecated; use -M to output triangle vertices.

• xyz2grd: -E is deprecated as the ESRI ASCII exchange format is one of our recognized formats.
Also, -A (no arguments) is deprecated; use -Az instead.

• grdraster: Now in the main GMT core. The Hskip field in grdraster.info is no longer
expected as we automatically determine if a raster has a GMT header. Also, to output x,y,z triplets
instead of writing a grid now requires -T.

• img2grd: -minc is deprecated; use -Iinc instead.

• psvelo: Old vector specifications are deprecated; see new explanations.

• mgd77convert: -4 is deprecated; use -D instead.

• mgd77list: The unit m is deprecated; use M for statute miles.

• mgd77manage: The unit m is deprecated; use M for statute miles. The -Q is deprecated; use
-nmode[+a][+tthreshold] instead

• mgd77path: -P is deprecated (clashes with GMT common options); use -A instead.

• backtracker: -C is deprecated as stage vs. finite rotations are detected automatically.

• grdrotater: -C is deprecated as stage vs. finite rotations are detected automatically. Also,
-Tlon/lat/angle is now set via -elon/lat/angle.

• grdspotter: -C is deprecated as stage vs. finite rotations are detected automatically.

• hotspotter: -C is deprecated as stage vs. finite rotations are detected automatically.

• originator: -C is deprecated as stage vs. finite rotations are detected automatically.

18 Chapter 4. New Features in GMT 5

GMT Documentation, Release 5.1.1

• rotconverter: -Ff selection is deprecated, use -Ft instead.

• x2sys_datalist: The unit m is deprecated; use M for statute miles.

Old Name New Name

ANNOT_FONT_PRIMARY FONT_ANNOT_PRIMARY

ANNOT_FONT_SECONDARY FONT_ANNOT_SECONDARY

ANNOT_FONT_SIZE_PRIMARY FONT_ANNOT_PRIMARY

ANNOT_FONT_SIZE_SECONDARY FONT_ANNOT_SECONDARY

ANNOT_MIN_ANGLE MAP_ANNOT_MIN_SPACING

ANNOT_OFFSET_PRIMARY MAP_ANNOT_OFFSET_PRIMARY

ANNOT_OFFSET_SECONDARY MAP_ANNOT_OFFSET_SECONDARY

BASEMAP_AXES MAP_FRAME_AXES

BASEMAP_FRAME_RGB MAP_DEFAULT_PEN

BASEMAP_TYPE MAP_FRAME_TYPE

CHAR_ENCODING PS_CHAR_ENCODING

D_FORMAT FORMAT_FLOAT_OUT

DEGREE_SYMBOL MAP_DEGREE_SYMBOL

ELLIPSOID PROJ_ELLIPSOID

FIELD_DELIMITER IO_COL_SEPARATOR

FRAME_PEN MAP_FRAME_PEN

FRAME_WIDTH MAP_FRAME_WIDTH

GLOBAL_Y_SCALE PS_SCALE_X

GLOBAL_X_SCALE PS_SCALE_X

GRID_CROSS_SIZE_PRIMARY MAP_GRID_CROSS_SIZE_PRIMARY

GRID_CROSS_SIZE_SECONDARY MAP_GRID_CROSS_SIZE_SECONDARY

GRID_PEN_PRIMARY MAP_GRID_PEN_PRIMARY

GRID_PEN_SECONDARY MAP_GRID_PEN_SECONDARY

GRIDFILE_FORMAT IO_GRIDFILE_FORMAT

GRIDFILE_SHORTHAND IO_GRIDFILE_SHORTHAND

HEADER_FONT_SIZE FONT_TITLE

HEADER_FONT FONT_TITLE

HEADER_OFFSET MAP_TITLE_OFFSET

HISTORY GMT_HISTORY

HSV_MAX_SATURATION COLOR_HSV_MAX_S

HSV_MAX_VALUE COLOR_HSV_MAX_V

HSV_MIN_SATURATION COLOR_HSV_MIN_S

HSV_MIN_VALUE COLOR_HSV_MIN_V

INPUT_CLOCK_FORMAT FORMAT_CLOCK_IN

INPUT_DATE_FORMAT FORMAT_DATE_IN

INTERPOLANT GMT_INTERPOLANT

INTERPOLANT GMT_INTERPOLANT

INTERPOLANT GMT_INTERPOLANT

LABEL_FONT FONT_LABEL

LABEL_OFFSET MAP_LABEL_OFFSET

LINE_STEP MAP_LINE_STEP

MAP_SCALE_FACTOR PROJ_SCALE_FACTOR

MEASURE_UNIT PROJ_LENGTH_UNIT

NAN_RECORDS IO_NAN_RECORDS

OBLIQUE_ANNOTATION MAP_ANNOT_OBLIQUE

OUTPUT_CLOCK_FORMAT FORMAT_CLOCK_OUT

Continued on next page

4.7. Incompatibilities between GMT 5 and GMT 4 19

GMT Documentation, Release 5.1.1

Table 4.1 – continued from previous page

Old Name New Name

OUTPUT_CLOCK_FORMAT FORMAT_CLOCK_OUT

OUTPUT_DATE_FORMAT FORMAT_DATE_OUT

OUTPUT_DEGREE_FORMAT FORMAT_GEO_OUT

PAGE_COLOR PS_PAGE_COLOR

PAGE_ORIENTATION PS_PAGE_ORIENTATION

PAPER_MEDIA PS_MEDIA

PLOT_CLOCK_FORMAT FORMAT_CLOCK_MAP

PLOT_DATE_FORMAT FORMAT_DATE_MAP

PLOT_DEGREE_FORMAT FORMAT_GEO_MAP

POLAR_CAP MAP_POLAR_CAP

PS_COLOR COLOR_HSV_MAX_V

TICK_LENGTH MAP_TICK_LENGTH_PRIMARY|SECONDARY

TICK_PEN MAP_TICK_PEN_PRIMARY|SECONDARY

TIME_FORMAT_PRIMARY FORMAT_TIME_PRIMARY_MAP

TIME_FORMAT_SECONDARY FORMAT_TIME_SECONDARY_MAP

UNIX_TIME_FORMAT FORMAT_TIME_STAMP

UNIX_TIME_POS MAP_LOGO_POS

UNIX_TIME MAP_LOGO

VECTOR_SHAPE MAP_VECTOR_SHAPE

VERBOSE GMT_VERBOSE

WANT_LEAP_SECONDS TIME_LEAP_SECONDS

X_ORIGIN MAP_ORIGIN_X

XY_TOGGLE IO_LONLAT_TOGGLE

Y_AXIS_TYPE MAP_ANNOT_ORTHO

Y_ORIGIN MAP_ORIGIN_Y

Y2K_OFFSET_YEAR TIME_Y2K_OFFSET_YEAR

Note: While TIME_LEAP_SECONDS is a recognized keyword it is currently not implemented and
has no effect. We reserve the right to enable this feature in the future.

20 Chapter 4. New Features in GMT 5

CHAPTER 5

Switching between different GMT versions

We encourage all GMT users to start using version 5 immediately; it has been tested extensively by the
GMT team and has benefitted from bug reports for the 4.5.x versions. Users who still worry about the
new version breaking things may install GMT 4.5.x and 5 side by side.

Because GMT 5 is backwards compatible with the 4.5.x series (provided you configured it that way)
yet maintains its parameters and history in separate files (e.g. .gmtdefaults4, versus gmt.conf) it
is possible to install and use both versions on the same workstation. Switching between different GMT
versions can be accomplished in several ways, two of which will be addressed here:

1. By using the gmtswitch utility to select the current working version. Pro: easy, interactive way
to switch versions on the command line; works with previous GMT syntax. Con: editing of shell
startup files required; needs write access in $HOME-directory; manual intervention necessary if
symlink $HOME/this_gmt is broken.

2. By using the recommended gmt <module>-syntax in conjunction with a shell helper function
that points to the desired GMT executable. Pro: no need to create symlinks and edit shell startup
files; scripts are more portable. Con: different syntax required.

5.1 Setup of gmtswitch

Run gmtswitch after you have finished installing all GMT versions of interest. The first time you
run gmtswitch it will try to find all the available versions installed on your file system. The versions
found will be listed in the file .gmtversions in your home directory; each line is the full path to a
GMT root directory (e.g., /usr/local/GMT4.5.9). You may manually add or remove entries there at any
time. You are then instructed to make two changes to your environment (the details are shell-dependent
but explained by gmtswitch):

1. gmtswitch creates and maintains a symbolic link this_gmt in your home directory that will
point to a directory with one of the installed GMT versions.

2. Make sure $HOME/this_gmt/bin is in your executable PATH.

Make those edits, logout, and login again. The next time you run gmtswitch you will be able to switch
between versions. Typing gmtswitch with no argument will list the available versions in a numerical
menu and prompt you to choose one, whereas gmtswitch version will immediately switch to that
version (version must be a piece of unique text making up the full path to a version, e.g., 4.5.9). If you
use bash, tcsh, or csh you may have to type hash -r or rehash to initiate the path changes.

On Windows, the process is somewhat similar. The GMT bin directory has one batch file
gmtswitch.bat that works by changing the Windows PATH variable so that the BIN directory of

21

GMT Documentation, Release 5.1.1

the preferred version always comes first. To do that the batch works in two alternative modes.

1. Permanent mode

2. Temporary mode

The permanent mode makes use of the free executable program EditPath to change the user path in
the registry. It’s called permanent because the changes remains until ... next change. Off course the
editpath.exe binary must be in your system’s path as well. WARNING: The path change will not be
visible on the shell cmd where it was executed. For the change to be active you will need to open a new
cmd window.

The second mode is temporary because the path to the selected GMT binary dir is prepended to previous
path via a shell command line. This modification disappears when the shell cmd window where it was
executes is deleted.

For further details the user should read the entire help section at the header of the gmtswitch.bat.

The gmtswitch.bat solution, however, has the drawback that the batch file must be located else-
where and in a directory that is on the user’s PATH, otherwise it wont be located after first use unless
the other GMT bin directory has a similar batch file. A better solution is to install the Windows con-
sole enhancement that includes multiple tabs and configure the different tabs to start the different GMT
versions. All it takes is in the Tab setting to call a batch that modifies the PATH locally. That PATH
modifying batch will have a single line with something like:

set path=C:\programs\gmt5\bin;%PATH%

5.2 Version selection with helper function

A shell function can be used as a wrapper around the gmt executable. This even works when a gmt
application is in the search PATH as it would shadow the real command. This method can easily be
applied on the command line or in scripts when the recommended gmt <module>-syntax is used.
Shell scripts using old-style GMT commands would have to be converted first. The syntax conversion
can be accomplished with the gmt5syntax utility. A suitable bash wrapper function for GMT 5 would
look like this:

function gmt() { /path/to/gmt5/bin/gmt "$@"; }

export -f gmt

Exporting the function is necessary to make it available to subshells and scripts. This wrapper function
can be either set in your working shell or inside a GMT shell script. The latter is useful to switch to a
certain GMT version on a per-script basis.

For GMT releases prior to GMT 5 which only provide the module commands, we need a slightly modi-
fied version of the wrapper script:

function gmt() { module=$1; shift; /path/to/gmt4/bin/${module} "$@"; }

export -f gmt

On the command line this might be too much typing to switch between versions. So we might as well
put everything together in a script file gmtfun:

case $1 in

4)

function gmt() {

module=$1; shift; /path/to/gmt4/bin/${module} "$@"

}

;;

22 Chapter 5. Switching between different GMT versions

http://www.softpedia.com/get/Tweak/Registry-Tweak/EditPath.shtml
http://sourceforge.net/projects/console
http://sourceforge.net/projects/console

GMT Documentation, Release 5.1.1

5)

function gmt() {

/path/to/gmt5/bin/gmt "$@"

}

;;

*)

return

;;

esac

export -f gmt

Source the file with either . gmtfun 4 or . gmtfun 5 to switch between versions.

5.2. Version selection with helper function 23

GMT Documentation, Release 5.1.1

24 Chapter 5. Switching between different GMT versions

CHAPTER 6

Introduction

Most scientists are familiar with the sequence: raw data → processing → final illustration. In order to
finalize papers for submission to scientific journals, prepare proposals, and create overheads and slides
for various presentations, many scientists spend large amounts of time and money to create camera-
ready figures. This process can be tedious and is often done manually, since available commercial or
in-house software usually can do only part of the job. To expedite this process we introduce the Generic
Mapping Tools (GMT for short), which is a free 1, software package that can be used to manipulate
columns of tabular data, time-series, and gridded data sets, and display these data in a variety of forms
ranging from simple x–y plots to maps and color, perspective, and shaded-relief illustrations. GMT uses
the PostScript page description language [Adobe Systems Inc., 1990]. With PostScript, multiple plot files
can easily be superimposed to create arbitrarily complex images in gray tones or 24-bit true color. Line
drawings, bitmapped images, and text can be easily combined in one illustration. PostScript plot files are
device-independent: The same file can be printed at 300 dots per inch (dpi) on an ordinary laserwriter
or at 2470 dpi on a phototypesetter when ultimate quality is needed. GMT software is written as a set of
UNIX tools 2 and is totally self-contained and fully documented. The system is offered free of charge
and is distributed over the computer network (Internet) [Wessel and Smith, 1991; 1995; 1998].

The original version 1.0 of GMT was released in the summer of 1988 when the authors were graduate
students at Lamont-Doherty Earth Observatory of Columbia University. During our tenure as graduate
students, L-DEO changed its computing environment to a distributed network of UNIX workstations,
and we wrote GMT to run in this environment. It became a success at L-DEO, and soon spread to numer-
ous other institutions in the US, Canada, Europe, and Japan. The current version benefits from the many
suggestions contributed by users of the earlier versions, and now includes more than 50 tools, more than
30 projections, and many other new, more flexible features. GMT provides scientists with a variety of
tools for data manipulation and display, including routines to sample, filter, compute spectral estimates,
and determine trends in time series, grid or triangulate arbitrarily spaced data, perform mathematical
operations (including filtering) on 2-D data sets both in the space and frequency domain, sample sur-
faces along arbitrary tracks or onto a new grid, calculate volumes, and find trend surfaces. The plotting
programs will let the user make linear, log10, and xa − yb diagrams, polar and rectangular histograms,
maps with filled continents and coastlines choosing from many common map projections, contour plots,
mesh plots, monochrome or color images, and artificially illuminated shaded-relief and 3-D perspective
illustrations.

GMT is written in the highly portable ANSI C programming language [Kernighan and Ritchie, 1988], is
fully POSIX compliant [Lewine, 1991], has no Year 2000 problems, and may be used with any hardware
running some flavor of UNIX, possibly with minor modifications. In writing GMT, we have followed
the modular design philosophy of UNIX: The raw data → processing → final illustration flow is broken

1 See GNU Lesser General Public License (http://www.gnu.org/copyleft/gpl.html) for terms on redistribution and modifi-
cations.

2 The tools can also be installed on other platforms (see Appendix [app:L]).

25

http://www.gnu.org/copyleft/gpl.html

GMT Documentation, Release 5.1.1

down to a series of elementary steps; each step is accomplished by a separate GMT or UNIX tool. This
modular approach brings several benefits: (1) only a few programs are needed, (2) each program is small
and easy to update and maintain, (3) each step is independent of the previous step and the data type and
can therefore be used in a variety of applications, and (4) the programs can be chained together in shell
scripts or with pipes, thereby creating a process tailored to do a user-specific task. The decoupling of
the data retrieval step from the subsequent massage and plotting is particularly important, since each
institution will typically have its own data base formats. To use GMT with custom data bases, one has
only to write a data extraction tool which will put out data in a form readable by GMT (discussed below).
After writing the extractor, all other GMT modules will work as they are.

GMT makes full use of the PostScript page description language, and can produce color illustrations
if a color PostScript device is available. One does not necessarily have to have access to a top-of-the-
line color printer to take advantage of the color capabilities offered by GMT: Several companies offer
imaging services where the customer provides a PostScript plot file and gets color slides or hardcopies
in return. Furthermore, general-purpose PostScript raster image processors (RIPs) are now becoming
available, letting the user create raster images from PostScript and plot these bitmaps on raster devices
like computer screens, dot-matrix printers, large format raster plotters, and film writers 3. Because the
publication costs of color illustrations are high, GMT offers 90 common bit and hachure patterns, in-
cluding many geologic map symbol types, as well as complete graytone shading operations. Additional
bit and hachure patterns may also be designed by the user. With these tools, it is possible to generate
publication-ready monochrome originals on a common laserwriter.

GMT is thoroughly documented and comes with a technical reference and cookbook which explains
the purpose of the package and its many features, and provides numerous examples to help new users
quickly become familiar with the operation and philosophy of the system. The cookbook contains the
shell scripts that were used for each example; PostScriptfiles of each illustration are also provided. All
programs have individual manual pages which can be installed as part of the on-line documentation un-
der the UNIX man utility or as web pages. In addition, the programs offer friendly help messages which
make them essentially self-teaching – if a user enters invalid or ambiguous command arguments, the pro-
gram will print a warning to the screen with a synopsis of the valid arguments. All the documentation is
available for web browsing and may be installed at the user’s site.

The processing and display routines within GMT are completely general and will handle any (x,y) or
(x,y,z) data as input. For many purposes the (x,y) coordinates will be (longitude, latitude) but in most
cases they could equally well be any other variables (e.g., wavelength, power spectral density). Since the
GMTplot tools will map these (x,y) coordinates to positions on a plot or map using a variety of transfor-
mations (linear, log-log, and several map projections), they can be used with any data that are given by
two or three coordinates. In order to simplify and standardize input and output, GMT uses two file for-
mats only. Arbitrary sequences of (x,y) or (x,y,z) data are read from multi-column ASCII tables, i.e., each
file consists of several records, in which each coordinate is confined to a separate column 4. This format
is straightforward and allows the user to perform almost any simple (or complicated) reformatting or
processing task using standard UNIX utilities such as cut, paste, grep, sed and awk. Two-dimensional
data that have been sampled on an equidistant grid are read and written by GMT in a binary grid file using
the functions provided with the netCDF library (a free, public-domain software library available sepa-
rately from UCAR, the University Corporation of Atmospheric Research [Treinish and Gough, 1987]).
This XDR (External Data Representation) based format is architecture independent, which allows the
user to transfer the binary data files from one computer system to another 5. GMT contains programs
that will read ASCII (x,y,z) files and produce grid files. One such program, surface, includes new
modifications to the gridding algorithm developed by Smith and Wessel [1990] using continuous splines
in tension.

3 One public-domain RIP is ghostscript, available from http://www.gnu.org/.
4 Programs now also allow for fast, binary multicolumn file i/o.
5 While the netCDF format is the default, many other formats are also possible.

26 Chapter 6. Introduction

http://www.gnu.org/

GMT Documentation, Release 5.1.1

Most of the programs will produce some form of output, which falls into four categories. Several of the
programs may produce more than one of these types of output:

• 1-D ASCII Tables — For example, a (x,y) series may be filtered and the filtered values output.
ASCII output is written to the standard output stream.

• 2-D binary (netCDF or user-defined) grid files – Programs that grid ASCII (x,y,z) data or operate
on existing grid files produce this type of output.

• PostScript – The plotting programs all use the PostScriptpage description language to define plots.
These commands are stored as ASCII text and can be edited should you want to customize the
plot beyond the options available in the programs themselves.

• Reports – Several GMT programs read input files and report statistics and other information.
Nearly all programs have an optional “verbose” operation, which reports on the progress of com-
putation. All programs feature usage messages, which prompt the user if incorrect commands have
been given. Such text is written to the standard error stream and can therefore be separated from
ASCII table output.

GMT is available over the Internet at no charge. To obtain a copy, goto GMT home page
http://gmt.soest.hawaii.edu/ and follow instructions. We also maintain two electronic mailing lists you
may subscribe to in order to stay informed about bug fixes and upgrades.

For those without net-access that need to obtain GMT: Geoware makes and distributes CD-R and DVD-
R media with the GMT package, compatible supplements, and several Gb of useful Earth and ocean
science data sets. For more information send e-mail to geoware@geoware-online.com.

GMT has served a multitude of scientists very well, and their responses have prompted us to develop
these programs even further. It is our hope that the new version will satisfy these users and attract new
users as well. We present this system to the community in order to promote sharing of research software
among investigators in the US and abroad.

6.1 References

• Adobe Systems Inc., PostScript Language Reference Manual, 2nd edition, 764, Addison-Wesley,
Reading, Massachusetts, 1990.

• Kernighan, B. W., and D. M. Ritchie, The C programming language, 2nd edition, 272, Prentice-
Hall, Englewood Cliffs, New Jersey, 1988.

• Lewine, D., POSIX programmer’s guide, 1st edition, 607, O’Reilly & Associates, Sebastopol,
California, 1991.

• Treinish, L. A., and M. L. Gough, A software package for the data-independent
management of multidimensional data, EOS Trans. AGU, 68(28), 633–635, 1987.
doi:10.1029/EO068i028p00633.

6.1. References 27

http://gmt.soest.hawaii.edu/
mailto:geoware@geoware-online.com
http://dx.doi.org/10.1029/EO068i028p00633

GMT Documentation, Release 5.1.1

28 Chapter 6. Introduction

CHAPTER 7

GMT Overview and Quick Reference

7.1 GMT summary

The following is a summary of all the programs supplied with GMT and a very short description of their
purpose. For more details, see the individual UNIX manual pages or the online web documentation. For
a listing sorted by program purpose, see Section GMT quick reference.

blockmean L2 (x,y,z) table data filter/decimator
blockmedian L1 (x,y,z) table data filter/decimator
blockmode Mode estimate (x,y,z) table data filter/decimator
filter1d Filter 1-D table data sets (time series)
fitcircle Finds the best-fitting great or small circle for a set of points
gmt2kml Like psxy but plots KML for use in Google Earth
gmtconnect Connect segments into more complete lines or polygons
gmtconvert Convert data tables from one format to another
gmtdefaults List the current default settings
gmtget Retrieve selected parameters in current gmt.conf file
gmtinfo Get information about table data files
gmtmath Mathematical operations on table data
gmtselect Select subsets of table data based on multiple spatial criteria
gmtset Change selected parameters in current gmt.conf file
gmtsimplify Line reduction using the Douglas-Peucker algorithm
gmtspatial Geospatial operations on lines and polygons
gmtvector Basic operations on vectors in 2-D and 3-D
gmtwhich Find full path to specified data files
grd2cpt Make color palette table from a grid files
grd2rgb Convert Sun raster or grid file to red, green, blue component grids
grd2xyz Conversion from 2-D grid file to table data
grdblend Blend several partially over-lapping grid files onto one grid
grdclip Limit the z-range in gridded data sets
grdcontour Contouring of 2-D gridded data sets
grdcut Cut a sub-region from a grid file
grdedit Modify header information in a 2-D grid file
grdfft Perform operations on grid files in the frequency domain
grdfilter Filter 2-D gridded data sets in the space domain
grdgradient Compute directional gradient from grid files
grdhisteq Histogram equalization for grid files

Continued on next page

29

GMT Documentation, Release 5.1.1

Table 7.1 – continued from previous page

grdimage Produce images from 2-D gridded data sets
grdinfo Get information about grid files
grdlandmask Create masking grid files from shoreline data base
grdmask Reset grid nodes in/outside a clip path to constants
grdmath Mathematical operations on grid files
grdpaste Paste together grid files along a common edge
grdproject Project gridded data sets onto a new coordinate system
grdreformat Converts grid files into other grid formats
grdsample Resample a 2-D gridded data set onto a new grid
grdtrack Sampling of 2-D gridded data set(s) along 1-D track
grdtrend Fits polynomial trends to grid files
grdvector Plotting of 2-D gridded vector fields
grdview 3-D perspective imaging of 2-D gridded data sets
grdvolume Calculate volumes under a surface within specified contour
greenspline Interpolation with Green’s functions for splines in 1–3 D
kml2gmt Extracts coordinates from Google Earth KML files
makecpt Make color palette tables
mapproject Transformation of coordinate systems for table data
nearneighbor Nearest-neighbor gridding scheme
project Project table data onto lines or great circles
ps2raster Crop and convert PostScript files to raster images, EPS, and PDF
psbasemap Create a basemap plot
psclip Use polygon files to define clipping paths
pscoast Plot (and fill) coastlines, borders, and rivers on maps
pscontour Contour or image raw table data by triangulation
pshistogram Plot a histogram
psimage Plot Sun raster files on a map
pslegend Plot a legend on a map
psmask Create overlay to mask out regions on maps
psrose Plot sector or rose diagrams
psscale Plot gray scale or color scale on maps
pstext Plot text strings on maps
pswiggle Draw table data time-series along track on maps
psxy Plot symbols, polygons, and lines on maps
psxyz Plot symbols, polygons, and lines in 3-D
sample1d Resampling of 1-D table data sets
spectrum1d Compute various spectral estimates from time-series
sph2grd Compute grid from spherical harmonic coefficients
sphdistance Make grid of distances to nearest points on a sphere
sphinterpolate Spherical gridding in tension of data on a sphere
sphtriangulate Delaunay or Voronoi construction of spherical lon,lat data
splitxyz Split xyz files into several segments
surface A continuous curvature gridding algorithm
trend1d Fits polynomial or Fourier trends to y = f(x) series
trend2d Fits polynomial trends to z = f(x, y) series
triangulate Perform optimal Delauney triangulation and gridding
xyz2grd Convert an equidistant table xyz file to a 2-D grid file

30 Chapter 7. GMT Overview and Quick Reference

GMT Documentation, Release 5.1.1

7.2 GMT quick reference

Instead of an alphabetical listing, this section contains a summary sorted by program purpose. Also
included is a quick summary of the standard command line options and a breakdown of the -J option for
each of the over 30 projections available in GMT.

Filtering of 1-D and 2-D Data

blockmean L2 (x,y,z) table data filter/decimator
blockmedian L1 (x,y,z) table data filter/decimator
blockmode Mode estimate (x,y,z) table data filter/decimator
filter1d Filter 1-D table data sets (time series)
grdfilter Filter 2-D gridded data sets in the space domain

Plotting of 1-D and 2-D Data

grdcontour Contouring of 2-D gridded data sets
grdimage Produce images from 2-D gridded data sets
grdvector Plotting of 2-D gridded vector fields
grdview 3-D perspective imaging of 2-D gridded data sets
psbasemap Create a basemap plot
psclip Use polygon files to define clipping paths
pscoast Plot (and fill) coastlines, borders, and rivers on maps
pscontour Contour or image raw table data by triangulation
pshistogram Plot a histogram
psimage Plot Sun raster files on a map
pslegend Plot a legend on a map
psmask Create overlay to mask out regions on maps
psrose Plot sector or rose diagrams
psscale Plot gray scale or color scale on maps
pstext Plot text strings on maps
pswiggle Draw table data time-series along track on maps
psxy Plot symbols, polygons, and lines on maps
psxyz Plot symbols, polygons, and lines in 3-D

Gridding of Data Tables

greenspline Interpolation with Green’s functions for splines in 1–3 D
nearneighbor Nearest-neighbor gridding scheme
sphinterpolate Spherical gridding in tension of data on a sphere
surface A continuous curvature gridding algorithm
triangulate Perform optimal Delauney triangulation and gridding

Sampling of 1-D and 2-D Data

gmtsimplify Line reduction using the Douglas-Peucker algorithm
grdsample Resample a 2-D gridded data set onto a new grid
grdtrack Sampling of 2-D gridded data set(s) along 1-D track
sample1d Resampling of 1-D table data sets

Projection and Map-transformation

grdproject Project gridded data sets onto a new coordinate system
mapproject Transformation of coordinate systems for table data
project Project table data onto lines or great circles

Retrieve Information

gmtdefaults List the current default settings
gmtget Retrieve selected parameters in current file
gmtinfo Get information about table data files

Continued on next page

7.2. GMT quick reference 31

GMT Documentation, Release 5.1.1

Table 7.2 – continued from previous page

Filtering of 1-D and 2-D Data

gmtset Change selected parameters in current file
grdinfo Get information about grid files

Mathematical Operations on Tables or Grids

gmtmath Mathematical operations on table data
makecpt Make color palette tables
spectrum1d Compute various spectral estimates from time-series
sph2grd Compute grid from spherical harmonic coefficients
sphdistance Make grid of distances to nearest points on a sphere
sphtriangulate Delaunay or Voronoi construction of spherical lon,lat data

Convert or Extract Subsets of Data

gmtconnect Connect segments into more complete lines or polygons
gmtconvert Convert data tables from one format to another
gmtselect Select subsets of table data based on multiple spatial criteria
gmtspatial Geospatial operations on lines and polygons
gmtvector Basic operations on vectors in 2-D and 3-D
grd2rgb Convert Sun raster or grid file to red, green, blue component grids
grd2xyz Conversion from 2-D grid file to table data
grdblend Blend several partially over-lapping grid files onto one grid
grdcut Cut a sub-region from a grid file
grdpaste Paste together grid files along a common edge
grdreformat Converts grid files into other grid formats
splitxyz Split xyz files into several segments
xyz2grd Convert an equidistant table xyz file to a 2-D grid file

Determine Trends in 1-D and 2-D Data

fitcircle Finds the best-fitting great or small circle for a set of points
grdtrack Sampling of 2-D gridded data set(s) along 1-D track
trend1d Fits polynomial or Fourier trends to y = f(x) series
trend2d Fits polynomial trends to z = f(x, y) series

Other Operations on 2-D Grids

grd2cpt Make color palette table from a grid files
grdclip Limit the z-range in gridded data sets
grdedit Modify header information in a 2-D grid file
grdfft Perform operations on grid files in the frequency domain
grdgradient Compute directional gradient from grid files
grdhisteq Histogram equalization for grid files
grdlandmask Create masking grid files from shoreline data base
grdmask Reset grid nodes in/outside a clip path to constants
grdmath Mathematical operations on grid files
grdvolume Calculate volumes under a surface within specified contour

Miscellaneous Tools

gmt2kml Like psxy but plots KML for use in Google Earth
kml2gmt Extracts coordinates from Google Earth KML files
ps2raster Crop and convert PostScript files to raster images, EPS, and PDF

GMT offers 31 map projections. These are specified using the -J common option. There are two con-
ventions you may use: (a) GMT-style syntax and (b) Proj4-style syntax. The projection codes for the
GMT-style are tabulated below.

32 Chapter 7. GMT Overview and Quick Reference

GMT Documentation, Release 5.1.1

WITH GMT PROJECTION CODES

-J (upper case for width, lower case for scale) Map projection
-JAlon0/lat0[/horizon]/width Lambert azimuthal equal area
-JBlon0/lat0/lat1/lat2width Albers conic equal area
-JClon0/lat0width Cassini cylindrical
-JCyl_stere/[lon0[/lat0/]]width Cylindrical stereographic
-JDlon0/lat0/lat1/lat2width Equidistant conic
-JElon0/lat0[/horizon]/width Azimuthal equidistant
-JFlon0/lat0[/horizon]/width Azimuthal gnomonic
-JGlon0/lat0[/horizon]/width Azimuthal orthographic
-JGlon0/lat0alt/azim/tilt/twist/W/H/width General perspective
-JHlon0width Hammer equal area
-JIlon0width Sinusoidal equal area
-JJlon0width Miller cylindrical
-JKflon0width Eckert IV equal area
-JKslon0width Eckert VI equal area
-JLlon0/lat0/lat1/lat2width Lambert conic conformal
-JM[lon0[/lat0/]]width Mercator cylindrical
-JN[lon0/]width Robinson
-JOalon0/lat0azim/width Oblique Mercator, 1: origin and azimuth
-JOblon0/lat0/lon1/lat1width Oblique Mercator, 2: two points
-JOclon0/lat0/lonp/latpwidth Oblique Mercator, 3: origin and pole
-JP[a]width[/origin] Polar [azimuthal] (θ, r) (or cylindrical)
-JPoly[lon0[/lat0/]]width (American) polyconic
-JQ[lon0[/lat0/]]width Equidistant cylindrical
-JR[lon0/]width Winkel Tripel
-JSlon0/lat0[/horizon]/width General stereographic
-JT[lon0[/lat0/]]width Transverse Mercator
-JUzone/width Universal Transverse Mercator (UTM)
-JV[lon0/]width Van der Grinten
-JW[lon0/]width Mollweide
-JXwidth[l|pexp|T|t][/height[l|pexp|T|t]][d] Linear, log10, xa − yb, and time
-JYlon0/lat0width Cylindrical equal area

The projection codes for the Proj4-style are tabulated below; these all accept a map scale.

WITH Proj4 PROJECTION CODES

-J (lower case for scale only) Map projection
-Jaea/lon0/lat0/lat1/lat2scale Albers conic equal area
-Jaeqd/lon0/lat0[/horizon]/scale Azimuthal equidistant
-Jcass/lon0/lat0scale Cassini cylindrical
-Jcea/lon0/lat0scale Cylindrical equal area
-Jcyl_stere/[lon0[/lat0/]]scale Cylindrical stereographic
-Jeqc/[lon0[/lat0/]]scale Equidistant cylindrical
-Jeqdc/lon0/lat0/lat1/lat2scale Equidistant conic
-Jgnom/lon0/lat0[/horizon]/scale Azimuthal gnomonic
-Jhammer/lon0scale Hammer equal area
-Jeck4/lon0scale Eckert IV equal area
-Jeck6/lon0scale Eckert VI equal area
-Jlaea/lon0/lat0[/horizon]/scale Lambert azimuthal equal area

Continued on next page

7.2. GMT quick reference 33

GMT Documentation, Release 5.1.1

Table 7.4 – continued from previous page

WITH Proj4 PROJECTION CODES

-Jlcc/lon0/lat0/lat1/lat2scale Lambert conic conformal
-Jmerc/[lon0[/lat0/]]scale Mercator cylindrical
-Jmill/lon0scale Miller cylindrical
-Jmoll/[lon0/]scale Mollweide
-Jnsper/lon0/lat0alt/azim/tilt/twist/W/H/scale General perspective
-Jomerc/lon0/lat0azim/scale Oblique Mercator, 1: origin and azimuth
-Jomerc/lon0/lat0/lon1/lat1scale Oblique Mercator, 2: two points
-Jomercp/:lon0/lat0/lonp/latpscale Oblique Mercator, 3: origin and pole
-Jortho/lon0/lat0[/horizon]/scale Azimuthal orthographic
-Jpolar/[a]scale[/origin] Polar [azimuthal] (θ, r) (or cylindrical)
-Jpoly/[lon0[/lat0/]]scale (American) polyconic
-Jrobin/[lon0/]scale Robinson
-Jsinu/lat0scale Sinusoidal equal area
-Jstere/lon0/lat0[/horizon]/scale General stereographic
-Jtmerc/[lon0[/lat0/]]scale Transverse Mercator
-Jutm/zone/scale Universal Transverse Mercator (UTM)
-Jvandg/[lon0/]scale Van der Grinten
-Jwintri/[lon0/]scale Winkel Tripel
-Jxyxscale[l|pexp|T|t][/yscale[l|pexp|T|t]][d] Linear, log10, xa − yb, and time

Finally, the rest of the GMT common options are given below:

STANDARDIZED COMMAND LINE OPTIONS

-Binformation Specify map frame and axes parameters
-K Append more PS later
-O This is an overlay plot
-P Select Portrait orientation
-Rwest/east/south/north[/zmin/zmax][r] Specify Region of interest
-U[[just]/dx/dy/][label] Plot time-stamp on plot
-V Run in verbose mode
-X[a| c| r]off [u] Shift plot origin in x-direction
-Y[a| c| r]off [u] Shift plot origin in y-direction
-aname=col,... Associates aspatial data with columns
-b[i| o][ncol][t] Select binary input or output
-ccopies Set number of plot copies [1]
-f[i| o]colinfo Set formatting of ASCII input or output
-g[+]x| X| y| Y| d| Dgap[u] Segment data by detecting gaps
-h[i| o][n_headers] ASCII [input| output] tables have header record[s]
-icolumns Selection of input columns
-ocolumns Selection of output columns
-n[type][+a][+bBC] [+c][+tthreshold] Set grid interpolation mode
-

pazim/elev[/zlevel][+wlon0/lat0[/z0]][+vx0/y0]
Control 3-D perspective view

-r Sets grid registration
-s[z| cols] Control treatment of NaN records
-ttransparency Set layer PDF transparency
-:[i| o] Expect y/x input rather than x/y

34 Chapter 7. GMT Overview and Quick Reference

CHAPTER 8

General Features

This section explains features common to all the programs in GMT and summarizes the philosophy
behind the system. Some of the features described here may make more sense once you reach the cook-
book section where we present actual examples of their use.

8.1 GMT units

While GMT has default units for both actual Earth distances and plot lengths (dimensions) of maps, it is
recommended that you specifically indicate the units of your arguments by appending the unit character,
as discussed below. This will aid you in debugging, let others understand your scripts, and remove any
uncertainty as to what unit you thought you wanted.

8.1.1 Distance units

d Degree of arc M Statute mile
e Meter [Default] n Nautical mile
f Foot s Second of arc
k Kilometer u US Survey foot
m Minute of arc

For Cartesian data and scaling the data units do not normally matter (they could be kg or Lumens for
all we know) and are never entered. Geographic data are different as distances can be specified in a
variety of ways. GMT programs that accept actual Earth length scales like search radii or distances can
therefore handle a variety of units. These choices are listed in Table distunits; simply append the desired
unit to the distance value you supply. A value without a unit suffix will be consider to be in meters. For
example, a distance of 30 nautical miles should be given as 30n.

8.1.2 Distance calculations

The calculation of distances on Earth (or other planetary bodies) depends on the ellipsoidal parameters
of the body (via PROJ_ELLIPSOID) and the method of computation. GMT offers three alternatives that
trade off accuracy and computation time.

35

GMT Documentation, Release 5.1.1

Flat Earth distances

Quick, but approximate “Flat Earth” calculations make a first-order correction for the spherical nature
of a planetary body by computing the distance between two points A and B as

df = R

√

(θA − θB)2 + cos

[

θA + θB
2

]

∆λ2,

where R is the representative (or spherical) radius of the planet, θ is latitude, and the difference in
longitudes, ∆λ = λA−λB , is adjusted for any jumps that might occur across Greenwich or the Dateline.
As written, the geographic coordinates are given in radians. This approach is suitable when the points
you use to compute df do not greatly differ in latitude and computation speed is paramount. You can
specify this mode of computation by using the - prefix to the specified distance (or to the unit itself in
cases where no distance is required and only a unit is expected). For instance, a search radius of 50
statute miles using this mode of computation might be specified via -S-50M.

Great circle distances

This is the default distance calculation, which will also approximate the planetary body by a sphere of
mean radius R. However, we compute an exact distance between two points A and B on such a sphere
via the Haversine equation

dg = 2R sin−1

√

sin2
θA − θB

2
+ cos θA cos θB sin2

λA − λB

2
,

This approach is suitable for most situations unless exact calculations for an ellipsoid is required (typi-
cally for a limited surface area). For instance, a search radius of 5000 feet using this mode of computation
would be specified as -S5000f.

Note: There are two additional GMT defaults that control how great circle (and Flat Earth) distances are
computed. One concerns the selection of the “mean radius”. This is selected by PROJ_MEAN_RADIUS,
which selects one of several possible representative radii. The second is PROJ_AUX_LATITUDE, which
converts geodetic latitudes into one of several possible auxiliary latitudes that are better suited for the
spherical approximation. While both settings have default values to best approximate geodesic distances
(authalic mean radius and latitudes), expert users can choose from a range of options as detailed in the
gmt.conf man page.

Geodesic distances

For the most accurate calculations we use a full ellipsoidal formulation. Currently, we are using Vin-
centy’s [1975] formula 1. You select this mode of computation by using the + prefix to the specified
distance (or to the unit itself in cases where no distance is required). For instance, a search radius of 20
km using this mode of computation would be set by -S+20k.

8.1.3 Length units

GMT programs can accept dimensional quantities and plot lengths in cm, inch, or point (1/72 of an inch)
2. There are two ways to ensure that GMT understands which unit you intend to use:

1 Vicenty, T. (1975), Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations, Surv.

Rev., XXII(176), 88–93.
2 PostScript definition. In the typesetting industry a slightly different definition of point (1/72.27 inch) is used, presumably

to cause needless trouble.

36 Chapter 8. General Features

GMT Documentation, Release 5.1.1

1. Append the desired unit to the dimension you supply. This way is explicit and clearly communi-
cates what you intend, e.g., -X4c means the length being passed to the -X switch is 4 cm.

2. Set the parameter PROJ_LENGTH_UNIT to the desired unit. Then, all dimensions without ex-
plicit unit will be interpreted accordingly.

The latter method is less secure as other users may have a different unit set and your script may not work
as intended. We therefore recommend you always supply the desired unit explicitly.

8.2 GMT defaults

8.2.1 Overview and the gmt.conf file

There are about 100 parameters which can be adjusted individually to modify the appearance of plots or
affect the manipulation of data. When a program is run, it initializes all parameters to the GMTdefaults
3, then tries to open the file gmt.conf in the current directory 4. If not found, it will look for that file in
a sub-directory /.gmt of your home directory, and finally in your home directory itself. If successful,
the program will read the contents and set the default values to those provided in the file. By editing
this file you can affect features such as pen thicknesses used for maps, fonts and font sizes used for
annotations and labels, color of the pens, dots-per-inch resolution of the hardcopy device, what type of
spline interpolant to use, and many other choices. A complete list of all the parameters and their default
values can be found in the gmt.conf manual pages. Figures GMT Parameters a, b, and c show the
parameters that affect plots. You may create your own gmt.conf files by running gmtdefaults

and then modify those parameters you want to change. If you want to use the parameter settings in
another file you can do so by specifying +<defaultfile> on the command line. This makes it easy
to maintain several distinct parameter settings, corresponding perhaps to the unique styles required by
different journals or simply reflecting font changes necessary to make readable overheads and slides.
Note that any arguments given on the command line (see below) will take precedent over the default
values. E.g., if your gmt.conf file has x offset = 1i as default, the -X1.5i option will override the
default and set the offset to 1.5 inches.

Plot Title

60˚W 50˚W 40˚W 30˚W

10˚S

0˚

10˚N

MAP_FRAME_TYPE

MAP_ANNOT_OFFSET_PRIMARY

MAP_TICK_LENGTH_PRIMARY

MAP_TICK_PEN_PRIMARY

MAP_FRAME_WIDTH
MAP_DEFAULT_PEN

MAP_GRID_CROSS_SIZE_PRIMARY

FONT_TITLE

FORMAT_GEO_MAP

MAP_DEGREE_SYMBOL

Figure 8.1: Some GMT parameters that affect plot appearance.

There are at least two good reasons why the GMT default options are placed in a separate parameter file:

3 Choose between SI and US default units by modifying in the GMT share directory.
4 To remain backwards compatible with GMT 4 we will also look for but only if cannot be found.

8.2. GMT defaults 37

GMT Documentation, Release 5.1.1

9
0
˚W

8
0
˚W

8
0
˚W

7
0
˚W

7
0
˚W

6
0
˚W

10˚N

10˚N

20˚N

20˚N

30˚N

30˚N

MAP_ORIGIN_X

MAP_ORIGIN_Y

MAP_FRAME_PEN

MAP_ANNOT_OBLIQUE

MAP_GRID_PEN_PRIMARY

MAP_ANNOT_MAX_ANGLE

MAP_ANNOT_MIN_SPACINGMAP_LINE_STEP

PS_PAGE_COLOR

PAGE_MEDIA

FONT_ANNOT_PRIMARY

Figure 8.2: More GMT parameters that affect plot appearance.

 2011 Jun 13 22:10:02 Dazed and Confused

10−2

10−1

100

101

102

y
−

a
x
is

 l
a

b
e

l

00 06 12 18 00 06 12 18 00

Setembro 11 Setembro 12

x−axis label

X_AXIS_LENGTH

MAP_ANNOT_ORTHO

MAP_FRAME_AXES

Y_AXIS_LENGTH

MAP_LOGO_POS

MAP_LOGO

FORMAT_TIME_STAMP
FONT_LABEL

FORMAT_DATE_MAP

FORMAT_CLOCK_MAP

TIME_LANGUAGE

FONT_ANNOT_SECONDARY

Figure 8.3: Even more GMT parameters that affect plot appearance.

38 Chapter 8. General Features

GMT Documentation, Release 5.1.1

1. It would not be practical to allow for command-line syntax covering so many options, many of
which are rarely or never changed (such as the ellipsoid used for map projections).

2. It is convenient to keep separate gmt.conf files for specific projects, so that one may achieve a
special effect simply by running GMT commands in the directory whose gmt.conf file has the
desired settings. For example, when making final illustrations for a journal article one must often
standardize on font sizes and font types, etc. Keeping all those settings in a separate gmt.conf
file simplifies this process and will allow you to generate those illustrations with the same settings
later on. Likewise, GMT scripts that make figures for PowerPoint presentations often use a dif-
ferent color scheme and font size than output intended for laser printers. Organizing these various
scenarios into separate gmt.conf files will minimize headaches associated with micro-editing
of illustrations.

8.2.2 Changing GMT defaults

As mentioned, GMT programs will attempt to open a file named gmt.conf. At times it may be desir-
able to override that default. There are several ways in which this can be accomplished.

• One method is to start each script by saving a copy of the current gmt.conf, then copying the
desired gmt.conf file to the current directory, and finally reverting the changes at the end of the
script. Possible side effects include premature ending of the script due to user error or bugs which
means the final resetting does not take place (unless you write your script very carefully.)

• To permanently change some of the GMT parameters on the fly inside a script the gmtset utility
can be used. E.g., to change the primary annotation font to 12 point Times-Bold in red we run

gmt gmtset FONT_ANNOT_PRIMARY 12p,Times-Bold,red

These changes will remain in effect until they are overridden.

• If all you want to achieve is to change a few parameters during the execution of a single com-
mand but otherwise leave the environment intact, consider passing the parameter changes on the
command line via the --PAR=value mechanism. For instance, to temporarily set the output for-
mat for floating points to have lots of decimals, say, for map projection coordinate output, append
--FORMAT_FLOAT_OUT=%.16lg to the command in question.

• Finally, GMT provides to possibility to override the settings only during the running of a single
script, reverting to the original settings after the script is run, as if the script was run in “isolation”.
The isolation mode is discussed in Section Running GMT in isolation mode.

In addition to those parameters that directly affect the plot there are numerous parameters than modify
units, scales, etc. For a complete listing, see the gmt.conf man pages. We suggest that you go through
all the available parameters at least once so that you know what is available to change via one of the
described mechanisms.

8.3 Command line arguments

Each program requires certain arguments specific to its operation. These are explained in the manual
pages and in the usage messages. Most programs are “case-sensitive”; almost all options must start with
an upper-case letter. We have tried to choose letters of the alphabet which stand for the argument so
that they will be easy to remember. Each argument specification begins with a hyphen (except input file
names; see below), followed by a letter, and sometimes a number or character string immediately after

8.3. Command line arguments 39

GMT Documentation, Release 5.1.1

the letter. Do not space between the hyphen, letter, and number or string. Do space between options.
Example:

gmt pscoast -R0/20/0/20 -Ggray -JM6i -Wthin -B5 -V -P > map.ps

8.4 Standardized command line options

Most of the programs take many of the same arguments like those related to setting the data re-
gion, the map projection, etc. The 24 switches in Table switches have the same meaning in all
the programs (although some programs may not use all of them). These options will be described
here as well as in the manual pages, as is vital that you understand how to use these options.
We will present these options in order of importance (some are use a lot more than others).

-B Define tickmarks, annotations, and labels for basemaps and axes
-J Select a map projection or coordinate transformation
-K Allow more plot code to be appended to this plot later
-O Allow this plot code to be appended to an existing plot
-P Select Portrait plot orientation [Default is landscape]
-R Define the extent of the map/plot region
-U Plot a time-stamp, by default in the lower left corner of page
-V Select verbose operation; reporting on progress
-X Set the x-coordinate for the plot origin on the page
-Y Set the y-coordinate for the plot origin on the page
-a Associate aspatial data from OGR/GMT files with data columns
-b Select binary input and/or output
-c Specify the number of plot copies
-f Specify the data format on a per column basis
-g Identify data gaps based on supplied criteria
-h Specify that input/output tables have header record(s)
-i Specify which input columns to read
-n Specify grid interpolation settings
-o Specify which output columns to write
-p Control perspective views for plots
-r Set the grid registration to pixel [Default is gridline]
-s Control output of records containing one or more NaNs
-t Change layer PDF transparency
-: Assume input geographic data are (lat,lon) and not (lon,lat)

8.4.1 Data domain or map region: The -R option

The -R option defines the map region or data domain of interest. It may be specified in one of three
ways, two of which are shown in Figure Map region:

1. -Rxmin/xmax/ymin/ymax. This is the standard way to specify Cartesian data domains and geo-
graphical regions when using map projections where meridians and parallels are rectilinear.

2. -Rxlleft/ylleft/xuright/yurightr. This form is used with map projections that are oblique, making
meridians and parallels poor choices for map boundaries. Here, we instead specify the lower
left corner and upper right corner geographic coordinates, followed by the suffix r. This form
guarantees a rectangular map even though lines of equal longitude and latitude are not straight
lines.

40 Chapter 8. General Features

GMT Documentation, Release 5.1.1

3. -Rgridfile. This will copy the domain settings found for the grid in specified file. Note that depend-
ing on the nature of the calling program, this mechanism will also set grid spacing and possibly
the grid registration (see Section Grid registration: The -r option).

−90˚ −80˚ −70˚

20˚ 20˚

30˚ 30˚

a) –Rxmin/xmax/ymin/ymax

−
8
0
˚

−
7
0
˚

−
7
0
˚

20˚

30˚

30˚

b) –Rxlleft/ylleft/xuright/yuright r

Figure 8.4: The plot region can be specified in two different ways. (a) Extreme values for each dimension,
or (b) coordinates of lower left and upper right corners.

For rectilinear projections the first two forms give identical results. Depending on the selected map
projection (or the kind of expected input data), the boundary coordinates may take on several different
formats:

Geographic coordinates: These are longitudes and latitudes and may be given in decimal degrees (e.g.,
-123.45417) or in the []*ddd*[:mm[:ss[.xxx]]][W|E|S|N] format (e.g., 123:27:15W). Note that -Rg

and -Rd are shorthands for “global domain” -R0/360/-90/90 and -R-180/180/-90/90, respectively.

When used in conjunction with the Cartesian Linear Transformation (-Jx or -JX) —which can
be used to map floating point data, geographical coordinates, as well as time coordinates— it is
prudent to indicate that you are using geographical coordinates in one of the following ways:

• Use -Rg or -Rd to indicate the global domain.

• Use -Rgxmin/xmax/ymin/ymax to indicate a limited geographic domain.

• Add W, E, S, or N to the coordinate limits or add the generic D or G. Example: -R0/360G/-
90/90N.

Alternatively, you may indicate geographical coordinates by supplying -fg; see Section Data type
selection: The -f option.

Projected coordinates: These are Cartesian projected coordinates compatible with the chosen projec-
tion and are given with a leading length unit, (e.g., k-200/200/-300/300 for a 400 by 600 km rect-
angular area centered on the projection center (0, 0). These coordinates are internally converted to
the corresponding geographic (longitude, latitude) coordinates for the lower left and upper right
corners. This form is convenient when you want to specify a region directly in the projected units
(e.g., UTM meters). For allowable units, see Table distunits.

Calendar time coordinates: These are absolute time coordinates referring to a Gregorian or ISO calen-
dar. The general format is [date]T[clock], where date must be in the yyyy[-mm[-dd]] (year, month,
day-of-month) or yyyy[-jjj] (year and day-of-year) for Gregorian calendars and yyyy[-Www[-d]]

8.4. Standardized command line options 41

GMT Documentation, Release 5.1.1

(year, week, and day-of-week) for the ISO calendar. If no date is given we assume the current day.
The T flag is required if a clock is given.

The optional clock string is a 24-hour clock in hh[:mm[:ss[.xxx]]] format. If no clock is given
it implies 00:00:00, i.e., the start of the specified day. Note that not all of the specified entities
need be present in the data. All calendar date-clock strings are internally represented as double
precision seconds since proleptic Gregorian date Monday January 1 00:00:00 0001. Proleptic
means we assume that the modern calendar can be extrapolated forward and backward; a year
zero is used, and Gregory’s reforms 5 are extrapolated backward. Note that this is not historical.

Relative time coordinates: These are coordinates which count seconds, hours, days or years relative
to a given epoch. A combination of the parameters TIME_EPOCH and TIME_UNIT define the
epoch and time unit. The parameter TIME_SYSTEM provides a few shorthands for common com-
binations of epoch and unit, like j2000 for days since noon of 1 Jan 2000. The default relative
time coordinate is that of UNIX computers: seconds since 1 Jan 1970. Denote relative time coor-
dinates by appending the optional lower case t after the value. When it is otherwise apparent that
the coordinate is relative time (for example by using the -f switch), the t can be omitted.

Other coordinates: These are simply any coordinates that are not related to geographic or calendar
time or relative time and are expected to be simple floating point values such as []xxx.xxx[E: | e|
D| d[]xx], i.e., regular or exponential notations, with the enhancement to understand FORTRAN
double precision output which may use D instead of E for exponents. These values are simply
converted as they are to internal representation. 6

8.4.2 Coordinate transformations and map projections: The -J option

This option selects the coordinate transformation or map projection. The general format is

• -Jδ[parameters/]scale. Here, δ is a lower-case letter of the alphabet that selects a particular map
projection, the parameters is zero or more slash-delimited projection parameter, and scale is map
scale given in distance units per degree or as 1:xxxxx.

• -J∆[parameters/]width. Here, ∆ is an upper-case letter of the alphabet that selects a particular
map projection, the parameters is zero or more slash-delimited projection parameter, and width is
map width (map height is automatically computed from the implied map scale and region).

Since GMT version 4.3.0, there is an alternative way to specify the projections: use the same abbreviation
as in the mapping package Proj4. The options thus either look like:

• -Jabbrev/[parameters/]scale. Here, abbrev is a lower-case abbreviation that selects a particular
map projection, the parameters is zero or more slash-delimited projection parameter, and scale is
map scale given in distance units per degree or as 1:xxxxx.

• -JAbbrev/[parameters/]width. Here, Abbrev is an capitalized abbreviation that selects a particular
map projection, the parameters is zero or more slash-delimited projection parameter, and width is

5 The Gregorian Calendar is a revision of the Julian Calendar which was instituted in a papal bull by Pope Gregory XIII in
1582. The reason for the calendar change was to correct for drift in the dates of significant religious observations (primarily
Easter) and to prevent further drift in the dates. The important effects of the change were (a) Drop 10 days from October
1582 to realign the Vernal Equinox with 21 March, (b) change leap year selection so that not all years ending in “00” are leap
years, and (c) change the beginning of the year to 1 January from 25 March. Adoption of the new calendar was essentially
immediate within Catholic countries. In the Protestant countries, where papal authority was neither recognized not appreciated,
adoption came more slowly. England finally adopted the new calendar in 1752, with eleven days removed from September.
The additional day came because the old and new calendars disagreed on whether 1700 was a leap year, so the Julian calendar
had to be adjusted by one more day.

6 While UTM coordinates clearly refer to points on the Earth, in this context they are considered “other”. Thus, when we
refer to “geographical” coordinates herein we imply longitude, latitude.

42 Chapter 8. General Features

GMT Documentation, Release 5.1.1

map width (map height is automatically computed from the implied map scale and region).

The projections available in GMT are presented in Figure The 30+ map projections and coordinate

transformations available in GMT . For details on all GMT projections and the required parameters, see
the psbasemap man page. We will also show examples of every projection in the next Chapters, and a
quick summary of projection syntax was given in Chapter GMT overview and quick reference.

GMT PROJECTIONS

GEOGRAPHIC PROJECTIONS

CYLINDRICAL CONICAL AZIMUTHAL THEMATIC OTHER

Basic [E]

Cassini

Equidistant

Mercator [C]

Miller

Oblique Mercator [C]

Stereographic

Transverse Mercator [C]

UTM [C]

Albers [E]

Equidistant

Lambert [C]

Polyconic

Equidistant

Gnomonic

Orthographic

Perspective

Lambert [E]

Stereographic [C]

Eckert IV + VI [E]

Hammer [E]

Mollweide [E]

Robinson

Sinusoidal [E]

Winkel Tripel

Van der Grinten

Linear

Logarithmic

Exponential

Time

Polar

C = Conformal

E = Equal Area

Figure 8.5: The 30+ map projections and coordinate transformations available in GMT

8.4.3 Map frame and axes annotations: The -B option

This is potentially the most complicated option in GMT, but most examples of its usage are actually
quite simple. We distinguish between to sets of information: Frame settings and Axes parameters. These
are set separately by their own -B invocations; hence multiple -B specifications may be specified. The
frame settings covers things such as which axes should be plotted, canvas fill, plot title, and what type
of gridlines be drawn, whereas the Axes settings deal with annotation, tick, and gridline intervals, axes
labels, and annotation units.

The Frame settings are specified by

• -B[axes][+b][+gfill][+olon/lat][+ttitle]

Here, the optional axes dictates which of the axes should be drawn and possibly annotated. By default,
all 4 map boundaries (or plot axes) are plotted (denoted W, E, S, N). To change this selection, append
the codes for those you want (e.g., WSn). In this example, the lower case n denotes to draw the axis
and (major and minor) tick marks on the “northern” (top) edge of the plot. The upper case WS will
annotate the “western” and “southern” axes with numerals and plot the any axis labels in addition to
draw axis/tick-marks. For 3-D plots you can also specify Z or z. By default a single vertical axes will
then be plotted at the most suitable map corner. You can override this by appending any combination of
corner ids 1234, where 1 represents the lower left corner and the order goes counter-clockwise. Append
+b to draw the outline of the 3-D box defined by -R; this modifier is also needed to display gridlines in
the x–z, y–z planes. You may paint the map canvas by appending the +gfill modifier [Default is no fill].
If gridlines are specified via the Axes parameters (discussed below) then by default these are referenced
to the North pole. If, however, you wish to produce oblique gridlines about another pole you can append
+olon/lat to change this behavior (the modifier is ignored if no gridlines are requested). Finally, you may
optionally add +ttitle to place a title that will appear centered above the plot frame.

8.4. Standardized command line options 43

GMT Documentation, Release 5.1.1

The Axes settings are specified by

• -B[p|s][x|x|z]intervals[+llabel][+pprefix][+uunit]

but you may also split this into two separate invocations for clarity, i.e.,

• -B[p|s][x|y|z][+llabel][+pprefix][+uunit]

• -B[p|s][x|y|z]intervals

The first optional flag following -B selects p (rimary) [Default] or s (econdary) axes information (which
is mostly used for time axes annotations; see examples below). The next optional flags specifies which
axes you are providing information for. This can be an individual axis (e.g., just x) or a combination
(e.g., xz). If none are given then we default to xy. Thus, if you wish to give different annotation intervals
or labels for the various axes then you must repeat the B option for each axis. To add a label to an axis,
just append +llabel. If the axis annotation should have a leading text prefix (e.g., dollar sign for those
plots of your net worth) you can append +pprefix. For geographic maps the addition of degree symbols,
etc. is automatic (and controlled by the GMT default setting FORMAT_GEO_MAP). However, for other
plots you can add specific units by adding +uunit. If any of these text strings contain spaces or special
UNIX characters you will need to enclose them in quotes. The intervals specification is a concatenated
string made up of substrings of the form

[t]stride[phase][u].

The t flag sets the axis item of interest; the available items are listed in Table inttype. Normally, equidis-
tant annotations occur at multiples of stride; you can phase-shift this by appending phase, which can be

a positive or negative number.

Flag Description

a Annotation and major tick spacing
f Minor tick spacing
g Grid line spacing

Note that the appearance of certain time annotations (month-, week-, and day-names) may be affected by
the TIME_LANGUAGE, FORMAT_TIME_PRIMARY_MAP, and FORMAT_TIME_SECONDARY_MAP

settings.

For automated plots the region may not always be the same and thus it can be difficult to determine the
appropriate stride in advance. Here GMT provides the opportunity to autoselect the spacing between the
major and minor ticks and the grid lines, by not specifying the stride value. For example, -Bafg will
select all three spacings automatically for both axes. In case of longitude–latitude plots, this will keep
the spacing the same on both axes. You can also use -Bafg/afg to autoselect them separately.

In the case of automatic spacing, when the stride argument is omitted after g, the grid line spacing is
chosen the same as the minor tick spacing; unless g is used in consort with a, then the grid lines are
spaced the same as the annotations.

The unit flag u can take on one of 18 codes; these are listed in Table units. Almost
all of these units are time-axis specific. However, the m and s units will be inter-
preted as arc minutes and arc seconds, respectively, when a map projection is in effect.

44 Chapter 8. General Features

GMT Documentation, Release 5.1.1

Flag Unit Description

Y year Plot using all 4 digits
y year Plot using last 2 digits
O month Format annotation using FORMAT_DATE_MAP

o month Plot as 2-digit integer (1–12)
U ISO week Format annotation using FORMAT_DATE_MAP

u ISO week Plot as 2-digit integer (1–53)
r Gregorian week 7-day stride from start of week (see TIME_WEEK_START)
K ISO weekday Plot name of weekday in selected language
k weekday Plot number of day in the week (1–7) (see TIME_WEEK_START)
D date Format annotation using FORMAT_DATE_MAP

d day Plot day of month (1–31) or day of year (1–366)
(see FORMAT_DATE_MAP

R day Same as d; annotations aligned with week (see TIME_WEEK_START)
H hour Format annotation using FORMAT_CLOCK_MAP

h hour Plot as 2-digit integer (0–24)
M minute Format annotation using FORMAT_CLOCK_MAP

m minute Plot as 2-digit integer (0–60)
S seconds Format annotation using FORMAT_CLOCK_MAP

s seconds Plot as 2-digit integer (0–60)

As mentioned, there may be two levels of annotations. Here, “primary” refers to the annotation that is
closest to the axis (this is the primary annotation), while “secondary” refers to the secondary annotation
that is plotted further from the axis. The examples below will clarify what is meant. Note that the terms
“primary” and “secondary” do not reflect any hierarchical order of units: The “primary” annotation
interval is usually smaller (e.g., days) while the “secondary” annotation interval typically is larger (e.g.,
months).

Geographic basemaps

Geographic basemaps may differ from regular plot axis in that some projections support a “fancy” form
of axis and is selected by the MAP_FRAME_TYPE setting. The annotations will be formatted according
to the FORMAT_GEO_MAP template and MAP_DEGREE_SYMBOL setting. A simple example of part
of a basemap is shown in Figure Geographic map border.

1˚W 0˚ 1˚E 2˚Eannotation frame grid

Figure 8.6: Geographic map border using separate selections for annotation, frame, and grid intervals.
Formatting of the annotation is controlled by the parameter FORMAT_GEO_MAP in your gmt.conf.

The machinery for primary and secondary annotations introduced for time-series axes can also be uti-
lized for geographic basemaps. This may be used to separate degree annotations from minutes- and
seconds-annotations. For a more complicated basemap example using several sets of intervals, includ-
ing different intervals and pen attributes for grid lines and grid crosses, see Figure Complex basemap.

8.4. Standardized command line options 45

GMT Documentation, Release 5.1.1

45' 30' 15' 45' 30' 15' 15' 30' 45'2˚W 1˚W 0˚ 1˚E

P:
annotation frame grid

S:
annotation frame grid

Figure 8.7: Geographic map border with both primary (P) and secondary (S) components.

Cartesian linear axes

For non-geographic axes, the MAP_FRAME_TYPE setting is implicitly set to plain. Other than that,
cartesian linear axes are very similar to geographic axes. The annotation format may be controlled with
the FORMAT_FLOAT_OUT parameter. By default, it is set to “%g”, which is a C language format
statement for floating point numbers 7, and with this setting the various axis routines will automati-
cally determine how many decimal points should be used by inspecting the stride settings. If FOR-

MAT_FLOAT_OUT is set to another format it will be used directly (.e.g, “%.2f” for a fixed, two deci-
mals format). Note that for these axes you may use the unit setting to add a unit string to each annotation
(see Figure Axis label).

0 % 4 % 8 % 12 %

Frequency

annotation frame grid

Figure 8.8: Linear Cartesian projection axis. Long tickmarks accompany annotations, shorter ticks
indicate frame interval. The axis label is optional. For this example we used -R0/12/0/0.95

-JX3i/0.3i -Ba4f2g1+lFrequency+u" %" -BS

Cartesian log10 axes

Due to the logarithmic nature of annotation spacings, the stride parameter takes on specific meanings.
The following concerns are specific to log axes (see Figure Logarithmic projection axis):

• stride must be 1, 2, 3, or a negative integer -n. Annotations/ticks will then occur at 1, 1-2-5, or
1,2,3,4,...,9, respectively, for each magnitude range. For -n the annotations will take place every
n‘th magnitude.

• Append l to stride. Then, log10 of the annotation is plotted at every integer log10 value (e.g., x =

100 will be annotated as “2”) [Default annotates x as is].

• Append p to stride. Then, annotations appear as 10 raised to log10 of the value (e.g., 10-5).

Cartesian exponential axes

Normally, stride will be used to create equidistant (in the user’s unit) annotations or ticks, but because
of the exponential nature of the axis, such annotations may converge on each other at one end of the
axis. To avoid this problem, you can append p to stride, and the annotation interval is expected to be

7 Please consult the man page for printf or any book on C.

46 Chapter 8. General Features

GMT Documentation, Release 5.1.1

100 101 102 103

Axis Label

0 1 2 3

Axis Label

1 10 100 1000

Axis Label

Figure 8.9: Logarithmic projection axis using separate values for annotation, frame, and grid intervals.
(top) Here, we have chosen to annotate the actual values. Interval = 1 means every whole power of 10,
2 means 1, 2, 5 times powers of 10, and 3 means every 0.1 times powers of 10. We used -R1/1000/0/1
-JX3il/0.25i -Ba1f2g3. (middle) Here, we have chosen to annotate log10 of the actual values, with -
Ba1f2g3l. (bottom) We annotate every power of 10 using log10 of the actual values as exponents, with
-Ba1f2g3p.

in transformed units, yet the annotation itself will be plotted as un-transformed units (see Figure Power

projection axis). E.g., if stride = 1 and power = 0.5 (i.e., sqrt), then equidistant annotations labeled 1, 4,
9, ... will appear.

0 9 36 81

Axis Label

0 20 40 60 80 100

Axis Label

Figure 8.10: Exponential or power projection axis. (top) Using an exponent of 0.5 yields a sqrt(x) axis.
Here, intervals refer to actual data values, in -R0/100/0/0.9 -JX3ip0.5/0.25i -Ba20f10g5. (bottom) Here,
intervals refer to projected values, although the annotation uses the corresponding unprojected values,
as in -Ba3f2g1p.

Cartesian time axes

What sets time axis apart from the other kinds of plot axes is the numerous ways in which we may want
to tick and annotate the axis. Not only do we have both primary and secondary annotation items but we
also have interval annotations versus tickmark annotations, numerous time units, and several ways in
which to modify the plot. We will demonstrate this flexibility with a series of examples. While all our
examples will only show a single x-axis (south, selected via -BS), time-axis annotations are supported
for all axes.

Our first example shows a time period of almost two months in Spring 2000. We want to annotate the

8.4. Standardized command line options 47

GMT Documentation, Release 5.1.1

month intervals as well as the date at the start of each week:

gmt set FORMAT_DATE_MAP=-o FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R2000-4-1T/2000-5-25T/0/1 -JX5i/0.2i -Bpa7Rf1d -Bsa1O -BS -P > GMT_-B_time1.ps

These commands result in Figure Cartesian time axis. Note the leading hyphen in the FOR-

MAT_DATE_MAP removes leading zeros from calendar items (e.g., 02 becomes 2).

2 9 16 23 30 7 14 21

April May

Figure 8.11: Cartesian time axis, example 1

The next example shows two different ways to annotate an axis portraying 2 days in July 1969:

gmt set FORMAT_DATE_MAP "o dd" FORMAT_CLOCK_MAP hh:mm FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R1969-7-21T/1969-7-23T/0/1 -JX5i/0.2i -Bpa6Hf1h -Bsa1K -BS -P -K > GMT_-B_time2.ps

gmt psbasemap -R -J -Bpa6Hf1h -Bsa1D -BS -O -Y0.65i >> GMT_-B_time2.ps

The lower example (Figure Cartesian time axis, example 2) chooses to annotate the weekdays (by spec-
ifying a1K) while the upper example choses dates (by specifying a1D). Note how the clock format only
selects hours and minutes (no seconds) and the date format selects a month name, followed by one space
and a two-digit day-of-month number.

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Monday Tuesday

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

July 21 July 22

Figure 8.12: Cartesian time axis, example 2

The third example (Figure Cartesian time axis, example 3) presents two years, annotating both the years
and every 3rd month.

gmt set FORMAT_DATE_MAP o FORMAT_TIME_PRIMARY_MAP Character FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R1997T/1999T/0/1 -JX5i/0.2i -Bpa3Of1o -Bsa1Y -BS -P > GMT_-B_time3.ps

Note that while the year annotation is centered on the 1-year interval, the month annotations must be
centered on the corresponding month and not the 3-month interval. The FORMAT_DATE_MAP selects
month name only and FORMAT_TIME_PRIMARY_MAP selects the 1-character, upper case abbreviation
of month names using the current language (selected by TIME_LANGUAGE).

J A J O J A J O

1997 1998

Figure 8.13: Cartesian time axis, example 3

The fourth example (Figure Cartesian time axis, example 4) only shows a few hours of a day, using
relative time by specifying t in the -R option while the TIME_UNIT is d (for days). We select both
primary and secondary annotations, ask for a 12-hour clock, and let time go from right to left:

gmt set FORMAT_CLOCK_MAP=-hham FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R0.2t/0.35t/0/1 -JX-5i/0.2i -Bpa15mf5m -Bsa1H -BS -P > GMT_-B_time4.ps

48 Chapter 8. General Features

GMT Documentation, Release 5.1.1

15304515304515304515

5am6am7am8am

Figure 8.14: Cartesian time axis, example 4

The fifth example shows a few weeks of time (Figure Cartesian time axis, example 5). The lower axis
shows ISO weeks with week numbers and abbreviated names of the weekdays. The upper uses Gregorian
weeks (which start at the day chosen by TIME_WEEK_START); they do not have numbers.

gmt set FORMAT_DATE_MAP u FORMAT_TIME_PRIMARY_MAP Character \

FORMAT_TIME_SECONDARY_MAP full FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R1969-7-21T/1969-8-9T/0/1 -JX5i/0.2i -Bpa1K -Bsa1U -BS -P -K > GMT_-B_time5.ps

gmt set FORMAT_DATE_MAP o TIME_WEEK_START Sunday FORMAT_TIME_SECONDARY_MAP Chararacter

gmt psbasemap -R -J -Bpa3Kf1k -Bsa1r -BS -O -Y0.65i >> GMT_-B_time5.ps

M T W T F S S M T W T F S S M T W T F

Week 30 Week 31 Week 32

W S S W S S W

Figure 8.15: Cartesian time axis, example 5

Our sixth example (Figure Cartesian time axis, example 6) shows the first five months of 1996, and we
have annotated each month with an abbreviated, upper case name and 2-digit year. Only the primary
axes information is specified.

gmt set FORMAT_DATE_MAP "o yy" FORMAT_TIME_PRIMARY_MAP Abbreviated

gmt psbasemap -R1996T/1996-6T/0/1 -JX5i/0.2i -Ba1Of1d -BS -P > GMT_-B_time6.ps

JAN 96 FEB 96 MAR 96 APR 96 MAY 96

Figure 8.16: Cartesian time axis, example 6

Our seventh and final example (Figure Cartesian time axis, example 7) illustrates annotation of year-
days. Unless we specify the formatting with a leading hyphen in FORMAT_DATE_MAP we get 3-digit
integer days. Note that in order to have the two years annotated we need to allow for the annotation of
small fractional intervals; normally such truncated interval must be at least half of a full interval.

gmt set FORMAT_DATE_MAP jjj TIME_INTERVAL_FRACTION 0.05 FONT_ANNOT_PRIMARY +9p

gmt psbasemap -R2000-12-15T/2001-1-15T/0/1 -JX5i/0.2i -Bpa5Df1d -Bsa1Y -BS -P > GMT_-B_time7.ps

Custom axes

Irregularly spaced annotations or annotations based on look-up tables can be implemented using the cus-

tom annotation mechanism. Here, we given the c (custom) type to the -B option followed by a filename
that contains the annotations (and tick/grid-lines specifications) for one axis. The file can contain any
number of comments (lines starting with #) and any number of records of the format

coord type [label]

8.4. Standardized command line options 49

GMT Documentation, Release 5.1.1

350 355 360 365 005 010

2000 2001

Figure 8.17: Cartesian time axis, example 7

The coord is the location of the desired annotation, tick, or grid-line, whereas type is a string composed
of letters from a (annotation), i interval annotation, f frame tick, and g gridline. You must use either a or
i within one file; no mixing is allowed. The coordinates should be arranged in increasing order. If label

is given it replaces the normal annotation based on the coord value. Our last example (Figure Custom

and irregular annotations) shows such a custom basemap with an interval annotations on the x-axis and
irregular annotations on the y-axis.

cat << EOF > xannots.txt

416.0 ig Devonian

443.7 ig Silurian

488.3 ig Ordovician

542 ig Cambrian

EOF

cat << EOF > yannots.txt

0 a

1 a

2 f

2.71828 ag e

3 f

3.1415926 ag @~p@~

4 f

5 f

6 f

6.2831852 ag 2@~p@~

EOF

gmt psbasemap -R416/542/0/6.2831852 -JX-5i/2.5i -Bpx25f5g25+u" Ma" -Bpycyannots.txt \

-BWS+glightblue -P -K > GMT_-B_custom.ps

gmt psbasemap -R416/542/0/6.2831852 -JX-5i/2.5i -Bsxcxannots.txt -BWS -O \

--MAP_ANNOT_OFFSET_SECONDARY=10p --MAP_GRID_PEN_SECONDARY=2p >> GMT_-B_custom.ps

rm -f [xy]annots.txt

0

1

e

π

2π

425 Ma450 Ma475 Ma500 Ma525 Ma

DevonianSilurianOrdovician

Figure 8.18: Custom and irregular annotations, tick-marks, and gridlines.

50 Chapter 8. General Features

GMT Documentation, Release 5.1.1

8.4.4 Portrait plot orientation: The -P option

The -P option selects Portrait plotting mode 8. In general, a plot has an x-axis increasing from left to
right and a y-axis increasing from bottom to top. If the paper is turned so that the long dimension of the
paper is parallel to the x-axis then the plot is said to have Landscape orientation. If the long dimension
of the paper parallels the y-axis the orientation is called Portrait (think of taking pictures with a camera
and these words make sense). The default Landscape orientation is obtained by translating the origin in
the x-direction (by the width of the chosen paper PS_MEDIA) and then rotating the coordinate system
counterclockwise by 90. By default the PS_MEDIA is set to Letter (or A4 if SI is chosen); this value
must be changed when using different media, such as 11” x 17” or large format plotters (Figure Plot

orientation).

leading
paper edge

–P Default

x

y x

y

Figure 8.19: Users can specify Landscape [Default] or Portrait -P) orientation.

8.4.5 Plot overlays: The -K -O options

The -K and -O options control the generation of PostScript code for multiple overlay plots. All
PostScript files must have a header (for initializations), a body (drawing the figure), and a trailer (printing
it out) (see Figure Multiple overlay plots). Thus, when overlaying several GMT plots we must make sure
that the first plot call omits the trailer, that all intermediate calls omit both header and trailer, and that
the final overlay omits the header. The -K omits the trailer which implies that more PostScript code will
be appended later [Default terminates the plot system]. The -O selects Overlay plot mode and omits the
header information [Default initializes a new plot system]. Most unexpected results for multiple overlay
plots can be traced to the incorrect use of these options. If you run only one plot program, ignore both
the -O and -K options; they are only used when stacking plots.

8.4.6 Timestamps on plots: The -U option

The -U option draws UNIX System time stamp. Optionally, append an arbitrary text string (surrounded
by double quotes), or the code c, which will plot the current command string (Figure Time stamp).

8.4.7 Verbose feedback: The -V option

The -V option selects verbose mode, which will send progress reports to standard error. Even more
verbose levels are -Vl (long verbose) and -Vd (debug). Normal verbosity level produces only error and
warning messages. This is the default or can be selected by using -Vn. If compiled with backward-
compatibility support, the default is -Vc, which includes warnings about deprecated usage. Finally, -Vq

8 For historical reasons, the GMT default is Landscape; see gmt.conf to change this.

8.4. Standardized command line options 51

GMT Documentation, Release 5.1.1

1−part PostScript file

HEADER

BODY1

TRAILER

2−part PostScript file

HEADER

BODY1

–K omits trailer

–O omits header

BODY2

TRAILER

n−part PostScript file

HEADER

BODY1

–K omits trailer

BODYi

2nd through n−1’th

overlays require

both –O and –K

–O omits header

BODYn

TRAILER

Figure 8.20: A final PostScript file consists of any number of individual pieces.

 2011 Jun 13 21:09:49 optional command string or text here

Figure 8.21: The -U option makes it easy to date a plot.

can be used to run without any warnings or errors. This option can also be set by specifying the default
GMT_VERBOSE, as quiet, normal, compat, verbose, long_verbose, or debug, in order of increased
verbosity.

8.4.8 Plot positioning and layout: The -X -Y options

The -X and -Y options shift origin of plot by (xoff,yoff) inches (Default is (MAP_ORIGIN_X,
MAP_ORIGIN_Y) for new plots 9 and (0,0) for overlays (-O)). By default, all translations are rela-
tive to the previous origin (see Figure Plot positioning). Supply offset as c to center the plot in that
direction relative to the page margin. Absolute translations (i.e., relative to a fixed point (0,0) at the
lower left corner of the paper) can be achieve by prepending “a” to the offsets. Subsequent overlays will
be co-registered with the previous plot unless the origin is shifted using these options. The offsets are
measured in the current coordinates system (which can be rotated using the initial -P option; subsequent
-P options for overlays are ignored).

xoff

yoff
x

y

Figure 8.22: Plot origin can be translated freely with -X -Y.

9 Ensures that boundary annotations do not fall off the page.

52 Chapter 8. General Features

GMT Documentation, Release 5.1.1

8.4.9 OGR/GMT GIS i/o: The -a option

GMT relies on external tools to translate geospatial files such as shapefiles into a format we can read.
The tool ogr2ogr in the GDAL package can do such translations and preserve the aspatial metadata
via a new OGR/GMT format specification (See Appendix P. The GMT Vector Data Format for OGR
Compatibility). For this to be useful we need a mechanism to associate certain metadata values with
required input and output columns expected by GMT programs. The -a option allows you to supply one
or more comma-separated associations col=name, where name is the name of an aspatial attribute field
in a OGR/GMT file and whose value we wish to as data input for column col. The given aspatial field
thus replaces any other value already set. Note that col = 0 is the first data columns. Note that if no
aspatial attributes are needed then the -a option is not needed – GMT will still process and read such
data files.

OGR/GMT input with -a option

If you need to populate GMT data columns with (constant) values specified by aspatial attributes, use -a

and append any number of comma-separated col=name associations. E.g., 2=depth will read the spatial
x,y columns from the file and add a third (z) column based on the value of the aspatial field called depth.
You can also associate aspatial fields with other settings such as labels, fill colors, pens, and values used
to look-up colors. Do so by letting the col value be one of D, G, L, T, W, or Z. This works analogously
to how standard multi-segment files can pass such options via its segment headers (See Appendix B.
GMT file formats).

OGR/GMT output with -a option

You can also make GMT table-writing tools output the OGR/GMT format directly. Again, specify
if certain GMT data columns with constant values should be stored as aspatial metadata using the
col=name[:type], where you can optionally specify what data type it should be (double, integer, string,
logical, byte, or datetime) [double is default]. As for input, you can also use the special col entries of
D, G, L, T, W, or Z to have values stored as options in segment headers be used as the source for the
name aspatial field. Finally, for output you must append +ggeometry, where geometry can be any of
[M]POINT|LINE|POLY; the M represent the multi-versions of these three geometries. Use upper-case
+G to signal that you want to split any line or polygon features that straddle the Dateline.

8.4.10 Binary table i/o: The -b option

All GMT programs that accept table data input may read ASCII, native binary, or netCDF data. Native
binary files may have a header section and the -hn option (see Section Header data records: The -h
option) can be used to skip the first n bytes. The data record can be in any format, mixing different
data types and even containing byte-swapped items. When using native binary data the user must be
aware of the fact that GMT has no way of determining the actual number of columns in the file. You
must therefore pass that information to GMT via the binary -bi option, where n is the actual number
of data columns and t must be one of c (signed 1-byte character, int8_t), u (unsigned 1-byte character,
uint8_t), h (signed 2-byte int, int16_t), H (unsigned 2-byte int, uint16_t), i (signed 4-byte int, int32_t), I

(unsigned 4-byte int, uint32_t), l (signed 8-byte int, int64_t), L (unsigned 8-byte int, uint64_t), f (4-byte
single-precision float), and d (8-byte double-precision float). In addition, use x to skip n bytes anywhere
in the record. For a mixed-type data record you can concatenate several [n]t combinations, separated by
commas. You may append w to any of the items to force byte-swapping. Alternatively, append +L|B to
indicate that the entire data file should be read or written as little- or big-endian, respectively. Here, n is

8.4. Standardized command line options 53

GMT Documentation, Release 5.1.1

the number of each item in your binary file. Note that n may be larger than m, the number of columns
that the GMT program requires to do its task. If n is not given then it defaults to m and all columns
are assumed to be of the single specified type t [d (double), if not set]. If n < m an error is generated.
Multiple segment files are allowed and the segment headers are assumed to be records where all the
fields equal NaN.

For binary output, use the -bo option; see -bi for further details.

Because of its meta data, reading netCDF tables (i.e., netCDF files containing 1-dimensional arrays)
is quite a bit less complex than reading native binary files. When feeding netCDF tables to programs
like psxy, the program will automatically recognize the format and read whatever amount of columns
are needed for that program. To steer which columns are to be read, the user can append the suffix
?var1/var2/... to the netCDF file name, where var1, var2, etc. are the names of the variables to be
processed. No -bi option is needed in this case.

Currently, netCDF tables can only be input, not output. For more information, see Appendix [app:B].

8.4.11 Number of Copies: The -c option

The -c option specifies the number of plot copies [Default is 1]. This value is embedded in the PostScript
file and will make a printer issue the chosen number of copies without respooling.

8.4.12 Data type selection: The -f option

When map projections are not required we must explicitly state what kind of data each input or output
column contains. This is accomplished with the -f option. Following an optional i (for input only) or o

(for output only), we append a text string with information about each column (or range of columns)
separated by commas. Each string starts with the column number (0 is first column) followed by either
x (longitude), y (latitude), T (absolute calendar time) or t (relative time). If several consecutive columns
have the same format you may specify a range of columns rather than a single column, i.e., 0–4 for the
first 5 columns. For example, if our input file has geographic coordinates (latitude, longitude) with abso-
lute calendar coordinates in the columns 3 and 4, we would specify fi0y,1x,3–4T. All other columns are
assumed to have the default, floating point format and need not be set individually. The shorthand -f[i|o]g
means -f[i|o]0x,1y (i.e., geographic coordinates). A special use of -f is to select -fp[unit], which requires

-J and lets you use projected map coordinates (e.g., UTM meters) as data input. Such coordinates are
automatically inverted to longitude, latitude during the data import. Optionally, append a length unit (see
Table distunits) [meter]. For more information, see Sections Input data formats and Output data formats.

8.4.13 Data gap detection: The -g option

GMT has several mechanisms that can determine line segmentation. Typically, data segments are sep-
arated by multiple segment header records (see Appendix B. GMT file formats). However, if key data
columns contain a NaN we may also use that information to break lines into multiple segments. This
behavior is modified by the parameter IO_NAN_RECORDS which by default is set to skip, meaning
such records are considered bad and simply skipped. If you wish such records to indicate a segment
boundary then set this parameter to pass. Finally, you may wish to indicate gaps based on the data val-
ues themselves. The -g option is used to detect gaps based on one or more criteria (use -g+ if all the
criteria must be met; otherwise only one of the specified criteria needs to be met to signify a data gap).
Gaps can be based on excessive jumps in the x- or y-coordinates (-gx or -gy), or on the distance between
points (-gd). Append the gap distance and optionally a unit for actual distances. For geographic data
the optional unit may be arc degree, minute, and second, or meter [Default], feet, kilometer, Miles, or

54 Chapter 8. General Features

GMT Documentation, Release 5.1.1

nautical miles. For programs that map data to map coordinates you can optionally specify these criteria
to apply to the projected coordinates (by using upper-case -gX, -gY or -gD). In that case, choose from
centimeter, inch or point [Default unit is controlled by PROJ_LENGTH_UNIT]. Note: For -gx or -gy

with time data the unit is instead controlled by TIME_UNIT.

8.4.14 Header data records: The -h option

The -h[i|o][n_recs] option lets GMT know that input file(s) have n_recs header records [0]. If there are
more than one header record you must specify the number after the -h option, e.g., -h4. Note that blank
lines and records that start with the character # are automatically considered header records and skipped.
Thus, n_recs refers to general text lines that do not start with # and thus must specifically be skipped
in order for the programs to function properly. The default number of such header records if -h is used
is one of the many parameters in the gmt.conf file (IO_N_HEADER_RECS, by default 0), but can
be overridden by -hn_header_recs. Normally, programs that both read and write tables will output the
header records that are found on input. Use -hi to suppress the writing of header records. You can use
the -h options modifiers to to tell programs to output extra header records for titles, remarks or column
names identifying each data column.

When -b is used to indicate binary data the -h takes on a slightly different meaning. Now, the n_recs

argument is taken to mean how many bytes should be skipped (on input) or padded with the space
character (on output).

8.4.15 Input columns selection: The -i option

The -icolumns option allows you to specify which input file data columns to use and in what order.
By default, GMT will read all the data columns in the file, starting with the first column (0). Using
-i modifies that process. For instance, to use the 4th, 7th, and 3rd data column as the required x,y,z to
blockmean you would specify -i3,6,2 (since 0 is the first column). The chosen data columns will be
used as is. Optionally, you can specify that input columns should be transformed according to a linear or
logarithmic conversion. Do so by appending [l][sscale][ooffset] to each column (or range of columns).
All items are optional: The l implies we should first take log10 of the data [leave as is]. Next, we may
scale the result by the given scale [1]. Finally, we add in the specified offset [0].

8.4.16 Grid interpolation parameters: The -n option

The -ntype option controls parameters used for 2-D grids resampling. You can select the type of spline
used (-nb for B-spline smoothing, -nc for bicubic [Default], -nl for bilinear, or -nn for nearest-node
value). For programs that support it, antialiasing is by default on; optionally, append +a to switch off
antialiasing. By default, boundary conditions are set according to the grid type and extent. Change
boundary conditions by appending +bBC, where BC is either g for geographic boundary conditions or
one (or both) of n and p for natural or periodic boundary conditions, respectively. Append x or y to only
apply the condition in one dimension. E.g., -nb+nxpy would imply natural boundary conditions in the x

direction and periodic conditions in the y direction. Finally, append +tthreshold to control how close to
nodes with NaN the interpolation should go. A threshold of 1.0 requires all (4 or 16) nodes involved in
the interpolation to be non-NaN. 0.5 will interpolate about half way from a non-NaN value; 0.1 will go
about 90% of the way, etc.

8.4. Standardized command line options 55

GMT Documentation, Release 5.1.1

8.4.17 Output columns selection: The -o option

The -ocolumns option allows you to specify which columns to write on output and in what order. By
default, GMT will write all the data columns produced by the program. Using -o modifies that process.
For instance, to write just the 4th and 2nd data column to the output you would use -o3,1 (since 0 is the
first column).

8.4.18 Perspective view: The -p option

All plotting programs that normally produce a flat, two-dimensional illustration can be told to view this
flat illustration from a particular vantage point, resulting in a perspective view. You can select perspective
view with the -p option by setting the azimuth and elevation of the viewpoint [Default is 180/90]. When
-p is used in consort with -Jz or -JZ, a third value can be appended which indicates at which z-level all
2-D material, like the plot frame, is plotted (in perspective) [Default is at the bottom of the z-axis]. For
frames used for animation, you may want to append + to fix the center of your data domain (or specify a
particular world coordinate point with +wlon0/lat[z]) which will project to the center of your page size
(or you may specify the coordinates of the projected view point with +vx0/y0. When -p is used without
any further arguments, the values from the last use of -p in a previous GMTcommand will be used.

8.4.19 Grid registration: The -r option

All 2-D grids in GMT have their nodes organized in one of two ways, known as gridline- and pixel

registration. The GMT default is gridline registration; programs that allow for the creation of grids can
use the -r option to select pixel registration instead.

Gridline registration

In this registration, the nodes are centered on the grid line intersections and the data points represent
the average value in a cell of dimensions (xinc · yinc) centered on each node (left side of Figure Grid

registration). In the case of grid line registration the number of nodes are related to region and grid
spacing by

nx = (xmax − xmin)/xinc + 1
ny = (ymax − ymin)/yinc + 1

which for the example in left side of Figure Gridline registration yields nx = ny = 4.

Pixel registration

Here, the nodes are centered in the grid cells, i.e., the areas between grid lines, and the data points
represent the average values within each cell (right side of Figure Grid registration). In the case of pixel
registration the number of nodes are related to region and grid spacing by

nx = (xmax − xmin)/xinc
ny = (ymax − ymin)/yinc

Thus, given the same region (-R) and grid spacing, the pixel-registered grids have one less column and
one less row than the gridline-registered grids; here we find nx = ny = 3.

56 Chapter 8. General Features

GMT Documentation, Release 5.1.1

Figure 8.23: Gridline- and pixel-registration of data nodes.

8.4.20 NaN-record treatment: The -s option

We can use this option to suppress output for records whose z-value equals NaN (by default we output all
records). Alternatively, append r to reverse the suppression, i.e., only output the records whose z-value
equals NaN. Use -sa to suppress output records where one or more fields (and not necessarily z) equal
NaN. Finally, you can supply a comma-separated list of all columns or column ranges to consider for
this NaN test.

8.4.21 Layer PDF transparency: The -t option

While the PostScript language does not support transparency, PDF does, and via PostScript extensions
one can manipulate the transparency levels of objects. The -t option allows you to change the trans-
parency level for the current overlay by appending a percentage in the 0–100 range; the default is 0, or
opaque. Transparency may also be controlled on a feature by feature basis when setting color or fill (see
section Specifying area fill attributes).

8.4.22 Latitude/Longitude or Longitude/Latitude?: The -: option

For geographical data, the first column is expected to contain longitudes and the second to contain
latitudes. To reverse this expectation you must apply the -: option. Optionally, append i or o to restrict the
effect to input or output only. Note that command line arguments that may take geographic coordinates
(e.g., -R) always expect longitude before latitude. Also, geographical grids are expected to have the
longitude as first (minor) dimension.

8.5 Command line history

GMT programs “remember” the standardized command line options (See Section Standardized com-
mand line options) given during their previous invocations and this provides a shorthand notation for
complex options. For example, if a basemap was created with an oblique Mercator projection, specified
as

-Joc170W/25:30S/33W/56:20N/1:500000

then a subsequent psxy command to plot symbols only needs to state -Jo in order to activate the
same projection. In contrast, note that -J by itself will pick the most recently used projection. Previ-
ous commands are maintained in the file gmt.history, of which there will be one in each directory
you run the programs from. This is handy if you create separate directories for separate projects since
chances are that data manipulations and plotting for each project will share many of the same options.
Note that an option spelled out on the command line will always override the previous entry in the

8.5. Command line history 57

GMT Documentation, Release 5.1.1

gmt.history file and, if execution is successful, will replace this entry as the previous option argu-
ment in the gmt.history file. If you call several GMT modules piped together then GMT cannot
guarantee that the gmt.history file is processed in the intended order from left to right. The only
guarantee is that the file will not be clobbered since GMT uses advisory file locking. The uncertainty
in processing order makes the use of shorthands in pipes unreliable. We therefore recommend that you
only use shorthands in single process command lines, and spell out the full command option when using
chains of commands connected with pipes.

8.6 Usage messages, syntax- and general error messages

Each program carries a usage message. If you enter the program name without any arguments, the
program will write the complete usage message to standard error (your screen, unless you redirect it).
This message explains in detail what all the valid arguments are. If you enter the program name followed
by a hyphen (-) only you will get a shorter version which only shows the command line syntax and no
detailed explanations. If you incorrectly specify an option or omit a required option, the program will
produce syntax errors and explain what the correct syntax for these options should be. If an error occurs
during the running of a program, the program will in some cases recognize this and give you an error
message. Usually this will also terminate the run. The error messages generally begin with the name
of the program in which the error occurred; if you have several programs piped together this tells you
where the trouble is.

8.7 Standard input or file, header records

Most of the programs which expect table data input can read either standard input or input in one or
several files. These programs will try to read stdin unless you type the filename(s) on the command line
without the above hyphens. (If the program sees a hyphen, it reads the next character as an instruction;
if an argument begins without a hyphen, it tries to open this argument as a filename). This feature allows
you to connect programs with pipes if you like. If your input is ASCII and has one or more header
records that do not begin with #, you must use the -h option (see Section Header data records: The -h
option). ASCII files may in many cases also contain segment-headers separating data segments. These
are called “multi-segment files”. For binary table data the -h option may specify how many bytes should
be skipped before the data section is reached. Binary files may also contain segment-headers separating
data segments. These segment-headers are simply data records whose fields are all set to NaN; see
Appendix [app:B] for complete documentation.

If filenames are given for reading, GMT programs will first look for them in the current directory.
If the file is not found, the programs will look in two other directories pointed to by the directory

parameters DIR_DATA and DIR_USER or by the environmental parameters GMT_USERDIR and
GMT_DATADIR (if set). They may be set by the user to point to directories that contain data sets
of general use, thus eliminating the need to specify a full path to these files. Usually, the DIR_DATA

directory will hold data sets of a general nature (tables, grids), whereas the DIR_USER directory may
hold miscellaneous data sets more specific to the user; this directory also stores GMT defaults and other
configuration files. See directory parameters for details. Program output is always written to the current
directory unless a full path has been specified.

58 Chapter 8. General Features

GMT Documentation, Release 5.1.1

8.8 Verbose operation

Most of the programs take an optional -V argument which will run the program in the “verbose” mode
(see Section Verbose feedback: The -V option). Verbose will write to standard error information about
the progress of the operation you are running. Verbose reports things such as counts of points read,
names of data files processed, convergence of iterative solutions, and the like. Since these messages are
written to stderr, the verbose talk remains separate from your data output. You may optionally choose
among five models of verbosity; each mode adds more messages with an increasing level of details. The
modes are

q Complete silence, not even fatal error messages.

n Warnings and progress messages [Default].

c Warnings about deprecated usage (if compiled for compatibility).

l Detailed progress messages.

d Debugging messages.

The verbosity is cumulative, i.e., mode l means all messages of mode n as well. will be reported.

8.9 Program output

Most programs write their results, including PostScriptplots, to standard output. The exceptions are those
which may create binary netCDF grid files such as surface (due to the design of netCDF a filename
must be provided; however, alternative binary output formats allowing piping are available; see Section
Grid file format specifications). Most operating systems let you can redirect standard output to a file
or pipe it into another process. Error messages, usage messages, and verbose comments are written to
standard error in all cases. You can usually redirect standard error as well, if you want to create a log file
of what you are doing. The syntax for redirection differ among the main shells (Bash and C-shell) and
is a bit limited in DOS.

8.10 Input data formats

Most of the time, GMT will know what kind of x and y coordinates it is reading because you have
selected a particular coordinate transformation or map projection. However, there may be times when
you must explicitly specify what you are providing as input using the -f switch. When binary input data
are expected (-bi) you must specify exactly the format of the records. However, for ASCII input there are
numerous ways to encode data coordinates (which may be separated by white-space or commas). Valid
input data are generally of the same form as the arguments to the -R option (see Section Data domain or
map region: The -R option), with additional flexibility for calendar data. Geographical coordinates, for
example, can be given in decimal degrees (e.g., -123.45417) or in the []*ddd*[:mm[:ss[.xxx]]][W| E| S|
N] format (e.g., 123:27:15W). With -fp you may even supply projected data like UTM coordinates.

Because of the widespread use of incompatible and ambiguous formats, the processing of input date
components is guided by the template FORMAT_DATE_IN in your gmt.conf file; it is by default
set to yyyy-mm-dd. Y2K-challenged input data such as 29/05/89 can be processed by setting FOR-

MAT_DATE_IN to dd/mm/yy. A complete description of possible formats is given in the gmt.conf
man page. The clock string is more standardized but issues like 12- or 24-hour clocks complicate mat-
ters as well as the presence or absence of delimiters between fields. Thus, the processing of input clock
coordinates is guided by the template FORMAT_CLOCK_IN which defaults to hh:mm:ss.xxx.

8.8. Verbose operation 59

GMT Documentation, Release 5.1.1

GMT programs that require a map projection argument will implicitly know what kind of data to expect,
and the input processing is done accordingly. However, some programs that simply report on minimum
and maximum values or just do a reformatting of the data will in general not know what to expect, and
furthermore there is no way for the programs to know what kind of data other columns (beyond the
leading x and y columns) contain. In such instances we must explicitly tell GMT that we are feeding
it data in the specific geographic or calendar formats (floating point data are assumed by default). We
specify the data type via the -f option (which sets both input and output formats; use -fi and -fo to set
input and output separately). For instance, to specify that the the first two columns are longitude and
latitude, and that the third column (e.g., z) is absolute calendar time, we add -fi0x,1y,2T to the command
line. For more details, see the man page for the program you need to use.

8.11 Output data formats

The numerical output from GMT programs can be binary (when -bo is used) or ASCII [Default].
In the latter case the issue of formatting becomes important. GMT provides extensive machinery
for allowing just about any imaginable format to be used on output. Analogous to the processing
of input data, several templates guide the formatting process. These are FORMAT_DATE_OUT and
FORMAT_CLOCK_OUT for calendar-time coordinates, FORMAT_GEO_OUT for geographical coor-
dinates, and FORMAT_FLOAT_OUT for generic floating point data. In addition, the user have control
over how columns are separated via the IO_COL_SEPARATOR parameter. Thus, as an example, it is
possible to create limited FORTRAN-style card records by setting FORMAT_FLOAT_OUT to %7.3lf
and IO_COL_SEPARATOR to none [Default is tab].

8.12 PostScript features

PostScript is a command language for driving graphics devices such as laser printers. It is ASCII text
which you can read and edit as you wish (assuming you have some knowledge of the syntax). We pre-
fer this to binary metafile plot systems since such files cannot easily be modified after they have been
created. GMT programs also write many comments to the plot file which make it easier for users to
orient themselves should they need to edit the file (e.g., % Start of x-axis) 10. All GMT programs create
PostScript code by calling the PSL plot library (The user may call these functions from his/her own
C or FORTRAN plot programs. See the manual pages for PSL syntax). Although GMT programs can
create very individualized plot code, there will always be cases not covered by these programs. Some
knowledge of PostScript will enable the user to add such features directly into the plot file. By default,
GMT will produce freeform PostScript output with embedded printer directives. To produce Encapsu-
lated PostScript (EPS) that can be imported into graphics programs such as CorelDraw, Illustrator

or InkScape for further embellishment, simply run ps2raster -Te. See Appendix [app:C] for an
extensive discussion of converting PostScript to other formats.

8.13 Specifying pen attributes

A pen in GMT has three attributes: width, color, and style. Most programs will accept pen attributes in
the form of an option argument, with commas separating the given attributes, e.g.,

-W[width[c|i|p]],[color],[style[c|i|p|]]

10 To keep PostScript files small, such comments are by default turned off; see PS_COMMENTS to enable them.

60 Chapter 8. General Features

GMT Documentation, Release 5.1.1

Width is by default measured in points (1/72 of an inch). Append c, i, or p to specify pen
width in cm, inch, or points, respectively. Minimum-thickness pens can be achieved by
giving zero width, but the result is device-dependent. Finally, a few predefined pen names
can be used: default, faint, and {thin, thick, fat}[er|est], and obese. Table pennames shows
this list and the corresponding pen widths.

faint 0 thicker 1.5p
default 0.25p thickest 2p
thinnest 0.25p fat 3p
thinner 0.50p fatter 6p
thin 0.75p fattest 12p
thick 1.0p obese 18p

The color can be specified in five different ways:

1. Gray. Specify a gray shade in the range 0–255 (linearly going from black [0] to white
[255]).

2. RGB. Specify r/g/b, each ranging from 0–255. Here 0/0/0 is black, 255/255/255 is
white, 255/0/0 is red, etc.

3. HSV. Specify hue-saturation-value, with the former in the 0–360 degree range while
the latter two take on the range 0–1 11.

4. CMYK. Specify cyan/magenta/yellow/black, each ranging from 0–100%.

5. Name. Specify one of 663 valid color names. Use man gmtcolors to list all valid
names. A very small yet versatile subset consists of the 29 choices white, black, and
[light:|dark]{red, orange, yellow, green, cyan, blue, magenta, gray|grey, brown}. The
color names are case-insensitive, so mixed upper and lower case can be used (like
DarkGreen).

The style attribute controls the appearance of the line. A ”.” yields a dotted line, whereas
a dashed pen is requested with “-”. Also combinations of dots and dashes, like ”.-” for a
dot-dashed line, are allowed. The lengths of dots and dashes are scaled relative to the pen
width (dots has a length that equals the pen width while dashes are 8 times as long; gaps
between segments are 4 times the pen width). For more detailed attributes including exact
dimensions you may specify string:offset, where string is a series of numbers separated by
underscores. These numbers represent a pattern by indicating the length of line segments
and the gap between segments. The offset phase-shifts the pattern from the beginning the
line. For example, if you want a yellow line of width 0.1 cm that alternates between long
dashes (4 points), an 8 point gap, then a 5 point dash, then another 8 point gap, with pattern
offset by 2 points from the origin, specify -W0.1c,yellow,4_8_5_8:2p. Just as with pen
width, the default style units are points, but can also be explicitly specified in cm, inch, or
points (see width discussion above).

Table penex contains additional examples of pen specifications suitable for, say, psxy.

11 For an overview of color systems such as HSV, see Appendix [app:I].

8.13. Specifying pen attributes 61

GMT Documentation, Release 5.1.1

-W0.5p 0.5 point wide line of default color and style
-Wgreen Green line with default width and style
-Wthin,red,- Dashed, thin red line
-Wfat,. Fat dotted line with default color
-W0.1c,120-1-1 Green (in h-s-v) pen, 1 mm thick
-Wfaint,100/0/0/0,..- Very thin, cyan (in c/m/y/k), dot-dot-dashed line

In addition to these pen settings there are several PostScript settings that can affect the appearance
of lines. These are controlled via the GMT defaults settings PS_LINE_CAP, PS_LINE_JOIN, and
PS_MITER_LIMIT. They determine how a line segment ending is rendered, be it at the termination
of a solid line or at the end of all dashed line segments making up a line, and how a straight lines of
finite thickness should behave when joined at a common point. By default, line segments have rectangu-
lar ends, but this can change to give rounded ends. When PS_LINE_CAP is set to round the a segment
length of zero will appear as a circle. This can be used to created circular dotted lines, and by manipulat-
ing the phase shift in the style attribute and plotting the same line twice one can even alternate the color
of adjacent items. Figure Line appearance shows various lines made in this fashion. See the gmt.conf
man page for more information.

Figure 8.24: Line appearance can be varied by using PS_LINE_CAP

8.14 Specifying area fill attributes

Many plotting programs will allow the user to draw filled polygons or symbols. The fill specification
may take two forms:

-Gfill

-Gpdpi/pattern[:Bcolor[Fcolor]]

fill: In the first case we may specify a gray shade (0–255), RGB color (r/g/b all in the 0–255 range or in
hexadecimal #rrggbb), HSV color (hue-saturation-value in the 0–360, 0–1, 0–1 range), CMYK
color (cyan/magenta/yellow/black, each ranging from 0–100%), or a valid color name; in that
respect it is similar to specifying the pen color settings (see pen color discussion under Section
Specifying pen attributes).

pattern: The second form allows us to use a predefined bit-image pattern. pattern can either be a number
in the range 1–90 or the name of a 1-, 8-, or 24-bit Sun raster file. The former will result in one of
the 90 predefined 64 x 64 bit-patterns provided with GMT and reproduced in Appendix [app:E].
The latter allows the user to create customized, repeating images using standard Sun raster files
12. The dpi parameter sets the resolution of this image on the page; the area fill is thus made
up of a series of these “tiles”. Specifying dpi as 0 will result in highest resolution obtainable
given the present dpi setting in gmt.history. By specifying upper case -GP instead of -Gp

the image will be bit-reversed, i.e., white and black areas will be interchanged (only applies to

12 Convert other graphics formats to Sun ras format using ImageMagick’s convert program.

62 Chapter 8. General Features

GMT Documentation, Release 5.1.1

1-bit images or predefined bit-image patterns). For these patterns and other 1-bit images one may
specify alternative background and foreground colors (by appending :Bcolor[Fcolor]) that will
replace the default white and black pixels, respectively. Setting one of the fore- or background
colors to - yields a transparent image where only the back- or foreground pixels will be painted.

Due to PostScript implementation limitations the raster images used with -G must be less than 146
x 146 pixels in size; for larger images see psimage. The format of Sun raster files is outlined in
Appendix [app:B]. Note that under PostScript Level 1 the patterns are filled by using the polygon as
a clip path. Complex clip paths may require more memory than the PostScript interpreter has been
assigned. There is therefore the possibility that some PostScript interpreters (especially those supplied
with older laserwriters) will run out of memory and abort. Should that occur we recommend that you
use a regular gray-shade fill instead of the patterns. Installing more memory in your printer may or may

not solve the problem!

Table fillex contains a few examples of fill specifications.

-G128 Solid gray
-G127/255/0 Chartreuse, R/G/B-style
-G#00ff00 Green, hexadecimal RGB code
-G25-0.86-0.82 Chocolate, h-s-v-style
-GDarkOliveGreen1 One of the named colors
-Gp300/7 Simple diagonal hachure pattern in b/w at 300 dpi
-Gp300/7:Bred Same, but with red lines on white
-Gp300/7:BredF- Now the gaps between red lines are transparent
-Gp100/marble.ras Using user image of marble as the fill at 100 dpi

8.15 Specifying Fonts

The fonts used by GMT are typically set indirectly via the GMT defaults parameters. However, some
programs, like pstext may wish to have this information passed directly. A font is specified by a
comma-delimited attribute list of size, fonttype and fill, each of which is optional. The size is the font
size (usually in points) but c, i or p can be added to indicate a specific unit. The fonttype is the name
(case sensitive!) of the font or its equivalent numerical ID (e.g., Helvetica-Bold or 1). fill specifies the
gray shade, color or pattern of the text (see section Specifying area fill attributes above). Optionally, you
may append =pen to the fill value in order to draw the text outline with the specified pen; if used you may
optionally skip the filling of the text by setting fill to -. If any of the attributes is omitted their default or
previous setting will be retained. See Appendix G. PostScript fonts used by GMT for a list of all fonts
recognized by GMT.

8.16 Stroke, Fill and Font Transparency

The PostScript language has no built-in mechanism for transparency. However, PostScriptextensions
make it possible to request transparency, and tools that can render such extensions will produce trans-
parency effects. We specify transparency in percent: 0 is opaque [Default] while 100 is fully transparent
(i.e., nothing will show). As noted in section Layer PDF transparency: The -t option, we can control
transparency on a layer-by-layer basis using the -t option. However, we may also set transparency as
an attribute of stroke or fill (including for fonts) settings. Here, transparency is requested by append-
ing @transparency to colors or pattern fills. The transparency mode can be changed by using the GMT
default parameter PS_TRANSPARENCY; the default is Normal but you can choose among Color, Color-
Burn, ColorDodge, Darken, Difference, Exclusion, HardLight, Hue, Lighten, Luminosity, Multiply, Nor-

8.15. Specifying Fonts 63

GMT Documentation, Release 5.1.1

mal, Overlay, Saturation, SoftLight, and Screen. For more information, see for instance (search online
for) the Adobe pdfmark Reference Manual. Most printers and many PostScript viewers can neither print
nor show transparency. They will simply ignore your attempt to create transparency and will plot any
material as opaque. Ghostscript and its derivatives such as GMT’s ps2raster support transparency (if
compiled with the correct build option). Note: If you use Acrobat Distiller to create a PDF file you must
first change some settings to make transparency effective: change the parameter /AllowTransparency to
true in your *.joboptions file.

8.17 Color palette tables

Several programs, such as those which read 2-D gridded data sets and create colored images or shaded
reliefs, need to be told what colors to use and over what z-range each color applies. This is the purpose of
the color palette table (CPT file). These files may also be used by psxy and psxyz to plot color-filled
symbols. For most applications, you will simply create a CPT file using the tool makecpt which will
take an existing color table and resample it to fit your chosen data range, or use grd2cpt to build a
CPT file based on the data distribution in one or more given grid files. However, in some situations you
will need to make a CPT file by hand or using text tools like awk or perl.

Color palette tables (CPT) comes in two flavors: (1) Those designed to work with categorical data (e.g.,
data where interpolation of values is undefined) and (2) those designed for regular, continuously-varying
data. In both cases the fill information follows the format given in Section Specifying area fill attributes.
The z-values in CPT files can be scaled by using the +u|Uunit mechanism. Append these modifiers to
your CPT filenames when used in GMT commands. The +uunit modifier will scale z from unit to meters,
while +Uunit does the inverse (scale z from meters to unit).

8.17.1 Categorical CPT files

Categorical data are information on which normal numerical operations are not defined. As an example,
consider various land classifications (desert, forest, glacier, etc.) and it is clear that even if we assigned a
numerical value to these categories (e.g., desert = 1, forest = 2, etc) it would be meaningless to compute
average values (what would 1.5 mean?). For such data a special format of the CPT files are provided.
Here, each category is assigned a unique key, a color or pattern, and an optional label (usually the
category name) marked by a leading semi-colon. Keys must be monotonically increasing but do not
need to be consecutive. The format is

key1 Fill [;label]
...
keyn Fill [;label]

The Fill information follows the format given in Section Specifying area fill attributes. While not always
applicable to categorical data, the background color (for key-values < key1), foreground color (for key-
values > keyn), and not-a-number (NaN) color (for key-values = NaN) are all defined in the gmt.conf
file, but can be overridden by the statements

B Fillback

F Fillfore

N Fillnan

64 Chapter 8. General Features

GMT Documentation, Release 5.1.1

8.17.2 Regular CPT files

Suitable for continuous data types and allowing for color interpolations, the format of the regular CPT
files is:

z0 Colormin z1 Colormax [A] [;label]
...
zn-2 Colormin zn-1 Colormax [A] [;label]

Thus, for each “z-slice”, defined as the interval between two boundaries (e.g., z0 to z1), the color can be
constant (by letting Colormax = Colormin or -) or a continuous, linear function of z. If patterns are used
then the second (max) pattern must be set to -. The optional flag A is used to indicate annotation of the
color scale when plotted using psscale. The optional flag A may be L, U, or B to select annotation
of the lower, upper, or both limits of the particular z-slice, respectively. However, the standard -B option
can be used by psscale to affect annotation and ticking of color scales. Just as other GMT programs,
the stride can be omitted to determine the annotation and tick interval automatically (e.g., -Baf). The
optional semicolon followed by a text label will make psscale, when used with the -L option, place
the supplied label instead of formatted z-values.

As for categorical tables, the background color (for z-values < z0), foreground color (for z-values >
zn−1), and not-a-number (NaN) color (for z-values = NaN) are all defined in the gmt.conf file, but
can be overridden by the statements

B Fillback

F Fillfore

N Fillnan

which can be inserted into the beginning or end of the CPT file. If you prefer the HSV system, set the
gmt.conf parameter accordingly and replace red, green, blue with hue, saturation, value. Color palette
tables that contain gray-shades only may replace the r/g/b triplets with a single gray-shade in the 0–255
range. For CMYK, give c/m/y/k values in the 0–100 range.

A few programs (i.e., those that plot polygons such as grdview, psscale, psxy and psxyz) can
accept pattern fills instead of gray-shades. You must specify the pattern as in Section Specifying area fill
attributes (no leading -G of course), and only the first pattern (for low z) is used (we cannot interpolate
between patterns). Finally, some programs let you skip features whose z-slice in the CPT file has gray-
shades set to -. As an example, consider

30 p200/16 80 -
80 - 100 -
100 200/0/0 200/255/255 0
200 yellow 300 green

where slice 30 < z < 80 is painted with pattern # 16 at 200 dpi, slice 80 < z < 100 is skipped, slice 100
< z < 200 is painted in a range of dark red to yellow, whereas the slice 200 < z < 300 will linearly yield
colors from yellow to green, depending on the actual value of z.

Some programs like grdimage and grdview apply artificial illumination to achieve shaded relief
maps. This is typically done by finding the directional gradient in the direction of the artificial light
source and scaling the gradients to have approximately a normal distribution on the interval [-1,+1].
These intensities are used to add “white” or “black” to the color as defined by the z-values and the
CPT file. An intensity of zero leaves the color unchanged. Higher values will brighten the color, lower
values will darken it, all without changing the original hue of the color (see Appendix [app:I] for more
details). The illumination is decoupled from the data grid file in that a separate grid file holding intensities
in the [-1,+1] range must be provided. Such intensity files can be derived from the data grid using
grdgradient and modified with grdhisteq, but could equally well be a separate data set. E.g.,

8.17. Color palette tables 65

GMT Documentation, Release 5.1.1

some side-scan sonar systems collect both bathymetry and backscatter intensities, and one may want to
use the latter information to specify the illumination of the colors defined by the former. Similarly, one
could portray magnetic anomalies superimposed on topography by using the former for colors and the
latter for shading.

8.18 The Drawing of Vectors

GMT supports plotting vectors in various forms. A vector is one of many symbols that may be plotted
by psxy and psxyz, is the main feature in grdvector, and is indirectly used by other programs.
All vectors plotted by GMT consist of two separate parts: The vector line (controlled by the chosen pen
attributes) and the optional vector head(s) (controlled by the chosen fill). We distinguish between three
types of vectors:

1. Cartesian vectors are plotted as straight lines. They can be specified by a start point and the direc-
tion and length (in map units) of the vector, or by its beginning and end point. They may also be
specified giving the azimuth and length (in km) instead.

2. Circular vectors are (as the name implies) drawn as circular arcs and can be used to indicate
opening angles. It accepts an origin, a radius, and the beginning and end angles.

3. Geo-vectors are drawn using great circle arcs. They are specified by a beginning point and the
azimuth and length (in km) of the vector, or by its beginning and end point.

There are numerous attributes you can modify, including how the vector should be justified relative to
the given point (beginning, center, or end), where heads (if any) should be placed, if the head should
just be the left or right half, if the vector attributes should shrink for vectors whose length are less than
a given cutoff length, and the size and shape of the head. These attributes are detailed further in the
relevant manual pages.

8.19 Character escape sequences

For annotation labels or text strings plotted with pstext, GMT provides several escape sequences
that allow the user to temporarily switch to the symbol font, turn on sub- or superscript, etc., within
words. These conditions are toggled on/off by the escape sequence @x, where x can be one of several
types. The escape sequences recognized in GMT are listed in Table escape. Only one level of sub-
or superscript is supported. Note that under Windows the percent symbol indicates a batch variable,
hence you must use two percent-signs for each one required in the escape sequence for font switching.

@~ Turns symbol font on or off
@+ Turns superscript on or off
@- Turns subscript on or off
@# Turns small caps on or off
@_ Turns underline on or off
@%fontno% Switches to another font; @%% resets to previous font
@:size: Switches to another font size; @:: resets to previous size
@;color; Switches to another font color; @;; resets to previous color
@! Creates one composite character of the next two characters
@@ Prints the @ sign itself

Shorthand notation for a few special European characters has also been added:

66 Chapter 8. General Features

GMT Documentation, Release 5.1.1

Code Effect Code Effect

@E Æ @e æ
@O Ø @o ø
@A Å @a å
@C Ç @c ç
@N Ñ @n ñ
@U Ü @u ü
@s ß

PostScript fonts used in GMT may be re-encoded to include several accented characters used in many
European languages. To access these, you must specify the full octal code \xxx allowed for your choice
of character encodings determined by the PS_CHAR_ENCODING setting described in the gmt.conf
man page. Only the special characters belonging to a particular encoding will be available. Many char-
acters not directly available by using single octal codes may be constructed with the composite character
mechanism @!.

Some examples of escape sequences and embedded octal codes in GMT strings using the Standard+
encoding:

2@~p@~r@+2@+h@-0@- E\363tv\363s = 2πr2h0 Eötvös

10@+-3 @Angstr@om = 10−3 Ångstrøm

Se@nor Gar@con = Señor Garçon

M@!\305anoa stra@se = Manoa straße

A@\#cceleration@\# (ms@+-2@+) =

The option in pstext to draw a rectangle surrounding the text will not work for strings with escape
sequences. A chart of characters and their octal codes is given in Appendix [app:F].

8.20 Grid file format specifications

GMT has the ability to read and write grids using more than one grid file format (see Table grdformats

for supported format and their IDs). For reading, GMT will automatically determine the format of grid
files, while for writing you will normally have to append =ID to the filename if you want GMT to use a
different format than the default.

By default, GMT will create new grid files using the nf format; however, this behavior can be overridden
by setting the IO_GRIDFILE_FORMAT defaults parameter to any of the other recognized values (or by
appending =ID).

GMT can also read netCDF grid files produced by other software packages, provided the grid files
satisfy the COARDS and Hadley Centre conventions for netCDF grids. Thus, products created under
those conventions (provided the grid is 2-, 3-, 4-, or 5-dimensional) can be read directly by GMT and the
netCDF grids written by GMT can be read by other programs that conform to those conventions. Three
such programs are ncview, Panoply, and ncBrowse ; others can be found on the netCDF website.

In addition, users with some C-programming experience may add their own read/write functions and
link them with the GMT library to extend the number of predefined formats. Technical information on
this topic can be found in the source file gmt_customio.c. Users who are considering this approach

8.20. Grid file format specifications 67

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://www.giss.nasa.gov/tools/panoply/
http://www.epic.noaa.gov/java/ncBrowse/
http://www.unidata.ucar.edu/software/netcdf/software.html

GMT Documentation, Release 5.1.1

should contact the GMT team.

ID Explanation

GMT 4 netCDF standard formats

nb GMT netCDF format (8-bit integer, COARDS, CF-1.5)
ns GMT netCDF format (16-bit integer, COARDS, CF-1.5)
ni GMT netCDF format (32-bit integer, COARDS, CF-1.5)
nf GMT netCDF format (32-bit float, COARDS, CF-1.5)
nd GMT netCDF format (64-bit float, COARDS, CF-1.5)

GMT 3 netCDF legacy formats

cb GMT netCDF format (8-bit integer, depreciated)
cs GMT netCDF format (16-bit integer, depreciated)
ci GMT netCDF format (32-bit integer, depreciated)
cf GMT netCDF format (32-bit float, depreciated)
cd GMT netCDF format (64-bit float, depreciated)

GMT native binary formats

bm GMT native, C-binary format (bit-mask)
bb GMT native, C-binary format (8-bit integer)
bs GMT native, C-binary format (16-bit integer)
bi GMT native, C-binary format (32-bit integer)
bf GMT native, C-binary format (32-bit float)
bd GMT native, C-binary format (32-bit float)

Miscellaneous grid formats

rb SUN raster file format (8-bit standard)
rf GEODAS grid format GRD98 (NGDC)
sf Golden Software Surfer format 6 (32-bit float)
sd Golden Software Surfer format 7 (64-bit float)
af Atlantic Geoscience Center AGC (32-bit float)
ei ESRI Arc/Info ASCII Grid Interchange format (ASCII integer)
ef ESRI Arc/Info ASCII Grid Interchange format (ASCII float)
gd Import/export via GDAL 14

Because some formats have limitations on the range of values they can store it is sometimes necessary to
provide more than simply the name of the file and its ID on the command line. For instance, a native short
integer file may use a unique value to signify an empty node or NaN, and the data may need translation
and scaling prior to use. Therefore, all GMT programs that read or write grid files will decode the given
filename as follows:

name[=ID[/scale/offset[/nan]]]

where everything in brackets is optional. If you are reading a grid then no options are needed: just
continue to pass the name of the grid file. However, if you write another format you must append the
=ID string, where ID is the format code listed above. In addition, should you want to (1) multiply the
data by a scale factor, and (2) add a constant offset you must append the /scale/offset modifier. Finally,
if you need to indicate that a certain data value should be interpreted as a NaN (not-a-number) you must
append the /nan suffix to the scaling string (it cannot go by itself; note the nesting of the brackets!).
The /scale and /offset modifiers may be left empty to select default values (scale = 1, offset = 0), or you
may specify a for auto-adjusting the scale and/or offset of packed integer grids (=ID/a is a shorthand for
=ID/a/a).

Some of the grid formats allow writing to standard output and reading from standard input which means
you can connect GMT programs that operate on grid files with pipes, thereby speeding up execution and
eliminating the need for large, intermediate grid files. You specify standard input/output by leaving out

13Requires building GMT with GDAL.
14Requires building GMT with GDAL.

68 Chapter 8. General Features

GMT Documentation, Release 5.1.1

the filename entirely. That means the “filename” will begin with “=ID”. Note, that the netCDF format
does not allow piping.

Everything looks clearer after a few examples:

• To write a native binary float grid file, specify the name as my_file.f4=bf .

• To read a native short integer grid file, multiply the data by 10 and then add 32000, but first let
values that equal 32767 be set to NaN, use the filename my_file.i2=bs/10/32000/32767.

• To read a Golden Software “surfer” format 6 grid file, just pass the file name, e.g.,
my_surferfile.grd.

• To read a 8-bit standard Sun raster file (with values in the 0–255 range) and convert it to a 1 range,
give the name as rasterfile=rb/7.84313725e-3/-1 (i.e., 1/127.5).

• To write a native binary short integer grid file to standard output after subtracting 32000 and
dividing its values by 10, give filename as =bs/0.1/-3200.

• To write an 8-bit integer netCDF grid file with an auto-adjusted offset, give filename as =nb//a.

Programs that both read and/or write more than one grid file may specify different formats and/or scaling
for the files involved. The only restriction with the embedded grid specification mechanism is that no
grid files may actually use the “=” character as part of their name (presumably, a small sacrifice).

One can also define special file suffixes to imply a specific file format; this approach represents a more
intuitive and user-friendly way to specify the various file formats. The user may create a file called
gmt.io in the current directory or home directory, or in the directory ~/.gmt and define any number
of custom formats. The following is an example of a gmt.io file:

suffix format_id scale offset NaNxxxComments # GMT i/o shorthand file # It can have any number of comment lines
grd nf - - - Default format
b bf - - - Native binary floats
i2 bs - - 32767 2-byte integers with NaN value
ras rb - - - Sun raster files
byte bb - - 255 Native binary 1-byte grids
bit bm - - - Native binary 0 or 1 grids
mask bm - - 0 Native binary 1 or NaN masks
faa bs 0.1 - 32767 Native binary gravity in 0.1 mGal
ns ns a a - 16-bit integer netCDF grid with auto-scale and auto-offset

These suffices can be anything that makes sense to the user. To activate this mechanism, set pa-
rameter IO_GRIDFILE_SHORTHAND to TRUE in your gmt.conf file. Then, using the filename
stuff.i2 is equivalent to saying stuff.i2=bs///32767, and the filename wet.mask means
wet.mask=bm/1/0/0. For a file intended for masking, i.e., the nodes are either 1 or NaN, the bit or mask
format file may be as small as 1/32 the size of the corresponding grid float format file.

8.21 Modifiers for changing the grid coordinates

A few GMT tools require that the two horizontal dimensions be specified in meters. One example is
grdfft which must compute the 2-D Fourier transform of a grid and evaluate wavenumbers in the
proper units (1/meter). There are two situations where the user may need to change the coordinates of
the grid passed to such programs:

• You have a geographic grid (i.e., in longitude and latitude). Simply supply the -fg option and your
grid coordinates will automatically be converted to meters via a “Flat Earth” approximation on

8.21. Modifiers for changing the grid coordinates 69

GMT Documentation, Release 5.1.1

the currently selected ellipsoid (Note: this is only possible in those few programs that require this
capability. In general, -fg is used to specify table coordinates).

• You have a Cartesian grid but the units are not meters (e.g., they may perhaps be in km or miles).
In this case you may append the file modifier +uunit, where unit is one of non-arc units listed in
Table distunits. For example, reading in the grid (which has distance units of km) and converting
them to meters is done by specifying the filename as filename+uk. On output, any derived grids
will revert to their original units unless you specify another unit modifier to the output grid. This
may be used, for instance, to save the original grid with distances in meters using some other unit.

For convenience, we also support the inverse translation, i.e., +Uunit. This modifier can be used to
convert your grid coordinates from meters to the specified unit. Example 28 shows a case where this
is being used to change an UTM grid in meters to km. These modifiers are only allowed when map
projections are not selected (or are Cartesian).

8.22 Modifiers for COARDS-compliant netCDF files

When the netCDF grid file contains more than one 2-dimensional variable, GMT programs will load the
first such variable in the file and ignore all others. Alternatively, the user can select the required variable
by adding the suffix ”?varname” to the grid file name. For example, to get information on the variable
“slp” in file , use:

gmt grdinfo "file.nc?slp"

Since COARDS-compliant netCDF files are the default, the additional suffix “=nf” can be omitted.

In case the named grid is 3-dimensional, GMT will load the first (bottom) layer. If another layer is
required, either add “[index]” or “(level)”, where index is the index of the third (depth) variable (start-
ing at 0 for the first layer) and level is the numerical value of the third (depth) variable associated
with the requested layer. To indicate the second layer of the 3-D variable “slp” use as file name:
file.nc?slp[1].

When you supply the numerical value for the third variable using “(level)”, GMT will pick the layer
closest to that value. No interpolation is performed.

Note that the question mark, brackets and parentheses have special meanings on Unix-based platforms.
Therefore, you will need to either escape these characters, by placing a backslash in front of them, or
place the whole file name plus modifiers between single quotes or double quotes.

A similar approach is followed for loading 4-dimensional grids. Consider a 4-dimensional grid with the
following variables:

lat(lat): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

lon(lon): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

depth(depth): 0, 10, 20, 30, 40, 50, 60, 70, 80, 90

time(time): 0, 12, 24, 36, 48

pressure(time,depth,lat,lon): (5000 values)

To get information on the 10x10 grid of pressure at depth 10 and at time 24, one would use:

gmt grdinfo "file.nc?pressure[2,1]"

or (only in case the coordinates increase linearly):

gmt grdinfo "file.nc?pressure(24,10)"

70 Chapter 8. General Features

GMT Documentation, Release 5.1.1

Programs that generally deal with columns of one-dimensional data, like or can use multi-dimensional
netCDF files in a very similar way. If a variable in a netCDF file is one-dimensional, there is nothing
more needed than name the variables on the command line. For example:

gmt psxy "file.nc?lon/lat" ...

gmt gmtconvert "file.nc?time/lat/lon"

If one or more of the selected variables are two-dimensional, and have the same leading dimension as
the other selected variables they will be plotted in their entirety. For example, if a netCDF files contains
6 time steps recording temperature at 4 points, and the variable tmp is a 6 by 4 array, then the command
gmtconvert "file.nc?time/temp" can result in:

2012-06-25T00:00:00 20.1 20.2 20.1 20.3

2012-06-25T12:00:00 24.2 23.2 24.5 23.5

2012-06-26T00:00:00 16.1 16.2 16.1 16.3

2012-06-26T12:00:00 22.1 23.0 23.9 23.5

2012-06-27T00:00:00 17.5 16.9 17.2 16.8

2012-06-27T12:00:00 27.2 27.2 27.5 27.5

If, for example, only the second temperature column is needed, use gmt gmtconvert

"file.nc?time/temp" (indices start counting at 0).

The COARDS conventions set restrictions on the names that can be used for the units of the variables and
coordinates. For example, the units of longitude and latitude are “degrees_east” and “degrees_north”,
respectively. Here is an example of the header of a COARDS compliant netCDF file (to be obtained
using ncdump):

netcdf M2_fes2004 {

dimensions:

lon = 2881 ;

lat = 1441 ;

variables:

float lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

lon:actual_range = 0., 360. ;

float lat(lat) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

lat:actual_range = -90., 90. ;

short amp(lat, lon) ;

amp:long_name = "amplitude" ;

amp:unit = "m" ;

amp:scale_factor = 0.0001 ;

amp:add_offset = 3. ;

amp:_FillValue = -32768s ;

short pha(lat, lon) ;

pha:long_name = "phase" ;

pha:unit = "degrees" ;

pha:scale_factor = 0.01 ;

pha:_FillValue = -32768s ;

This file contains two grids, which can be plotted separately using the names M2_fes2004.nc?amp
and M2_fes2004.nc?pha. The attributes long_name and unit for each variable are combined
in GMT to a single unit string. For example, after reading the grid y_unit equals latitude

[degrees_north]. The same method can be used in reverse to set the proper variable names and
units when writing a grid. However, when the coordinates are set properly as geographical or time axes,
GMT will take care of this. The user is, however, still responsible for setting the variable name and unit
of the z-coordinate. The default is simply “z”.

8.22. Modifiers for COARDS-compliant netCDF files 71

GMT Documentation, Release 5.1.1

8.23 Modifiers to read and write grids and images via GDAL

If the support has been configured during installation, then GMT can read and write a variety of grid
and image formats via GDAL. This extends the capability of GMT to handle data sets from a variety of
sources.

8.23.1 Reading multi-band images

grdimage and psimage both lets the user select individual bands in a multi-band image file and treats
the result as an image (that is the values, in the 0–255 range, are treated as colors, not data). To select
individual bands you use the +bband-number mechanism that must be appended to the image filename.
Here, band-number can be the number of one individual band (the counting starts at zero), or it could be
a comma-separated list of bands. For example

gmt psimage jpeg_image_with_three_bands.jpg+b0

will plot only the first band (i.e., the red band) of the jpeg image as a gray-scale image, and

gmt psimage jpeg_image_with_three_bands.jpg+b2,1,0

will plot the same image in color but where the RGB band order has been reversed.

Instead of treating them as images, all other GMT programs that process grids can read individual bands
from an image but will consider the values to be regular data. For example, let multiband be the name
of a multi-band file with a near infrared component in band 4 and red in band 3. We will compute the
NDVI (Normalized Difference Vegetation Index), which is defined as NDVI = (NIR - R) / (NIR + R), as

gmt grdmath multiband=gd+b3 multiband=gd+b2 SUB multiband=gd+b3 \

multiband=gd+b2 ADD DIV = ndvi.nc

The resulting grid ndvi.nc can then be plotted as usual.

8.23.2 Reading more complex multi-band IMAGES or GRIDS

It is also possible to access to sub-datasets in a multi-band grid. The next example shows how we can
extract the SST from the MODIS file A20030012003365.L3m_YR_NSST_9 that is stored in the
HDF “format”. We need to run the GDAL program gdalinfo on the file because we first must extract the
necessary metadata from the file:

gdalinfo A20030012003365.L3m_YR_NSST_9

Driver: HDF4/Hierarchical Data Format Release 4

Files: A20030012003365.L3m_YR_NSST_9

Size is 512, 512

Coordinate System is ‘’

Metadata:

Product Name=A20030012003365.L3m_YR_NSST_9

Sensor Name=MODISA

Sensor=

Title=MODISA Level-3 Standard Mapped Image

...

Scaling=linear

Scaling Equation=(Slope*l3m_data) + Intercept = Parameter value

Slope=0.000717185

Intercept=-2

Scaled Data Minimum=-2

Scaled Data Maximum=45

Data Minimum=-1.999999

Data Maximum=34.76

Subdatasets:

72 Chapter 8. General Features

GMT Documentation, Release 5.1.1

SUBDATASET_1_NAME=HDF4_SDS:UNKNOWN:"A20030012003365.L3m_YR_NSST_9":0

SUBDATASET_1_DESC=[2160x4320] l3m_data (16-bit unsigned integer)

SUBDATASET_2_NAME=HDF4_SDS:UNKNOWN:"A20030012003365.L3m_YR_NSST_9":1

SUBDATASET_2_DESC=[2160x4320] l3m_qual (8-bit unsigned integer)

Now, to access this file with GMT we need to use the =gd mechanism and append the name of the
sub-dataset that we want to extract. Here, a simple example using grdinfo would be

grdinfo A20030012003365.L3m_YR_NSST_9=gd?HDF4_SDS:UNKNOWN:"A20030012003365.L3m_YR_NSST_9:0"

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: Title: Grid imported via GDAL

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: Command:

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: Remark:

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: Gridline node registration used

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: Grid file format: gd = Import through GDAL (convert to

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: x_min: 0.5 x_max: 4319.5 x_inc: 1 name: x nx: 4320

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: y_min: 0.5 y_max: 2159.5 y_inc: 1 name: y ny: 2160

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: z_min: 0 z_max: 65535 name: z

HDF4_SDS:UNKNOWN:A20030012003365.L3m_YR_NSST_9:0: scale_factor: 1 add_offset: 0

Be warned, however, that things are not yet completed because while the data are scaled according to
the equation printed above (“Scaling Equation=(Slope*l3m_data) + Intercept = Parameter value”), this
scaling is not applied by GDAL on reading so it cannot be done automatically by GMT. One solution is
to do the reading and scaling via grdmath first, i.e.,

gmt grdmath A20030012003365.L3m_YR_NSST_9=gd?HDF4_SDS:UNKNOWN:"A20030012003365.L3m_YR_NSST_9:0" \

0.000717185 MUL -2 ADD = sst.nc

then plot the sst.nc directly.

8.23.3 Writing grids and images

Saving images in the common raster formats is possible but, for the time being, only from grdimage

and even that is restricted to raster type information. That is, vector data (for instance, coast lines) or
text will not be saved. To save an image with grdimage use the -Aoutimg=driver mechanism, where
driver is the driver code name used by GDAL (e.g. GTiff).

For all other programs that create grids, it is also possible to save them using GDAL. To do it one need to
use the =gd appended with the necessary information regarding the driver and the data type to use. Gener-
ically, =gd[/scale/offset[/nan][:<driver>[/dataType]] where driver is the same as explained above and
dataType is a 2 or 3 chars code from: u8|u16|i16|u32|i32|float32, and where i|u denotes signed|unsigned.
If not provided the default type is float32. Both driver names and data types are case insensitive. Note,
that you have to specify nan for integer types unless you whish that all NaN data values are replaced by
zero.

8.24 The NaN data value

For a variety of data processing and plotting tasks there is a need to acknowledge that a data point is
missing or unassigned. In the “old days” such information was passed by letting a value like -9999.99
take on the special meaning of “this is not really a value, it is missing”. The problem with this scheme
is that -9999.99 (or any other floating point value) may be a perfectly reasonable data value and in such
a scenario would be skipped. The solution adopted in GMT is to use the IEEE concept Not-a-Number
(NaN) for this purpose. Mathematically, a NaN is what you get if you do an undefined mathematical
operation like 0/0; in ASCII data files they appear as the textstring NaN. This value is internally stored
with a particular bit pattern defined by IEEE so that special action can be taken when it is encountered
by programs. In particular, a standard library function called isnan is used to test if a floating point is a

8.24. The NaN data value 73

GMT Documentation, Release 5.1.1

NaN. GMT uses these tests extensively to determine if a value is suitable for plotting or processing (if a
NaN is used in a calculation the result would become NaN as well). Data points whose values equal NaN
are not normally plotted (or plotted with the special NaN color given in gmt.conf). Several tools such
as xyz2grd, gmtmath, and grdmath can convert user data to NaN and vice versa, thus facilitating
arbitrary masking and clipping of data sets. Note that a few computers do not have native IEEE hardware
support. At this point, this applies to some of the older Cray super-computers. Users on such machines
may have to adopt the old ‘-9999.99’ scheme to achieve the desired results.

Data records that contain NaN values for the x or y columns (or the z column for cases when 3-D Carte-
sian data are expected) are usually skipped during reading. However, the presence of these bad records
can be interpreted in two different ways, and this behavior is controlled by the IO_NAN_RECORDS

defaults parameter. The default setting (gap) considers such records to indicate a gap in an otherwise
continuous series of points (e.g., a line), and programs can act upon this information, e.g., not to draw
a line across the gap or to break the line into separate segments. The alternative setting (bad) makes
no such interpretation and simply reports back how many bad records were skipped during reading; see
Section Data gap detection: The -g option for details.

8.25 Directory parameters

GMT versions prior to GMT 5 relied on several environment variables ($GMT_SHAREDIR,
$GMT_DATADIR, $GMT_USERDIR, and $GMT_TMPDIR), pointing to folders with data files and
program settings. Beginning with version 5, these locations are configurable with the gmtset util-
ity. The environment variables are still supported but are overridden by the directory parameters

DIR_DATA, DIR_USER, and DIR_TMP in gmt.conf.

Variable $GMT_SHAREDIR was sometimes required in previous GMT versions to locate the GMT
share directory where all run-time support files such as coastlines, custom symbols, PostScript
macros, color tables, and much more reside. If this parameter is not set (default), GMT will make
a reasonable guess of the location of its share folder. Setting this variable is usually not required
and recommended only under special circumstances.

Variable $GMT_DATADIR and parameter DIR_DATA may point to one or more directories where
large and/or widely used data files can be placed. All GMT programs look in these directories
when a file is specified on the command line and it is not present in the current directory. This
allows maintainers to consolidate large data files and to simplify scripting that use these files
since the absolute path need not be specified. Separate multiple directories with colons (:) – under
Windows use semi-colons (;). Any directory name that ends in a trailing slash (/) will be searched
recursively (not under Windows).

Variable $GMT_USERDIR and parameter DIR_USER may point to a directory where the user
places custom configuration files (e.g., an alternate coastline.conf file, preferred default
settings in gmt.conf, custom symbols and color palettes, math macros for gmtmath and
grdmath, and shorthands for gridfile extensions via gmt_io). Users may also place their own
data files in this directory as GMT programs will search for files given on the command line in
both DIR_DATA and DIR_USER.

Variable $GMT_TMPDIR and parameter DIR_TMP may indicate the location, where GMT will
write its state parameters via the two files gmt.history and gmt.conf. If DIR_TMP is not
set, these files are written to the current directory. See Section Isolation mode for more informa-
tion.

Note that files whose full path is given will never be searched for in any of these directories.

74 Chapter 8. General Features

CHAPTER 9

GMT Coordinate Transformations

GMT programs read real-world coordinates and convert them to positions on a plot. This is achieved by
selecting one of several coordinate transformations or projections. We distinguish between three sets of
such conversions:

• Cartesian coordinate transformations

• Polar coordinate transformations

• Map coordinate transformations

The next chapter will be dedicated to GMT map projections in its entirety. Meanwhile, the present
chapter will summarize the properties of the Cartesian and Polar coordinate transformations available
in GMT, list which parameters define them, and demonstrate how they are used to create simple plot
axes. We will mostly be using psbasemap (and occasionally psxy) to demonstrate the various trans-
formations. Our illustrations may differ from those you reproduce with the same commands because of
different settings in our gmt.conf file.) Finally, note that while we will specify dimensions in inches
(by appending i), you may want to use cm (c), or points (p) as unit instead (see the gmt.conf man
page).

9.1 Cartesian transformations

GMT Cartesian coordinate transformations come in three flavors:

• Linear coordinate transformation

• Log10 coordinate transformation

• Power (exponential) coordinate transformation

These transformations convert input coordinates (x,y) to locations (x’, y’) on a plot. There is no coupling
between x and y (i.e., x’ = f(x) and y’ = f(y)); it is a one-dimensional projection. Hence, we may
use separate transformations for the x- and y-axes (and z-axes for 3-D plots). Below, we will use the
expression u’ = f(u), where u is either x or y (or z for 3-D plots). The coefficients in f(u) depend on the
desired plot size (or scale), the chosen (x,y) domain, and the nature of f itself.

Two subsets of linear will be discussed separately; these are a polar (cylindrical) projection and a linear
projection applied to geographic coordinates (with a 360 periodicity in the x-coordinate). We will show
examples of all of these projections using dummy data sets created with gmtmath, a “Reverse Polish
Notation” (RPN) calculator that operates on or creates table data:

75

GMT Documentation, Release 5.1.1

gmt gmtmath -T0/100/1 T SQRT = sqrt.d

gmt gmtmath -T0/100/10 T SQRT = sqrt.d10

9.1.1 Cartesian linear transformation (-Jx -JX)

There are in fact three different uses of the Cartesian linear transformation, each associated with specific
command line options. The different manifestations result from specific properties of three kinds of data:

1. Regular floating point coordinates

2. Geographic coordinates

3. Calendar time coordinates

Figure 9.1: Examples of Cartesian (left), circular (middle), and geo-vectors (right) for different attribute
specifications. Note that both full and half arrow-heads can be specified, as well as no head at all.

Regular floating point coordinates

Selection of the Cartesian linear transformation with regular floating point coordinates will result in a
simple linear scaling u’ = au + b of the input coordinates. The projection is defined by stating scale in
inches/unit (-Jx) or axis length in inches (-JX). If the y-scale or y-axis length is different from that of the
x-axis (which is most often the case), separate the two scales (or lengths) by a slash, e.g., -Jx0.1i/0.5i or
-JX8i/5i. Thus, our y =

√
x data sets will plot as shown in Figure Linear transformation of Cartesian

coordinates.

0

2

4

6

8

10

0 20 40 60 80 100

Figure 9.2: Linear transformation of Cartesian coordinates.

The complete commands given to produce this plot were

76 Chapter 9. GMT Coordinate Transformations

GMT Documentation, Release 5.1.1

gmt psxy -R0/100/0/10 -JX3i/1.5i -Bag -BWSne+gsnow -Wthick,blue,- -P -K sqrt.d > GMT_linear.ps

gmt psxy -R -J -St0.1i -N -Gred -Wfaint -O sqrt.d10 >> GMT_linear.ps

Normally, the user’s x-values will increase to the right and the y-values will increase upwards. It should
be noted that in many situations it is desirable to have the direction of positive coordinates be reversed.
For example, when plotting depth on the y-axis it makes more sense to have the positive direction
downwards. All that is required to reverse the sense of positive direction is to supply a negative scale
(or axis length). Finally, sometimes it is convenient to specify the width (or height) of a map and let
the other dimension be computed based on the implied scale and the range of the other axis. To do this,
simply specify the length to be recomputed as 0.

Geographic coordinates

0˚ 60˚E 120˚E 180˚ 120˚W 60˚W

60˚S

0˚

60˚N

Figure 9.3: Linear transformation of map coordinates.

While the Cartesian linear projection is primarily designed for regular floating point x,y data, it is some-
times necessary to plot geographical data in a linear projection. This poses a problem since longitudes
have a 360 periodicity. GMT therefore needs to be informed that it has been given geographical coordi-
nates even though a linear transformation has been chosen. We do so by adding a g (for geographical)
or d (for degrees) directly after -R or by appending a g or d to the end of the -Jx (or -JX) option. As an
example, we want to plot a crude world map centered on 125E. Our command will be

gmt set MAP_GRID_CROSS_SIZE_PRIMARY 0.1i MAP_FRAME_TYPE FANCY FORMAT_GEO_MAP ddd:mm:ssF

gmt pscoast -Rg-55/305/-90/90 -Jx0.014i -Bagf -BWSen -Dc -A1000 -Glightbrown -Wthinnest \

-P -Slightblue > GMT_linear_d.ps

with the result reproduced in Figure Linear transformation of map coordinates.

Calendar time coordinates

Several particular issues arise when we seek to make linear plots using calendar date/time as the input
coordinates. As far as setting up the coordinate transformation we must indicate whether our input
data have absolute time coordinates or relative time coordinates. For the former we append T after the
axis scale (or width), while for the latter we append t at the end of the -Jx (or -JX) option. However,
other command line arguments (like the -R option) may already specify whether the time coordinate

9.1. Cartesian transformations 77

GMT Documentation, Release 5.1.1

7am

8am

9am

10am

11am

12pm

1pm

2pm

3pm

Monday Tuesday WednesdayThursday Friday

Figure 9.4: Linear transformation of calendar coordinates.

is absolute or relative. An absolute time entry must be given as [date]T[clock] (with date given as
yyyy[-mm[-dd]], yyyy[-jjj], or yyyy[-Www[-d]], and clock using the hh[:mm[:ss[.xxx]]] 24-hour clock
format) whereas the relative time is simply given as the units of time since the epoch followed by t

(see TIME_UNIT and TIME_EPOCH for information on specifying the time unit and the epoch). As
a simple example, we will make a plot of a school week calendar (Figure Linear transformation of

calendar coordinates).

When the coordinate ranges provided by the -R option and the projection type given by -JX (including
the optional d, g, t or T) conflict, GMT will warn the users about it. In general, the options provided
with -JX will prevail.

gmt set FORMAT_DATE_MAP o TIME_WEEK_START Sunday FORMAT_CLOCK_MAP=-hham \

FORMAT_TIME_PRIMARY_MAP full

gmt psbasemap -R2001-9-24T/2001-9-29T/T07:0/T15:0 -JX4i/-2i -Bxa1Kf1kg1d \

-Bya1Hg1h -BWsNe+glightyellow -P > GMT_linear_cal.ps

9.1.2 Cartesian logarithmic projection

0

2

4

6

8

10

1 2 5 10 20 50 100

Figure 9.5: Logarithmic transformation of x–coordinates.

The log10 transformation is simply u′ = a log10(u) + b and is selected by appending an l (lower case L)
immediately following the scale (or axis length) value. Hence, to produce a plot in which the x-axis is
logarithmic (the y-axis remains linear, i.e., a semi-log plot), try (Figure Logarithmic transformation)

gmt psxy -R1/100/0/10 -Jx1.5il/0.15i -Bx2g3 -Bya2f1g2 -BWSne+gbisque \

-Wthick,blue,- -P -K -h sqrt.d > GMT_log.ps

gmt psxy -R -J -Ss0.1i -N -Gred -W -O -h sqrt.d10 >> GMT_log.ps

78 Chapter 9. GMT Coordinate Transformations

GMT Documentation, Release 5.1.1

Note that if x- and y-scaling are different and a log10− log10 plot is desired, the l must be appended
twice: Once after the x-scale (before the /) and once after the y-scale.

9.1.3 Cartesian power projection

0

2

4

6

8

10

0 1 4 9 16 25 36 49 64 81 100

Figure 9.6: Exponential or power transformation of x–coordinates.

This projection uses u′ = aub + c and allows us to explore exponential relationships like xp versus yq.
While p and q can be any values, we will select p = 0.5 and q = 1 which means we will plot x versus√
x. We indicate this scaling by appending a p (lower case P) followed by the desired exponent, in our

case 0.5. Since q = 1 we do not need to specify p1 since it is identical to the linear transformation. Thus
our command becomes (Figure Power transformation)

gmt psxy -R0/100/0/10 -Jx0.3ip0.5/0.15i -Bxa1p -Bya2f1 -BWSne+givory \

-Wthick -P -K sqrt.d > GMT_pow.ps

gmt psxy -R -J -Sc0.075i -Ggreen -W -O sqrt.d10 >> GMT_pow.ps

9.2 Linear projection with polar coordinates (-Jp -JP)

This transformation converts polar coordinates (angle θ and radius r) to positions on a plot. Now x′ =
f(θ, r) and y′ = g(θ, r), hence it is similar to a regular map projection because x and y are coupled and
x (i.e., θ) has a 360 periodicity. With input and output points both in the plane it is a two-dimensional

projection. The transformation comes in two flavors:

1. Normally, θ is understood to be directions counter-clockwise from the horizontal axis, but we may
choose to specify an angular offset [whose default value is zero]. We will call this offset θ0. Then,
x′ = f(θ, r) = ar cos(θ − θ0) + b and y′ = g(θ, r) = ar sin(θ − θ0) + c.

2. Alternatively, θ can be interpreted to be azimuths clockwise from the vertical axis, yet we may
again choose to specify the angular offset [whose default value is zero]. Then, x′ = f(θ, r) =
ar cos(90− (θ − θ0)) + b and y′ = g(θ, r) = ar sin(90− (θ − θ0)) + c.

Consequently, the polar transformation is defined by providing

• scale in inches/unit (-Jp) or full width of plot in inches (-JP)

• Optionally, insert a after p| P to indicate CW azimuths rather than CCW directions

• Optionally, append /origin in degrees to indicate an angular offset [0]

• Optionally, append r to reverse the radial direction (here, south and north must be elevations in
0–90 range).

9.2. Linear projection with polar coordinates (-Jp -JP) 79

GMT Documentation, Release 5.1.1

0
˚

3
0
˚

60˚

90˚

120˚

1
5
0
˚

1
8
0
˚

2
1
0
˚

240˚

270˚
300˚

3
3
0
˚

Figure 9.7: Polar (Cylindrical) transformation of (θ, r) coordinates.

• Optionally, append z to annotate depths rather than radius.

As an example of this projection we will create a gridded data set in polar coordinates z(θ, r) = r2·cos 4θ
using grdmath, a RPN calculator that operates on or creates grid files.

gmt grdmath -R0/360/2/4 -I6/0.1 X 4 MUL PI MUL 180 DIV COS Y 2 POW MUL = tt.nc

gmt grdcontour tt.nc -JP3i -B30 -BNs+ghoneydew -P -C2 -S4 --FORMAT_GEO_MAP=+ddd > GMT_polar.ps

We used grdcontour to make a contour map of this data. Because the data file only contains values
with 2 ≤ r ≤ 4, a donut shaped plot appears in Figure Polar transformation.

80 Chapter 9. GMT Coordinate Transformations

CHAPTER 10

GMT Map Projections

GMT implements more than 30 different projections. They all project the input coordinates longitude
and latitude to positions on a map. In general, x’ = f(x,y,z) and y’ = g(x,y,z), where z is implicitly given as
the radial vector length to the (x,y) point on the chosen ellipsoid. The functions f and g can be quite nasty
and we will refrain from presenting details in this document. The interested read is referred to Snyder

[1987] 1. We will mostly be using the pscoast command to demonstrate each of the projections. GMT
map projections are grouped into four categories depending on the nature of the projection. The groups
are

1. Conic map projections

2. Azimuthal map projections

3. Cylindrical map projections

4. Miscellaneous projections

Because x and y are coupled we can only specify one plot-dimensional scale, typically a map scale

(for lower-case map projection code) or a map width (for upper-case map projection code). However, in
some cases it would be more practical to specify map height instead of width, while in other situations
it would be nice to set either the shortest or longest map dimension. Users may select these alternatives
by appending a character code to their map dimension. To specify map height, append h to the given
dimension; to select the minimum map dimension, append -, whereas you may append + to select the
maximum map dimension. Without the modifier the map width is selected by default.

In GMT version 4.3.0 we noticed we ran out of the alphabet for 1-letter (and sometimes 2-letter) projec-
tion codes. To allow more flexibility, and to make it easier to remember the codes, we implemented the
option to use the abbreviations used by the Proj4 mapping package. Since some of the GMT projections
are not in Proj4, we invented some of our own as well. For a full list of both the old 1- and 2-letter
codes, as well as the Proj4-equivalents see the quick reference cards in Section GMT quick reference.
For example, -JM15c and -JMerc/15c have the same meaning.

10.1 Conic projections

10.1.1 Albers conic equal-area projection (-Jb -JB)

This projection, developed by Albers in 1805, is predominantly used to map regions of large east-west
extent, in particular the United States. It is a conic, equal-area projection, in which parallels are unequally
spaced arcs of concentric circles, more closely spaced at the north and south edges of the map. Meridians,

1 Snyder, J. P., 1987, Map Projections A Working Manual, U.S. Geological Survey Prof. Paper 1395.

81

GMT Documentation, Release 5.1.1

on the other hand, are equally spaced radii about a common center, and cut the parallels at right angles.
Distortion in scale and shape vanishes along the two standard parallels. Between them, the scale along
parallels is too small; beyond them it is too large. The opposite is true for the scale along meridians. To
define the projection in GMT you need to provide the following information:

• Longitude and latitude of the projection center.

• Two standard parallels.

• Map scale in inch/degree or 1:xxxxx notation (-Jb), or map width (-JB).

Note that you must include the “1:” if you choose to specify the scale that way. E.g., you can say 0.5
which means 0.5 inch/degree or 1:200000 which means 1 inch on the map equals 200,000 inches along
the standard parallels. The projection center defines the origin of the rectangular map coordinates. As an
example we will make a map of the region near Taiwan. We choose the center of the projection to be at
125 E/20 N and 25 N and 45 N as our two standard parallels. We desire a map that is 5 inches wide. The
complete command needed to generate the map below is therefore given by:

gmt set MAP_GRID_CROSS_SIZE_PRIMARY 0

gmt pscoast -R110/140/20/35 -JB125/20/25/45/5i -Bag -Dl -Ggreen -Wthinnest \

-A250 -P > GMT_albers.ps

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

20˚ 20˚

30˚ 30˚

Figure 10.1: Albers equal-area conic map projection.

10.1.2 Equidistant conic projection (-Jd -JD)

The equidistant conic projection was described by the Greek philosopher Claudius Ptolemy about A.D.
150. It is neither conformal or equal-area, but serves as a compromise between them. The scale is true
along all meridians and the standard parallels. To select this projection in GMT you must provide the
same information as for the other conic projection, i.e.,

• Longitude and latitude of the projection center.

• Two standard parallels.

• Map scale in inch/degree or 1:xxxxx notation (-Jd), or map width (-JD).

82 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

The equidistant conic projection is often used for atlases with maps of small countries. As an example,
we generate a map of Cuba:

gmt set FORMAT_GEO_MAP ddd:mm:ssF MAP_GRID_CROSS_SIZE_PRIMARY 0.05i

gmt pscoast -R-88/-70/18/24 -JD-79/21/19/23/4.5i -Bag -Di -N1/thick,red \

-Glightgreen -Wthinnest -P > GMT_equidistant_conic.ps

85˚W

85˚W

80˚W

80˚W

75˚W

75˚W

70˚W

70˚W

20˚N 20˚N

Figure 10.2: Equidistant conic map projection.

10.1.3 Lambert conic conformal projection (-Jl -JL)

This conic projection was designed by the Alsatian mathematician Johann Heinrich Lambert (1772) and
has been used extensively for mapping of regions with predominantly east-west orientation, just like the
Albers projection. Unlike the Albers projection, Lambert’s conformal projection is not equal-area. The
parallels are arcs of circles with a common origin, and meridians are the equally spaced radii of these
circles. As with Albers projection, it is only the two standard parallels that are distortion-free. To select
this projection in GMT you must provide the same information as for the Albers projection, i.e.,

• Longitude and latitude of the projection center.

• Two standard parallels.

• Map scale in inch/degree or 1:xxxxx notation (-Jl), or map width (-JL).

The Lambert conformal projection has been used for basemaps for all the 48 contiguous States with
the two fixed standard parallels 33N and 45N. We will generate a map of the continental USA using
these parameters. Note that with all the projections you have the option of selecting a rectangular border
rather than one defined by meridians and parallels. Here, we choose the regular WESN region, a “fancy”
basemap frame, and use degrees west for longitudes. The generating commands used were

gmt set MAP_FRAME_TYPE FANCY FORMAT_GEO_MAP ddd:mm:ssF MAP_GRID_CROSS_SIZE_PRIMARY 0.05i

gmt pscoast -R-130/-70/24/52 -Jl-100/35/33/45/1:50000000 -Bag -Dl -N1/thick,red \

-N2/thinner -A500 -Gtan -Wthinnest,white -Sblue -P > GMT_lambert_conic.ps

The choice for projection center does not affect the projection but it indicates which meridian (here
100W) will be vertical on the map. The standard parallels were originally selected by Adams to pro-
vide a maximum scale error between latitudes 30.5N and 47.5N of 0.5–1%. Some areas, like Florida,
experience scale errors of up to 2.5%.

10.1. Conic projections 83

GMT Documentation, Release 5.1.1

120˚W

120˚W

105˚W

105˚W

90˚W

90˚W

75˚W

75˚W

30˚N 30˚N

45˚N 45˚N

Figure 10.3: Lambert conformal conic map projection.

10.1.4 (American) polyconic projection (-Jpoly -JPoly)

The polyconic projection, in Europe usually referred to as the American polyconic projection, was in-
troduced shortly before 1820 by the Swiss-American cartographer Ferdinand Rodulph Hassler (1770–
1843). As head of the Survey of the Coast, he was looking for a projection that would give the least
distortion for mapping the coast of the United States. The projection acquired its name from the con-
struction of each parallel, which is achieved by projecting the parallel onto the cone while it is rolled
around the globe, along the central meridian, tangent to that parallel. As a consequence, the projection
involves many cones rather than a single one used in regular conic projections.

The polyconic projection is neither equal-area, nor conformal. It is true to scale without distortion along
the central meridian. Each parallel is true to scale as well, but the meridians are not as they get further
away from the central meridian. As a consequence, no parallel is standard because conformity is lost
with the lengthening of the meridians.

Below we reproduce the illustration by Snyder [1987], with a gridline every 10 and annotations only
every 30 in longitude:

gmt pscoast -R-180/-20/0/90 -JPoly/4i -Bx30g10 -By10g10 -Dc -A1000 -Glightgray \

-Wthinnest -P > GMT_polyconic.ps

10.2 Azimuthal projections

10.2.1 Lambert Azimuthal Equal-Area (-Ja -JA)

This projection was developed by Lambert in 1772 and is typically used for mapping large regions like
continents and hemispheres. It is an azimuthal, equal-area projection, but is not perspective. Distortion is
zero at the center of the projection, and increases radially away from this point. To define this projection
in GMT you must provide the following information:

• Longitude and latitude of the projection center.

84 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

180˚ −150˚ −120˚ −90˚ −60˚ −30˚

0˚ 0˚

10˚ 10˚

20˚ 20˚

30˚ 30˚

4
0
˚ 4

0
˚

5
0
˚ 5

0
˚

6
0
˚ 6

0
˚

7
0
˚ 7

0
˚

8
0
˚ 8

0
˚

Figure 10.4: (American) polyconic projection.

• Optionally, the horizon, i.e., the number of degrees from the center to the edge (<= 180, default is
90).

• Scale as 1:xxxxx or as radius/latitude where radius is the projected distance on the map from
projection center to an oblique latitude (-Ja), or map width (-JA).

Two different types of maps can be made with this projection depending on how the region is specified.
We will give examples of both types.

Rectangular map

In this mode we define our region by specifying the longitude/latitude of the lower left and upper right
corners instead of the usual west, east, south, north boundaries. The reason for specifying our area this
way is that for this and many other projections, lines of equal longitude and latitude are not straight lines
and are thus poor choices for map boundaries. Instead we require that the map boundaries be rectangular
by defining the corners of a rectangular map boundary. Using 0E/40S (lower left) and 60E/10S (upper
right) as our corners we try

gmt set FORMAT_GEO_MAP ddd:mm:ssF MAP_GRID_CROSS_SIZE_PRIMARY 0

gmt pscoast -R0/-40/60/-10r -JA30/-30/4.5i -Bag -Dl -A500 -Gp300/10 \

-Wthinnest -P > GMT_lambert_az_rect.ps

Note that an “r” is appended to the -R option to inform GMT that the region has been selected using the
rectangle technique, otherwise it would try to decode the values as west, east, south, north and report an
error since ‘east’ < ‘west’.

Hemisphere map

Here, you must specify the world as your region (-Rg or -Rd). E.g., to obtain a hemisphere view that
shows the Americas, try

gmt pscoast -Rg -JA280/30/3.5i -Bg -Dc -A1000 -Gnavy -P > GMT_lambert_az_hemi.ps

To geologists, the Lambert azimuthal equal-area projection (with origin at 0/0) is known as the equal-

area (Schmidt) stereonet and used for plotting fold axes, fault planes, and the like. An equal-angle

10.2. Azimuthal projections 85

GMT Documentation, Release 5.1.1

0
˚

1
5
˚E

1
5
˚E

3
0
˚E

3
0
˚E

4
5
˚E

4
5
˚E

6
0
˚E

30˚S
30˚S

15˚S
15˚S

Figure 10.5: Rectangular map using the Lambert azimuthal equal-area projection.

Figure 10.6: Hemisphere map using the Lambert azimuthal equal-area projection.

86 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

(Wulff) stereonet can be obtained by using the stereographic projection (discussed later). The stereonets
produced by these two projections appear below.

SCHMIDT WULFF

Figure 10.7: Equal-Area (Schmidt) and Equal-Angle (Wulff) stereo nets.

10.2.2 Stereographic Equal-Angle projection (-Js -JS)

This is a conformal, azimuthal projection that dates back to the Greeks. Its main use is for mapping
the polar regions. In the polar aspect all meridians are straight lines and parallels are arcs of circles.
While this is the most common use it is possible to select any point as the center of projection. The
requirements are

• Longitude and latitude of the projection center.

• Optionally, the horizon, i.e., the number of degrees from the center to the edge (< 180, default is
90).

• Scale as 1:xxxxx (true scale at pole), slat/1:xxxxx (true scale at standard parallel slat), or ra-
dius/latitude where radius is distance on map in inches from projection center to a particular
[possibly oblique] latitude (-Js), or simply map width (-JS).

A default map scale factor of 0.9996 will be applied by default (although you may change this with
PROJ_SCALE_FACTOR). However, the setting is ignored when a standard parallel has been specified
since the scale is then implicitly given. We will look at two different types of maps.

Polar Stereographic Map

In our first example we will let the projection center be at the north pole. This means we have a polar
stereographic projection and the map boundaries will coincide with lines of constant longitude and
latitude. An example is given by

gmt pscoast -R-30/30/60/72 -Js0/90/4.5i/60 -B10g -Dl -A250 -Groyalblue \

-Sseashell -P > GMT_stereographic_polar.ps

Rectangular stereographic map

As with Lambert’s azimuthal equal-area projection we have the option to use rectangular boundaries
rather than the wedge-shape typically associated with polar projections. This choice is defined by se-
lecting two points as corners in the rectangle and appending an “r” to the -R option. This command
produces a map as presented in Figure Polar stereographic:

10.2. Azimuthal projections 87

GMT Documentation, Release 5.1.1

−30˚

−30˚

−20˚

−20˚

−10˚

−10˚

0˚

0˚

10˚

10˚

20˚

20˚

30˚

30˚

60˚ 60˚

70˚ 70˚

Figure 10.8: Polar stereographic conformal projection.

gmt set MAP_ANNOT_OBLIQUE 30

gmt pscoast -R-25/59/70/72r -JS10/90/11c -B20g -Dl -A250 -Gdarkbrown -Wthinnest \

-Slightgray -P > GMT_stereographic_rect.ps

−40˚

−20˚

−20˚

0˚

0˚

20˚

20˚

40˚

40˚ 60˚

60˚

Figure 10.9: Polar stereographic conformal projection with rectangular borders.

General stereographic map

In terms of usage this projection is identical to the Lambert azimuthal equal-area projection. Thus, one
can make both rectangular and hemispheric maps. Our example shows Australia using a projection pole
at 130E/30S. The command used was

gmt set MAP_ANNOT_OBLIQUE 0

gmt pscoast -R100/-42/160/-8r -JS130/-30/4i -Bag -Dl -A500 -Ggreen -Slightblue \

-Wthinnest -P > GMT_stereographic_general.ps

By choosing 0/0 as the pole, we obtain the conformal stereonet presented next to its equal-area cousin
in the Section Lambert Azimuthal Equal-Area (-Ja -JA) on the Lambert azimuthal equal-area projection
(Figure Stereonets).

88 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

1
0
5
˚

1
2
0
˚

1
2
0
˚

1
3
5
˚

1
3
5
˚

1
5
0
˚

1
5
0
˚

1
6
5
˚

−30˚

−30˚

−15˚
−15˚

Figure 10.10: General stereographic conformal projection with rectangular borders.

10.2.3 Perspective projection (-Jg -JG)

The perspective projection imitates in 2 dimensions the 3-dimensional view of the earth from space. The
implementation in GMT is very flexible, and thus requires many input variables. Those are listed and
explained below, with the values used in Figure Perspective projection between brackets.

• Longitude and latitude of the projection center (4E/52N).

• Altitude of the viewer above sea level in kilometers (230 km). If this value is less than 10, it is
assumed to be the distance of the viewer from the center of the earth in earth radii. If an “r” is
appended, it is the distance from the center of the earth in kilometers.

• Azimuth in degrees (90, due east). This is the direction in which you are looking, measured clock-
wise from north.

• Tilt in degrees (60). This is the viewing angle relative to zenith. So a tilt of 0 is looking straight
down, 60 is looking from 30 above the horizon.

• Twist in degrees (180). This is the boresight rotation (clockwise) of the image. The twist of 180
in the example mimics the fact that the Space Shuttle flies upside down.

• Width and height of the viewpoint in degrees (60). This number depends on whether you are
looking with the naked eye (in which case you view is about 60 wide), or with binoculars, for
example.

• Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection
center to a particular [possibly oblique] latitude (-Jg), or map width (-JG) (5 inches).

The imagined view of northwest Europe from a Space Shuttle at 230 km looking due east is thus accom-
plished by the following pscoast command:

gmt pscoast -Rg -JG4/52/230/90/60/180/60/60/5i -Bx2g2 -By1g1 -Ia -Di -Glightbrown \

-Wthinnest -P -Slightblue --MAP_ANNOT_MIN_SPACING=0.25i > GMT_perspective.ps

10.2. Azimuthal projections 89

GMT Documentation, Release 5.1.1

4˚ 4˚

6˚
6˚

8˚
8˚

48˚

49˚

5
0
˚

5
1
˚ 5

2
˚

5
3
˚

5
4
˚

55˚

Figure 10.11: View from the Space Shuttle in Perspective projection.

10.2.4 Orthographic projection (-Jg -JG)

The orthographic azimuthal projection is a perspective projection from infinite distance. It is therefore
often used to give the appearance of a globe viewed from outer space. As with Lambert’s equal-area
and the stereographic projection, only one hemisphere can be viewed at any time. The projection is
neither equal-area nor conformal, and much distortion is introduced near the edge of the hemisphere.
The directions from the center of projection are true. The projection was known to the Egyptians and
Greeks more than 2,000 years ago. Because it is mainly used for pictorial views at a small scale, only
the spherical form is necessary.

To specify the orthographic projection the same options -Jg or -JG as the perspective projection are
used, but with fewer variables to supply:

• Longitude and latitude of the projection center.

• Optionally, the horizon, i.e., the number of degrees from the center to the edge (<= 90, default is
90).

• Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection
center to a particular [possibly oblique] latitude (-Jg), or map width (-JG).

Our example of a perspective view centered on 75W/40N can therefore be generated by the following
pscoast command:

gmt pscoast -Rg -JG-75/41/4.5i -Bg -Dc -A5000 -Gpink -Sthistle -P > GMT_orthographic.ps

10.2.5 Azimuthal Equidistant projection (-Je -JE)

The most noticeable feature of this azimuthal projection is the fact that distances measured from the
center are true. Therefore, a circle about the projection center defines the locus of points that are equally
far away from the plot origin. Furthermore, directions from the center are also true. The projection, in
the polar aspect, is at least several centuries old. It is a useful projection for a global view of locations at
various or identical distance from a given point (the map center).

90 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

Figure 10.12: Hemisphere map using the Orthographic projection.

10.2. Azimuthal projections 91

GMT Documentation, Release 5.1.1

To specify the azimuthal equidistant projection you must supply:

• Longitude and latitude of the projection center.

• Optionally, the horizon, i.e., the number of degrees from the center to the edge (<= 180, default is
180).

• Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection
center to a particular [possibly oblique] latitude (-Je), or map width (-JE).

Our example of a global view centered on 100W/40N can therefore be generated by the following
pscoast command. Note that the antipodal point is 180 away from the center, but in this projection
this point plots as the entire map perimeter:

gmt pscoast -Rg -JE-100/40/4.5i -Bg -Dc -A10000 -Glightgray -Wthinnest -P \

> GMT_az_equidistant.ps

Figure 10.13: World map using the equidistant azimuthal projection.

10.2.6 Gnomonic projection (-Jf -JF)

The Gnomonic azimuthal projection is a perspective projection from the center onto a plane tangent to
the surface. Its origin goes back to the old Greeks who used it for star maps almost 2500 years ago. The
projection is neither equal-area nor conformal, and much distortion is introduced near the edge of the
hemisphere; in fact, less than a hemisphere may be shown around a given center. The directions from
the center of projection are true. Great circles project onto straight lines. Because it is mainly used for
pictorial views at a small scale, only the spherical form is necessary.

To specify the Gnomonic projection you must supply:

92 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

• Longitude and latitude of the projection center.

• Optionally, the horizon, i.e., the number of degrees from the center to the edge (< 90, default is
60).

• Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection
center to a particular [possibly oblique] latitude (-Jf), or map width (-JF).

Using a horizon of 60, our example of this projection centered on 120W/35N can therefore be generated
by the following pscoast command:

gmt pscoast -Rg -JF-120/35/60/4.5i -B30g15 -Dc -A10000 -Gtan -Scyan -Wthinnest \

-P > GMT_gnomonic.ps

0
˚

1
2
0
˚

150˚

1
8
0
˚ −

6
0
˚

−30˚

0˚ 0˚

30˚ 30˚

6
0
˚ 6

0
˚

Figure 10.14: Gnomonic azimuthal projection.

10.3 Cylindrical projections

Cylindrical projections are easily recognized for its shape: maps are rectangular and meridians and
parallels are straight lines crossing at right angles. But that is where similarities between the cylindrical
projections supported by GMT (Mercator, transverse Mercator, universal transverse Mercator, oblique
Mercator, Cassini, cylindrical equidistant, cylindrical equal-area, Miller, and cylindrical stereographic
projections) stops. Each have a different way of spacing the meridians and parallels to obtain certain
desirable cartographic properties.

10.3. Cylindrical projections 93

GMT Documentation, Release 5.1.1

10.3.1 Mercator projection (-Jm -JM)

Probably the most famous of the various map projections, the Mercator projection takes its name from
the Flemish cartographer Gheert Cremer, better known as Gerardus Mercator, who presented it in 1569.
The projection is a cylindrical and conformal, with no distortion along the equator. A major navigational
feature of the projection is that a line of constant azimuth is straight. Such a line is called a rhumb line or
loxodrome. Thus, to sail from one point to another one only had to connect the points with a straight line,
determine the azimuth of the line, and keep this constant course for the entire voyage 2. The Mercator
projection has been used extensively for world maps in which the distortion towards the polar regions
grows rather large, thus incorrectly giving the impression that, for example, Greenland is larger than
South America. In reality, the latter is about eight times the size of Greenland. Also, the Former Soviet
Union looks much bigger than Africa or South America. One may wonder whether this illusion has had
any influence on U.S. foreign policy.

In the regular Mercator projection, the cylinder touches the globe along the equator. Other orientations
like vertical and oblique give rise to the Transverse and Oblique Mercator projections, respectively. We
will discuss these generalizations following the regular Mercator projection.

The regular Mercator projection requires a minimum of parameters. To use it in GMT programs you
supply this information (the first two items are optional and have defaults):

• Central meridian [Middle of your map].

• Standard parallel for true scale [Equator]. When supplied, central meridian must be supplied as
well.

• Scale along the equator in inch/degree or 1:xxxxx (-Jm), or map width (-JM).

Our example presents a world map at a scale of 0.012 inch pr degree which will give a map 4.32 inch
wide. It was created with the command:

gmt set MAP_FRAME_TYPE fancy

gmt pscoast -R0/360/-70/70 -Jm1.2e-2i -Bxa60f15 -Bya30f15 -Dc -A5000 -Gred \

-P > GMT_mercator.ps

0˚

0˚

60˚

60˚

120˚

120˚

180˚

180˚

−120˚

−120˚

−60˚

−60˚

0˚

0˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

Figure 10.15: Simple Mercator map.

2 This is, however, not the shortest distance. It is given by the great circle connecting the two points.

94 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

While this example is centered on the Dateline, one can easily choose another configuration with the -R

option. A map centered on Greenwich would specify the region with -R-180/180/-70/70.

10.3.2 Transverse Mercator projection (-Jt -JT)

The transverse Mercator was invented by Lambert in 1772. In this projection the cylinder touches a
meridian along which there is no distortion. The distortion increases away from the central meridian and
goes to infinity at 90 from center. The central meridian, each meridian 90 away from the center, and
equator are straight lines; other parallels and meridians are complex curves. The projection is defined by
specifying:

• The central meridian.

• Optionally, the latitude of origin (default is the equator).

• Scale along the equator in inch/degree or 1:xxxxx (-Jt), or map width (-JT).

The optional latitude of origin defaults to Equator if not specified. Although defaulting to 1, you can
change the map scale factor via the PROJ_SCALE_FACTOR parameter. Our example shows a transverse
Mercator map of south-east Europe and the Middle East with 35E as the central meridian:

gmt pscoast -R20/30/50/45r -Jt35/0.18i -Bag -Dl -A250 -Glightbrown -Wthinnest \

-P -Sseashell > GMT_transverse_merc.ps

20˚

20˚

30˚

30˚

40˚

40˚

40˚
40˚

Figure 10.16: Rectangular Transverse Mercator map.

The transverse Mercator can also be used to generate a global map - the equivalent of the 360 Mercator
map. Using the command

gmt pscoast -R0/360/-80/80 -JT330/-45/3.5i -Ba30g -BWSne -Dc -A2000 \

-Slightblue -G0 -P > GMT_TM.ps

we made the map illustrated in Figure Global transverse Mercator. Note that when a world map is given
(indicated by -R0/360/s/n), the arguments are interpreted to mean oblique degrees, i.e., the 360 range
is understood to mean the extent of the plot along the central meridian, while the “south” and “north”
values represent how far from the central longitude we want the plot to extend. These values correspond
to latitudes in the regular Mercator projection and must therefore be less than 90.

10.3. Cylindrical projections 95

GMT Documentation, Release 5.1.1

90˚
120˚150˚

180˚

−150˚

0˚

0˚

Figure 10.17: A global transverse Mercator map.

96 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

10.3.3 Universal Transverse Mercator (UTM) projection (-Ju -JU)

A particular subset of the transverse Mercator is the Universal Transverse Mercator (UTM) which was
adopted by the US Army for large-scale military maps. Here, the globe is divided into 60 zones between
84S and 84N, most of which are 6 wide. Each of these UTM zones have their unique central meridian.
Furthermore, each zone is divided into latitude bands but these are not needed to specify the projection
for most cases. See Figure Universal Transverse Mercator for all zone designations.

180˚ 120˚W 60˚W 0˚ 60˚E 120˚E 180˚

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

A B

Y Z

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

31X 33X 35X 37X

90˚S

80˚S

72˚S

64˚S

56˚S

48˚S

40˚S

32˚S

24˚S

16˚S

8˚S

8˚N

16˚N

24˚N

32˚N

40˚N

48˚N

56˚N

64˚N

72˚N

84˚N

90˚N

0˚

Figure 10.18: Universal Transverse Mercator zone layout.

GMT implements both the transverse Mercator and the UTM projection. When selecting UTM you must
specify:

• UTM zone (A, B, 1–60, Y, Z). Use negative values for numerical zones in the southern hemisphere
or append the latitude modifiers C–H, J–N, P–X) to specify an exact UTM grid zone.

• Scale along the equator in inch/degree or 1:xxxxx (-Ju), or map width (-JU).

In order to minimize the distortion in any given zone, a scale factor of 0.9996 has been factored into
the formulae. (although a standard, you can change this with PROJ_SCALE_FACTOR). This makes the
UTM projection a secant projection and not a tangent projection like the transverse Mercator above. The
scale only varies by 1 part in 1,000 from true scale at equator. The ellipsoidal projection expressions are
accurate for map areas that extend less than 10 away from the central meridian. For larger regions we
use the conformal latitude in the general spherical formulae instead.

10.3.4 Oblique Mercator projection (-Jo -JO)

Oblique configurations of the cylinder give rise to the oblique Mercator projection. It is particularly use-
ful when mapping regions of large lateral extent in an oblique direction. Both parallels and meridians are
complex curves. The projection was developed in the early 1900s by several workers. Several parameters
must be provided to define the projection. GMT offers three different definitions:

1. Option -Joa or -JOa:

• Longitude and latitude of projection center.

10.3. Cylindrical projections 97

GMT Documentation, Release 5.1.1

• Azimuth of the oblique equator.

• Scale in inch/degree or 1:xxxxx along oblique equator (-Joa), or map width (-JOa).

2. Option -Job or -JOb:

• Longitude and latitude of projection center.

• Longitude and latitude of second point on oblique equator.

• Scale in inch/degree or 1:xxxxx along oblique equator (-Job), or map width (-JOb).

3. Option -Joc or -JOc:

• Longitude and latitude of projection center.

• Longitude and latitude of projection pole.

• Scale in inch/degree or 1:xxxxx along oblique equator (-Joc), or map width (-JOc).

Our example was produced by the command

gmt pscoast -R270/20/305/25r -JOc280/25.5/22/69/4.8i -Bag -Di -A250 -Gburlywood \

-Wthinnest -P -Tf301.5/23/0.4i/2 -Sazure --FONT_TITLE=8p \

--MAP_TITLE_OFFSET=0.05i > GMT_obl_merc.ps

−
9
0
˚

−
8
0
˚

−
8
0
˚

−
7
0
˚

−
7
0
˚

−
6
0
˚

−
6
0
˚

10˚

10˚

20˚

30˚

30˚

S

E

N

W

Figure 10.19: Oblique Mercator map using -Joc. We make it clear which direction is North by adding a
star rose with the -T option.

It uses definition 3 for an oblique view of some Caribbean islands. Note that we define our region using
the rectangular system described earlier. If we do not append an “r” to the -R string then the information
provided with the -R option is assumed to be oblique degrees about the projection center rather than the
usual geographic coordinates. This interpretation is chosen since in general the parallels and meridians
are not very suitable as map boundaries.

98 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

10.3.5 Cassini cylindrical projection (-Jc -JC)

This cylindrical projection was developed in 1745 by César-François Cassini de Thury for the survey of
France. It is occasionally called Cassini-Soldner since the latter provided the more accurate mathematical
analysis that led to the development of the ellipsoidal formulae. The projection is neither conformal nor
equal-area, and behaves as a compromise between the two end-members. The distortion is zero along the
central meridian. It is best suited for mapping regions of north-south extent. The central meridian, each
meridian 90 away, and equator are straight lines; all other meridians and parallels are complex curves.
The requirements to define this projection are:

• Longitude and latitude of central point.

• Scale in inch/degree or as 1:xxxxx (-Jc), or map width (-JC).

A detailed map of the island of Sardinia centered on the 845’E meridian using the Cassini projection can
be obtained by running the command:

gmt pscoast -R7:30/38:30/10:30/41:30r -JC8.75/40/2.5i -Bafg -Lf9.5/38.8/40/60 -Gspringgreen \

-Dh -Sazure -Wthinnest -Ia/thinner -P --FONT_LABEL=12p > GMT_cassini.ps

8˚

8˚8˚

9˚

9˚

10˚

10˚

39˚ 39˚

40˚ 40˚

41˚ 41˚

0 204060

Figure 10.20: Cassini map over Sardinia.

As with the previous projections, the user can choose between a rectangular boundary (used here) or a
geographical (WESN) boundary.

10.3.6 Cylindrical equidistant projection (-Jq -JQ)

This simple cylindrical projection is really a linear scaling of longitudes and latitudes. The most com-
mon form is the Plate Carrée projection, where the scaling of longitudes and latitudes is the same. All
meridians and parallels are straight lines. The projection can be defined by:

• The central meridian [Middle of your map].

10.3. Cylindrical projections 99

GMT Documentation, Release 5.1.1

• Standard parallel [Equator].

• Scale in inch/degree or as 1:xxxxx (-Jq), or map width (-JQ).

The first two of these are optional and have defaults. When the standard parallel is defined, the central
meridian must be supplied as well.

A world map centered on the dateline using this projection can be obtained by running the command:

gmt pscoast -Rg -JQ4.5i -B60f30g30 -Dc -A5000 -Gtan4 -Slightcyan -P > GMT_equi_cyl.ps

0˚

0˚

60˚

60˚

120˚

120˚

180˚

180˚

−120˚

−120˚

−60˚

−60˚

0˚

0˚

−60˚ −60˚

0˚ 0˚

60˚ 60˚

Figure 10.21: World map using the Plate Carr’{e}e projection.

Different relative scalings of longitudes and latitudes can be obtained by selecting a standard parallel
different from the equator. Some selections for standard parallels have practical properties as shown in

Table JQ.

Grafarend and Niermann, minimum linear distortion 61.7
Ronald Miller Equirectangular 50.5
Ronald Miller, minimum continental distortion 43.5
Grafarend and Niermann 42
Ronald Miller, minimum overall distortion 37.5
Plate Carrée, Simple Cylindrical, Plain/Plane 0

10.3.7 Cylindrical equal-area projections (-Jy -JY)

This cylindrical projection is actually several projections, depending on what latitude is selected as the
standard parallel. However, they are all equal area and hence non-conformal. All meridians and parallels
are straight lines. The requirements to define this projection are:

• The central meridian.

• The standard parallel.

• Scale in inch/degree or as 1:xxxxx (-Jy), or map width (-JY)

While you may choose any value for the standard parallel and obtain your own personal projection, there
are seven choices of standard parallels that result in known (or named) projections. These are listed in

100 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

Table JY .

Balthasart 50
Gall-Peters 45
Hobo-Dyer 3730’ (= 37.5)
Trystan Edwards 3724’ (= 37.4)
Caster 3704’ (= 37.0666)
Behrman 30
Lambert 0

For instance, a world map centered on the 35E meridian using the Behrman projection (Figure Behrman

cylindrical projection) can be obtained by running the command:

gmt pscoast -R-145/215/-90/90 -JY35/30/4.5i -B45g45 -Dc -A10000 -Sdodgerblue \

-Wthinnest -P > GMT_general_cyl.ps

−135˚

−135˚

−90˚

−90˚

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−90˚ −90˚

−45˚ −45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

Figure 10.22: World map using the Behrman cylindrical equal-area projection.

As one can see there is considerable distortion at high latitudes since the poles map into lines.

10.3.8 Miller Cylindrical projection (-Jj -JJ)

This cylindrical projection, presented by Osborn Maitland Miller of the American Geographic Society
in 1942, is neither equal nor conformal. All meridians and parallels are straight lines. The projection was
designed to be a compromise between Mercator and other cylindrical projections. Specifically, Miller
spaced the parallels by using Mercator’s formula with 0.8 times the actual latitude, thus avoiding the
singular poles; the result was then divided by 0.8. There is only a spherical form for this projection.
Specify the projection by:

• Optionally, the central meridian (default is the middle of your map).

• Scale in inch/degree or as 1:xxxxx (-Jj), or map width (-JJ).

For instance, a world map centered on the 90E meridian at a map scale of 1:400,000,000 (Figure Miller

projection) can be obtained as follows:

gmt pscoast -R-90/270/-80/90 -Jj1:400000000 -Bx45g45 -By30g30 -Dc -A10000 \

-Gkhaki -Wthinnest -P -Sazure > GMT_miller.ps

10.3. Cylindrical projections 101

GMT Documentation, Release 5.1.1

−90˚

−90˚

−45˚

−45˚

0˚

0˚

45˚

45˚

90˚

90˚

135˚

135˚

180˚

180˚

−135˚

−135˚

−90˚

−90˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

90˚ 90˚

Figure 10.23: World map using the Miller cylindrical projection.

10.3.9 Cylindrical stereographic projections (-Jcyl_stere -JCyl_stere)

The cylindrical stereographic projections are certainly not as notable as other cylindrical projections,
but are still used because of their relative simplicity and their ability to overcome some of the down-
sides of other cylindrical projections, like extreme distortions of the higher latitudes. The stereographic
projections are perspective projections, projecting the sphere onto a cylinder in the direction of the an-
tipodal point on the equator. The cylinder crosses the sphere at two standard parallels, equidistant from
the equator. The projections are defined by:

• The central meridian (uses the middle of the map when omitted).

• The standard parallel (default is the Equator). When used, central meridian needs to be given as
well.

• Scale in inch/degree or as 1:xxxxx (-Jcyl_stere), or map width (-JCyl_stere)

Some of the selections of the standard parallel are named for the car-
tographer or publication that popularized the projection (Table JCylstere).

Miller’s modified Gall 66.159467
Kamenetskiy’s First 55
Gall’s stereographic 45
Bolshoi Sovietskii Atlas Mira or Kamenetskiy’s Second 30
Braun’s cylindrical 0

A map of the world, centered on the Greenwich meridian, using the Gall’s stereographic projection
(standard parallel is 45, Figure Gall’s stereographic projection), is obtained as follows:

gmt set FORMAT_GEO_MAP dddA

gmt pscoast -R-180/180/-60/80 -JCyl_stere/0/45/4.5i -Bxa60f30g30 -Bya30g30 -Dc -A5000 \

-Wblack -Gseashell4 -Santiquewhite1 -P > GMT_gall_stereo.ps

102 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

180˚

180˚

120˚

120˚

60˚

60˚

0˚

0˚

60˚

60˚

120˚

120˚

180˚

180˚

60˚ 60˚

30˚ 30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

Figure 10.24: World map using Gall’s stereographic projection.

10.4 Miscellaneous projections

GMT supports 8 common projections for global presentation of data or models. These are the Hammer,
Mollweide, Winkel Tripel, Robinson, Eckert IV and VI, Sinusoidal, and Van der Grinten projections.
Due to the small scale used for global maps these projections all use the spherical approximation rather
than more elaborate elliptical formulae.

In all cases, the specification of the central meridian can be skipped. The default is the middle of the
longitude range of the plot, specified by the (R) option.

10.4.1 Hammer projection (-Jh -JH)

The equal-area Hammer projection, first presented by the German mathematician Ernst von Hammer in
1892, is also known as Hammer-Aitoff (the Aitoff projection looks similar, but is not equal-area). The
border is an ellipse, equator and central meridian are straight lines, while other parallels and meridians
are complex curves. The projection is defined by selecting:

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jh), or map width (-JH).

A view of the Pacific ocean using the Dateline as central meridian is accomplished thus

gmt pscoast -Rg -JH4.5i -Bg -Dc -A10000 -Gblack -Scornsilk -P > GMT_hammer.ps

10.4.2 Mollweide projection (-Jw -JW)

This pseudo-cylindrical, equal-area projection was developed by the German mathematician and as-
tronomer Karl Brandan Mollweide in 1805. Parallels are unequally spaced straight lines with the merid-
ians being equally spaced elliptical arcs. The scale is only true along latitudes 4044’ north and south. The
projection is used mainly for global maps showing data distributions. It is occasionally referenced under
the name homalographic projection. Like the Hammer projection, outlined above, we need to specify

10.4. Miscellaneous projections 103

GMT Documentation, Release 5.1.1

Figure 10.25: World map using the Hammer projection.

only two parameters to completely define the mapping of longitudes and latitudes into rectangular x/y
coordinates:

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jw), or map width (-JW).

An example centered on Greenwich can be generated thus:

gmt pscoast -Rd -JW4.5i -Bg -Dc -A10000 -Gtomato1 -Sskyblue -P > GMT_mollweide.ps

Figure 10.26: World map using the Mollweide projection.

10.4.3 Winkel Tripel projection (-Jr -JR)

In 1921, the German mathematician Oswald Winkel a projection that was to strike a compromise be-
tween the properties of three elements (area, angle and distance). The German word “tripel” refers to this
junction of where each of these elements are least distorted when plotting global maps. The projection
was popularized when Bartholomew and Son started to use it in its world-renowned “The Times Atlas
of the World” in the mid 20th century. In 1998, the National Geographic Society made the Winkel Tripel
as its map projection of choice for global maps.

Naturally, this projection is neither conformal, nor equal-area. Central meridian and equator are straight
lines; other parallels and meridians are curved. The projection is obtained by averaging the coordinates

104 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

of the Equidistant Cylindrical and Aitoff (not Hammer-Aitoff) projections. The poles map into straight
lines 0.4 times the length of equator. To use it you must enter

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jr), or map width (-JR).

Centered on Greenwich, the example in Figure Winkel Tripel projection was created by this command:

gmt pscoast -Rd -JR4.5i -Bg -Dc -A10000 -Gburlywood4 -Swheat1 -P > GMT_winkel.ps

Figure 10.27: World map using the Winkel Tripel projection.

10.4.4 Robinson projection (-Jn -JN)

The Robinson projection, presented by the American geographer and cartographer Arthur H. Robinson
in 1963, is a modified cylindrical projection that is neither conformal nor equal-area. Central meridian
and all parallels are straight lines; other meridians are curved. It uses lookup tables rather than analytic
expressions to make the world map “look” right 3. The scale is true along latitudes 38. The projection
was originally developed for use by Rand McNally and is currently used by the National Geographic
Society. To use it you must enter

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jn), or map width (-JN).

Again centered on Greenwich, the example below was created by this command:

gmt pscoast -Rd -JN4.5i -Bg -Dc -A10000 -Ggoldenrod -Ssnow2 -P > GMT_robinson.ps

10.4.5 Eckert IV and VI projection (-Jk -JK)

The Eckert IV and VI projections, presented by the German cartographer Max Eckert-Greiffendorff in
1906, are pseudocylindrical equal-area projections. Central meridian and all parallels are straight lines;

3 Robinson provided a table of y-coordinates for latitudes every 5. To project values for intermediate latitudes one must
interpolate the table. Different interpolants may result in slightly different maps. GMT uses the interpolant selected by the
parameter GMT_INTERPOLANT in the file.

10.4. Miscellaneous projections 105

GMT Documentation, Release 5.1.1

Figure 10.28: World map using the Robinson projection.

other meridians are equally spaced elliptical arcs (IV) or sinusoids (VI). The scale is true along latitudes
4030’ (IV) and 4916’ (VI). Their main use is in thematic world maps. To select Eckert IV you must use
-JKf (f for “four”) while Eckert VI is selected with -JKs (s for “six”). If no modifier is given it defaults
to Eckert VI. In addition, you must enter

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jk), or map width (-JK).

Centered on the Dateline, the Eckert IV example below was created by this command:

gmt pscoast -Rg -JKf4.5i -Bg -Dc -A10000 -Wthinnest -Givory -Sbisque3 -P > GMT_eckert4.ps

Figure 10.29: World map using the Eckert IV projection.

The same script, with s instead of f, yields the Eckert VI map:

10.4.6 Sinusoidal projection (-Ji -JI)

The sinusoidal projection is one of the oldest known projections, is equal-area, and has been used since
the mid-16th century. It has also been called the “Equal-area Mercator” projection. The central meridian
is a straight line; all other meridians are sinusoidal curves. Parallels are all equally spaced straight lines,
with scale being true along all parallels (and central meridian). To use it, you need to select:

• The central meridian [Middle of your map].

106 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

Figure 10.30: World map using the Eckert VI projection.

• Scale along equator in inch/degree or 1:xxxxx (-Ji), or map width (-JI).

A simple world map using the sinusoidal projection is therefore obtained by

gmt pscoast -Rd -JI4.5i -Bxg30 -Byg15 -Dc -A10000 -Ggray -P > GMT_sinusoidal.ps

Figure 10.31: World map using the Sinusoidal projection.

To reduce distortion of shape the interrupted sinusoidal projection was introduced in 1927. Here, three
symmetrical segments are used to cover the entire world. Traditionally, the interruptions are at 160W,
20W, and 60E. To make the interrupted map we must call pscoast for each segment and superpose
the results. To produce an interrupted world map (with the traditional boundaries just mentioned) that is
5.04 inches wide we use the scale 5.04/360 = 0.014 and offset the subsequent plots horizontally by their
widths (140·0.014 and 80·0.014):

gmt pscoast -R200/340/-90/90 -Ji0.014i -Bxg30 -Byg15 -A10000 -Dc \

-Gblack -K -P > GMT_sinus_int.ps

gmt pscoast -R-20/60/-90/90 -Ji0.014i -Bxg30 -Byg15 -Dc -A10000 \

-Gblack -X1.96i -O -K >> GMT_sinus_int.ps

gmt pscoast -R60/200/-90/90 -Ji0.014i -Bxg30 -Byg15 -Dc -A10000 \

-Gblack -X1.12i -O >> GMT_sinus_int.ps

The usefulness of the interrupted sinusoidal projection is basically limited to display of global, discon-
tinuous data distributions like hydrocarbon and mineral resources, etc.

10.4. Miscellaneous projections 107

GMT Documentation, Release 5.1.1

Figure 10.32: World map using the Interrupted Sinusoidal projection.

10.4.7 Van der Grinten projection (-Jv -JV)

The Van der Grinten projection, presented by Alphons J. van der Grinten in 1904, is neither equal-area
nor conformal. Central meridian and Equator are straight lines; other meridians are arcs of circles. The
scale is true along the Equator only. Its main use is to show the entire world enclosed in a circle. To use
it you must enter

• The central meridian [Middle of your map].

• Scale along equator in inch/degree or 1:xxxxx (-Jv), or map width (-JV).

Centered on the Dateline, the example below was created by this command:

gmt pscoast -Rg -JV4i -Bxg30 -Byg15 -Dc -Glightgray -A10000 \

-Wthinnest -P > GMT_grinten.ps

108 Chapter 10. GMT Map Projections

GMT Documentation, Release 5.1.1

Figure 10.33: World map using the Van der Grinten projection.

10.4. Miscellaneous projections 109

GMT Documentation, Release 5.1.1

110 Chapter 10. GMT Map Projections

CHAPTER 11

Creating GMT Graphics

In this section we will be giving numerous examples of typical usage of GMT programs. In general,
we will start with a raw data set, manipulate the numbers in various ways, then display the results in
diagram or map view. The resulting plots will have in common that they are all made up of simpler plots
that have been overlaid to create a complex illustration. We will mostly follow the following format:

1. We explain what we want to achieve in plain language.

2. We present an annotated Bourne shell script that contains all commands used to generate the
illustration.

3. We explain the rationale behind the commands.

4. We present the illustration, 50% reduced in size, and without the timestamp (-U).

A detailed discussion of each command is not given; we refer you to the manual pages for command line
syntax, etc. We encourage you to run these scripts for yourself. See Appendix [app:D] if you would like
an electronic version of all the shell-scripts (both sh and csh scripts are available, as or DOS batch files;
only the sh-scripts are discussed here) and support data used below. Note that all examples explicitly
specifies the measurement units, so although we use inches you should be able to run these scripts and
get the same plots even if you have cm as the default measure unit. The examples are all written to be
“quiet”, that is no information is echoed to the screen. Thus, these scripts are well suited for background
execution.

Note that we also end each script by cleaning up after ourselves. Because there are several AWK imple-
mentations such as gawk and nawk, which are not available everywhere, we refer to $AWK in the scripts
below. This variable must be set prior to running the example scripts.

Finally, be aware that for practical purposes the output PostScript file name is stored as the variable ps.

11.1 The making of contour maps

We want to create two contour maps of the low order geoid using the Hammer equal area projection.
Our gridded data file is called osu91a1f_16.nc and contains a global 1 by 1 gridded geoid (we will
see how to make gridded files later). We would like to show one map centered on Greenwich and one
centered on the dateline. Positive contours should be drawn with a solid pen and negative contours with
a dashed pen. Annotations should occur for every 50 m contour level, and both contour maps should
show the continents in light brown in the background. Finally, we want a rectangular frame surrounding
the two maps. This is how it is done:

111

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 01

#

Purpose: Make two contour maps based on the data in the file osu91a1f_16.nc

GMT progs: gmtset, grdcontour, psbasemap, pscoast

Unix progs: rm

#

ps=example_01.ps

gmt gmtset MAP_GRID_CROSS_SIZE_PRIMARY 0 FONT_ANNOT_PRIMARY 10p

gmt psbasemap -R0/6.5/0/7.5 -Jx1i -B0 -P -K > $ps

gmt pscoast -Rg -JH0/6i -X0.25i -Y0.2i -O -K -Bg30 -Dc -Glightbrown -Slightblue >> $ps

gmt grdcontour osu91a1f_16.nc -J -C10 -A50+f7p -Gd4i -L-1000/-1 -Wcthinnest,- -Wathin,- \

-O -K -T0.1i/0.02i >> $ps

gmt grdcontour osu91a1f_16.nc -J -C10 -A50+f7p -Gd4i -L-1/1000 -O -K -T0.1i/0.02i >> $ps

gmt pscoast -Rg -JH6i -Y3.4i -O -K -B+t"Low Order Geoid" -Bg30 -Dc -Glightbrown \

-Slightblue >> $ps

gmt grdcontour osu91a1f_16.nc -J -C10 -A50+f7p -Gd4i -L-1000/-1 -Wcthinnest,- -Wathin,- \

-O -K -T0.1i/0.02i:-+ >> $ps

gmt grdcontour osu91a1f_16.nc -J -C10 -A50+f7p -Gd4i -L-1/1000 -O -T0.1i/0.02i:-+ >> $ps

rm -f gmt.conf

The first command draws a box surrounding the maps. This is followed by two sequences of pscoast,
grdcontour, grdcontour. They differ in that the first is centered on Greenwich; the second on
the dateline. We use the limit option (-L) in grdcontour to select negative contours only and plot
those with a dashed pen, then positive contours only and draw with a solid pen [Default]. The -T option
causes tick marks pointing in the downhill direction to be drawn on the innermost, closed contours. For
the upper panel we also added - and + to the local lows and highs. You can find this illustration as

-5
0

0

0

0

0

50

Low Order Geoid

-

-

-

-

-

-

-5
0

-5
0

+

+

+

+

+

+

0

0

0

0

0

5
0

112 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

11.2 Image presentations

As our second example we will demonstrate how to make color images from gridded data sets (again,
we will defer the actual making of grid files to later examples). We will use grdraster to extract 2-D
grid files of bathymetry and Geosat geoid heights and put the two images on the same page. The region
of interest is the Hawaiian islands, and due to the oblique trend of the island chain we prefer to rotate
our geographical data sets using an oblique Mercator projection defined by the hotspot pole at (68W,
69N). We choose the point (190, 25.5) to be the center of our projection (e.g., the local origin), and we
want to image a rectangular region defined by the longitudes and latitudes of the lower left and upper
right corner of region. In our case we choose (160, 20) and (220, 30) as the corners. We use grdimage
to make the illustration:

#!/bin/bash

GMT EXAMPLE 02

#

Purpose: Make two color images based gridded data

GMT progs: gmtset, grd2cpt, grdgradient, grdimage, makecpt, psscale, pstext

Unix progs: rm

#

ps=example_02.ps

gmt gmtset FONT_TITLE 30p MAP_ANNOT_OBLIQUE 0

gmt makecpt -Crainbow -T-2/14/2 > g.cpt

gmt grdimage HI_geoid2.nc -R160/20/220/30r -JOc190/25.5/292/69/4.5i -E50 -K -P \

-B10 -Cg.cpt -X1.5i -Y1.25i > $ps

gmt psscale -Cg.cpt -D5.1i/1.35i/2.88i/0.4i -O -K -Ac -Bx2+lGEOID -By+lm -E >> $ps

gmt grd2cpt HI_topo2.nc -Crelief -Z > t.cpt

gmt grdgradient HI_topo2.nc -A0 -Nt -GHI_topo2_int.nc

gmt grdimage HI_topo2.nc -IHI_topo2_int.nc -R -J -B+t"H@#awaiian@# T@#opo and @#G@#eoid" \

-B10 -E50 -O -K -Ct.cpt -Y4.5i --MAP_TITLE_OFFSET=0.5i >> $ps

gmt psscale -Ct.cpt -D5.1i/1.35i/2.88i/0.4i -O -K -I0.3 -Ac -Bx2+lTOPO -By+lkm >> $ps

gmt pstext -R0/8.5/0/11 -Jx1i -F+f30p,Helvetica-Bold+jCB -O -N -Y-4.5i >> $ps << END

-0.4 7.5 a)

-0.4 3.0 b)

END

rm -f HI_topo2_int.nc ?.cpt gmt.conf

The first step extracts the 2-D data sets from the local data base using grdraster that may be adapted
to reflect the nature of your data base format. It automatically figures out the required extent of the
region given the two corners points and the projection. The extreme meridians and parallels enclosing
the oblique region is -R159:50/220:10/3:10/47:35. This is the area extracted by grdraster. For your
convenience we have commented out those lines and provided the two extracted files so you do not
need grdraster to try this example. By using the embedded grid file format mechanism we saved
the topography using kilometers as the data unit. We now have two grid files with bathymetry and geoid
heights, respectively. We use makecpt to generate a linear color palette file geoid.cpt for the geoid
and use grd2cpt to get a histogram-equalized cpt file topo.cpt for the topography data. To empha-
size the structures in the data we calculate the slopes in the north-south direction using grdgradient;
these will be used to modulate the color image. Next we run grdimage to create a color-code image of
the Geosat geoid heights, and draw a color legend to the right of the image with psscale. Similarly,
we run grdimage but specify -Y4.5i to plot above the previous image. Adding scale and label the two
plots a) and b) completes the illustration.

11.3 Spectral estimation and xy-plots

In this example we will show how to use the GMT programs fitcircle, project, sample1d,
spectrum1d, psxy, and pstext. Suppose you have (lon, lat, gravity) along a satellite track in a
file called sat.xyg, and (lon, lat, gravity) along a ship track in a file called ship.xyg. You want to
make a cross-spectral analysis of these data. First, you will have to get the two data sets into equidistantly

11.2. Image presentations 113

GMT Documentation, Release 5.1.1

1
6
0
˚

1
7
0
˚

1
8
0
˚

1
8
0
˚

-1
7
0
˚

-1
7
0
˚

-1
6
0
˚

-1
6
0
˚

-1
5
0
˚

10˚

20˚

30˚

30˚

40˚

-2

0

2

4

6

8

10

12

14

G
E
O
I
D

m

HAWAIIAN TOPO AND GEOID

1
6
0
˚

1
7
0
˚

1
8
0
˚

1
8
0
˚

-1
7
0
˚

-1
7
0
˚

-1
6
0
˚

-1
6
0
˚

-1
5
0
˚

10˚

20˚

30˚

30˚

40˚

-6

-4

-2

0

2

T
O
P
O

km
a)

b)

114 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

sampled time-series form. To do this, it will be convenient to project these along the great circle that best
fits the sat track. We must use fitcircle to find this great circle and choose the L2 estimates of best
pole. We project the data using project to find out what their ranges are in the projected coordinate.
The gmtinfo utility will report the minimum and maximum values for multi-column ASCII tables.
Use this information to select the range of the projected distance coordinate they have in common. The
script prompts you for that information after reporting the values. We decide to make a file of equidistant
sampling points spaced 1 km apart from -1167 to +1169, and use the UNIX utility awk to accomplish this
step. We can then resample the projected data, and carry out the cross-spectral calculations, assuming
that the ship is the input and the satellite is the output data. There are several intermediate steps that
produce helpful plots showing the effect of the various processing steps (example_03[a-f].ps),
while the final plot example_03.ps shows the ship and sat power in one diagram and the coherency
on another diagram, both on the same page. Note the extended use of pstext and psxy to put labels
and legends directly on the plots. For that purpose we often use -Jx1i and specify positions in inches
directly. Thus, the complete automated script reads:

#!/bin/bash

GMT EXAMPLE 03

#

Purpose: Resample track data, do spectral analysis, and plot

GMT progs: filter1d, fitcircle, gmtinfo, project, sample1d

GMT progs: spectrum1d, trend1d, pshistogram, psxy, pstext

Unix progs: $AWK, cat, echo, head, paste, rm, tail

#

This example begins with data files "ship.xyg" and "sat.xyg" which

are measurements of a quantity "g" (a "gravity anomaly" which is an

anomalous increase or decrease in the magnitude of the acceleration

of gravity at sea level). g is measured at a sequence of points "x,y"

which in this case are "longitude,latitude". The "sat.xyg" data were

obtained by a satellite and the sequence of points lies almost along

a great circle. The "ship.xyg" data were obtained by a ship which

tried to follow the satellite’s path but deviated from it in places.

Thus the two data sets are not measured at the same of points,

and we use various GMT tools to facilitate their comparison.

The main illustration (example_03.ps) are accompanied with 5 support

plots (03a-f) showing data distributions and various intermediate steps.

#

First, we use "gmt fitcircle" to find the parameters of a great circle

most closely fitting the x,y points in "sat.xyg":

#

ps=example_03.ps

gmt fitcircle sat.xyg -L2 > report

cposx=‘grep "L2 Average Position" report | cut -f1‘

cposy=‘grep "L2 Average Position" report | cut -f2‘

pposx=‘grep "L2 N Hemisphere" report | cut -f1‘

pposy=‘grep "L2 N Hemisphere" report | cut -f2‘

#

Now we use "gmt project" to gmt project the data in both sat.xyg and ship.xyg

into data.pg, where g is the same and p is the oblique longitude around

the great circle. We use -Q to get the p distance in kilometers, and -S

to sort the output into increasing p values.

#

gmt project sat.xyg -C$cposx/$cposy -T$pposx/$pposy -S -Fpz -Q > sat.pg

gmt project ship.xyg -C$cposx/$cposy -T$pposx/$pposy -S -Fpz -Q > ship.pg

#

The gmtinfo utility will report the minimum and maximum values for all columns.

We use this information first with a large -I value to find the appropriate -R

to use to plot the .pg data.

#

R=‘cat sat.pg ship.pg | gmt info -I100/25‘

gmt psxy $R -UL/-1.75i/-1.25i/"Example 3a in Cookbook" -BWeSn \

-Bxa500f100+l"Distance along great circle" -Bya100f25+l"Gravity anomaly (mGal)" \

-JX8i/5i -X2i -Y1.5i -K -Wthick sat.pg > example_03a.ps

gmt psxy -R -JX -O -Sp0.03i ship.pg >> example_03a.ps

#

From this plot we see that the ship data have some "spikes" and also greatly

differ from the satellite data at a point about p ~= +250 km, where both of

them show a very large anomaly.

11.3. Spectral estimation and xy-plots 115

GMT Documentation, Release 5.1.1

#

To facilitate comparison of the two with a cross-spectral analysis using "gmt spectrum1d",

we resample both data sets at intervals of 1 km. First we find out how the data are

typically spaced using $AWK to get the delta-p between points and view it with

"gmt pshistogram".

#

$AWK ’{ if (NR > 1) print $1 - last1; last1=$1; }’ ship.pg | gmt pshistogram -W0.1 -Gblack \

-JX3i -K -X2i -Y1.5i -B0 -B+t"Ship" -UL/-1.75i/-1.25i/"Example 3b in Cookbook" \

> example_03b.ps

$AWK ’{ if (NR > 1) print $1 - last1; last1=$1; }’ sat.pg | gmt pshistogram -W0.1 -Gblack \

-JX3i -O -X5i -B0 -B+t"Sat" >> example_03b.ps

#

This experience shows that the satellite values are spaced fairly evenly, with

delta-p between 3.222 and 3.418. The ship values are spaced quite unevenly, with

delta-p between 0.095 and 9.017. This means that when we want 1 km even sampling,

we can use "gmt sample1d" to interpolate the sat data, but the same procedure applied

to the ship data could alias information at shorter wavelengths. So we have to use

"gmt filter1d" to resample the ship data. Also, since we observed spikes in the ship

data, we use a median filter to clean up the ship values. We will want to use "paste"

to put the two sampled data sets together, so they must start and end at the same

point, without NaNs. So we want to get a starting and ending point which works for

both of them. This is a job for gmt gmtmath UPPER/LOWER.

#

head -1 ship.pg > tmp

head -1 sat.pg >> tmp

sampr1=‘gmt gmtmath tmp -Ca -Sf -o0 UPPER CEIL =‘

tail -1 ship.pg > tmp

tail -1 sat.pg >> tmp

sampr2=‘gmt gmtmath tmp -Ca -Sf -o0 LOWER FLOOR =‘

#

Now we can use sampr1|2 in gmt gmtmath to make a sampling points file for gmt sample1d:

gmt gmtmath -T$sampr1/$sampr2/1 -N1/0 T = samp.x

#

Now we can resample the gmt projected satellite data:

#

gmt sample1d sat.pg -Nsamp.x > samp_sat.pg

#

For reasons above, we use gmt filter1d to pre-treat the ship data. We also need to sample

it because of the gaps > 1 km we found. So we use gmt filter1d | gmt sample1d. We also

use the -E on gmt filter1d to use the data all the way out to sampr1/sampr2 :

#

gmt filter1d ship.pg -Fm1 -T$sampr1/$sampr2/1 -E | gmt sample1d -Nsamp.x > samp_ship.pg

#

Now we plot them again to see if we have done the right thing:

#

gmt psxy $R -JX8i/5i -X2i -Y1.5i -K -Wthick samp_sat.pg \

-Bxa500f100+l"Distance along great circle" -Bya100f25+l"Gravity anomaly (mGal)" \

-BWeSn -UL/-1.75i/-1.25i/"Example 3c in Cookbook" > example_03c.ps

gmt psxy -R -JX -O -Sp0.03i samp_ship.pg >> example_03c.ps

#

Now to do the cross-spectra, assuming that the ship is the input and the sat is the output

data, we do this:

#

gmt gmtconvert -A samp_ship.pg samp_sat.pg -o1,3 | gmt spectrum1d -S256 -D1 -W -C > /dev/null

#

Now we want to plot the spectra. The following commands will plot the ship and sat

power in one diagram and the coherency on another diagram, both on the same page.

Note the extended use of gmt pstext and gmt psxy to put labels and legends directly on the

plots. For that purpose we often use -Jx1i and specify positions in inches directly:

#

gmt psxy spectrum.coh -Bxa1f3p+l"Wavelength (km)" -Bya0.25f0.05+l"Coherency@+2@+" \

-BWeSn+g240/255/240 -JX-4il/3.75i -R1/1000/0/1 -P -K -X2.5i -Sc0.07i -Gmagenta \

-Ey/0.5p -Y1.5i > $ps

echo "3.85 3.6 Coherency@+2@+" | gmt pstext -R0/4/0/3.75 -Jx1i -F+f18p,Helvetica-Bold+jTR \

-O -K >> $ps

gmt psxy spectrum.xpower -Bxa1f3p -Bya1f3p+l"Power (mGal@+2@+km)" \

-BWeSn+t"Ship and Satellite Gravity"+g240/255/240 \

-Gred -ST0.07i -O -R1/1000/0.1/10000 -JX-4il/3.75il -Y4.2i -K -Ey/0.5p >> $ps

gmt psxy spectrum.ypower -R -JX -O -K -Gblue -Sc0.07i -Ey/0.5p >> $ps

echo "3.9 3.6 Input Power" | gmt pstext -R0/4/0/3.75 -Jx -F+f18p,Helvetica-Bold+jTR -O -K >> $ps

gmt psxy -R -Jx -O -K -Gwhite -L -Wthicker >> $ps << END

0.25 0.25

116 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

1.4 0.25

1.4 0.9

0.25 0.9

END

echo "0.4 0.7" | gmt psxy -R -Jx -O -K -ST0.07i -Gred >> $ps

echo "0.5 0.7 Ship" | gmt pstext -R -Jx -F+f14p,Helvetica-Bold+jLM -O -K >> $ps

echo "0.4 0.4" | gmt psxy -R -Jx -O -K -Sc0.07i -Gblue >> $ps

echo "0.5 0.4 Satellite" | gmt pstext -R -Jx -F+f14p,Helvetica-Bold+jLM -O >> $ps

#

Now we wonder if removing that large feature at 250 km would make any difference.

We could throw away a section of data with $AWK or sed or head and tail, but we

demonstrate the use of "gmt trend1d" to identify outliers instead. We will fit a

straight line to the samp_ship.pg data by an iteratively-reweighted method and

save the weights on output. Then we will plot the weights and see how things

look:

#

gmt trend1d -Fxw -N2r samp_ship.pg > samp_ship.xw

gmt psxy $R -JX8i/4i -X2i -Y1.5i -K -Sp0.03i \

-Bxa500f100+l"Distance along great circle" -Bya100f25+l"Gravity anomaly (mGal)" \

-BWeSn -UL/-1.75i/-1.25i/"Example 3d in Cookbook" samp_ship.pg > example_03d.ps

R=‘gmt info samp_ship.xw -I100/1.1‘

gmt psxy $R -JX8i/1.1i -O -Y4.25i -Bxf100 -Bya0.5f0.1+l"Weight" -BWesn -Sp0.03i \

samp_ship.xw >> example_03d.ps

#

From this we see that we might want to throw away values where w < 0.6. So we try that,

and this time we also use gmt trend1d to return the residual from the model fit (the

de-trended data):

gmt trend1d -Fxrw -N2r samp_ship.pg | $AWK ’{ if ($3 > 0.6) print $1, $2 }’ \

| gmt sample1d -Nsamp.x > samp2_ship.pg

gmt trend1d -Fxrw -N2r samp_sat.pg | $AWK ’{ if ($3 > 0.6) print $1, $2 }’ \

| gmt sample1d -Nsamp.x > samp2_sat.pg

#

We plot these to see how they look:

#

R=‘cat samp2_sat.pg samp2_ship.pg | gmt info -I100/25‘

gmt psxy $R -JX8i/5i -X2i -Y1.5i -K -Wthick \

-Bxa500f100+l"Distance along great circle" -Bya50f25+l"Gravity anomaly (mGal)" \

-BWeSn -UL/-1.75i/-1.25i/"Example 3e in Cookbook" samp2_sat.pg > example_03e.ps

gmt psxy -R -JX -O -Sp0.03i samp2_ship.pg >> example_03e.ps

#

Now we do the cross-spectral analysis again. Comparing this plot (example_03e.ps) with

the previous one (example_03d.ps) we see that throwing out the large feature has reduced

the power in both data sets and reduced the coherency at wavelengths between 20--60 km.

#

gmt gmtconvert -A samp2_ship.pg samp2_sat.pg -o1,3 | gmt spectrum1d -S256 -D1 -W -C > /dev/null

#

gmt psxy spectrum.coh -Bxa1f3p+l"Wavelength (km)" -Bya0.25f0.05+l"Coherency@+2@+" -BWeSn \

-JX-4il/3.75i -R1/1000/0/1 -UL/-2.25i/-1.25i/"Example 3f in Cookbook" -P -K -X2.5i \

-Sc0.07i -Gblack -Ey/0.5p -Y1.5i > example_03f.ps

echo "3.85 3.6 Coherency@+2@+" | gmt pstext -R0/4/0/3.75 -Jx -F+f18p,Helvetica-Bold+jTR -O \

-K >> example_03f.ps

cat > box.d << END

2.375 3.75

2.375 3.25

4 3.25

END

gmt psxy -R -Jx -O -K -Wthicker box.d >> example_03f.ps

gmt psxy -Bxa1f3p -Bya1f3p+l"Power (mGal@+2@+km)" -BWeSn+t"Ship and Satellite Gravity" \

spectrum.xpower -ST0.07i -O -R1/1000/0.1/10000 -JX-4il/3.75il -Y4.2i -K -Ey/0.5p \

>> example_03f.ps

gmt psxy spectrum.ypower -R -JX -O -K -Gblack -Sc0.07i -Ey/0.5p >> example_03f.ps

echo "3.9 3.6 Input Power" | gmt pstext -R0/4/0/3.75 -Jx -F+f18p,Helvetica-Bold+jTR -O \

-K >> example_03f.ps

gmt psxy -R -Jx -O -K -Wthicker box.d >> example_03f.ps

gmt psxy -R -Jx -O -K -Glightgray -L -Wthicker >> example_03f.ps << END

0.25 0.25

1.4 0.25

1.4 0.9

0.25 0.9

END

echo "0.4 0.7" | gmt psxy -R -Jx -O -K -ST0.07i -Gblack >> example_03f.ps

echo "0.5 0.7 Ship" | gmt pstext -R -Jx -F+f14p,Helvetica-Bold+jLM -O -K >> example_03f.ps

11.3. Spectral estimation and xy-plots 117

GMT Documentation, Release 5.1.1

echo "0.4 0.4" | gmt psxy -R -Jx -O -K -Sc0.07i -Gblack >> example_03f.ps

echo "0.5 0.4 Satellite" | gmt pstext -R -Jx -F+f14p,Helvetica-Bold+jLM -O >> example_03f.ps

#

rm -f box.d report tmp samp* *.pg *.extr spectrum.*

The final illustration (Figure Example 03) shows that the ship gravity anomalies have more power than
altimetry derived gravity for short wavelengths and that the coherency between the two signals improves
dramatically for wavelengths > 20 km.

0.00

0.25

0.50

0.75

1.00

C
o

h
e

re
n

c
y

2

100101102103

Wavelength (km)

Coherency2

10-1

100

101

102

103

104
P

o
w

e
r

(m
G

a
l2

k
m

)

100101102103

Ship and Satellite Gravity

Input Power

Ship

Satellite

11.4 A 3-D perspective mesh plot

This example will illustrate how to make a fairly complicated composite figure. We need a subset of the
ETOPO5 bathymetry 1 and Geosat geoid data sets which we will extract from the local data bases using
grdraster. We would like to show a 2-layer perspective plot where layer one shows a contour map
of the marine geoid with the location of the Hawaiian islands superposed, and a second layer showing
the 3-D mesh plot of the topography. We also add an arrow pointing north and some text. The first part
of this script shows how to do it:

1 These data are available on CD-ROM from NGDC (http://www.ngdc.noaa.gov/).

118 Chapter 11. Creating GMT Graphics

http://www.ngdc.noaa.gov/

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 04

#

Purpose: 3-D mesh and color plot of Hawaiian topography and geoid

GMT progs: grdcontour, grdgradient, grdimage, grdview, psbasemap, pscoast, pstext

Unix progs: echo, rm

#

ps=example_04.ps

echo ’-10 255 0 255’ > zero.cpt

echo ’ 0 100 10 100’ >> zero.cpt

gmt grdcontour HI_geoid4.nc -R195/210/18/25 -Jm0.45i -p60/30 -C1 -A5+o -Gd4i -K -P \

-X1.25i -Y1.25i > $ps

gmt pscoast -R -J -p -B2 -BNEsw -Gblack -O -K -T209/19.5/1i >> $ps

gmt grdview HI_topo4.nc -R195/210/18/25/-6/4 -J -Jz0.34i -p -Czero.cpt -O -K \

-N-6+glightgray -Qsm -B2 -Bz2+l"Topo (km)" -BneswZ -Y2.2i >> $ps

echo ’3.25 5.75 H@#awaiian@# R@#idge’ | gmt pstext -R0/10/0/10 -Jx1i \

-F+f60p,ZapfChancery-MediumItalic+jCB -O >> $ps

rm -f zero.cpt

#

ps=example_04c.ps

gmt grdgradient HI_geoid4.nc -A0 -Gg_intens.nc -Nt0.75 -fg

gmt grdgradient HI_topo4.nc -A0 -Gt_intens.nc -Nt0.75 -fg

gmt grdimage HI_geoid4.nc -Ig_intens.nc -R195/210/18/25 -JM6.75i -p60/30 -Cgeoid.cpt -E100 \

-K -P -X1.25i -Y1.25i > $ps

gmt pscoast -R -J -p -B2 -BNEsw -Gblack -O -K >> $ps

gmt psbasemap -R -J -p -O -K -T209/19.5/1i --COLOR_BACKGROUND=red --FONT=red \

--MAP_TICK_PEN_PRIMARY=thinner,red >> $ps

gmt psscale -R -J -p240/30 -D3.375i/-0.5i/5i/0.3ih -Cgeoid.cpt -I -O -K -Bx2+l"Geoid (m)" >> $ps

gmt grdview HI_topo4.nc -It_intens.nc -R195/210/18/25/-6/4 -J -JZ3.4i -p60/30 -Ctopo.cpt \

-O -K -N-6+glightgray -Qc100 -B2 -Bz2+l"Topo (km)" -BneswZ -Y2.2i >> $ps

echo ’3.25 5.75 H@#awaiian@# R@#idge’ | gmt pstext -R0/10/0/10 -Jx1i \

-F+f60p,ZapfChancery-MediumItalic+jCB -O >> $ps

rm -f *_intens.nc

The purpose of the color palette file zero.cpt is to have the positive topography mesh painted light
gray (the remainder is white). The left side of Figure shows the complete illustration.

The second part of the script shows how to make the color version of this figure that was printed in
our first article in EOS Trans. AGU (8 October 1991). Using grdview one can choose to either plot
a mesh surface (left) or a color-coded surface (right). We have also added artificial illumination from a
light-source due north, which is simulated by computing the gradient of the surface grid in that direction
though the grdgradient program. We choose to use the -Qc option in grdview to achieve a high
degree of smoothness. Here, we select 100 dpi since that will be the resolution of our final raster (The
EOS raster was 300 dpi). Note that the size of the resulting output file is directly dependent on the square
of the dpi chosen for the scanline conversion and how well the resulting image compresses. A higher
value for dpi in -Qc would have resulted in a much larger output file. The CPT files were taken from
Section [sec:example02].

11.5 A 3-D illuminated surface in black and white

Instead of a mesh plot we may choose to show 3-D surfaces using artificial illumination. For this example
we will use grdmath to make a grid file that contains the surface given by the function z(x, y) =
cos(2πr/8) · e−r/10, where r2 = (x2 + y2). The illumination is obtained by passing two grid files to
grdview: One with the z-values (the surface) and another with intensity values (which should be in the
1 range). We use grdgradient to compute the horizontal gradients in the direction of the artificial
light source. The gray.cpt file only has one line that states that all z values should have the gray level
128. Thus, variations in shade are entirely due to variations in gradients, or illuminations. We choose to
illuminate from the SW and view the surface from SE:

11.5. A 3-D illuminated surface in black and white 119

GMT Documentation, Release 5.1.1

0

0

5

5

10

10

-164˚

-162˚

-160˚

-158˚

-156˚

-154˚

-152˚

-150˚

18˚

20˚

22˚

24˚

N

-4
-2

0
2

4

T
o

p
o

 (
km

)

HAWAIIAN RIDGE

120 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 05

#

Purpose: Generate grid and show monochrome 3-D perspective

GMT progs: grdgradient, grdmath, grdview, pstext

Unix progs: echo, rm

#

ps=example_05.ps

gmt grdmath -R-15/15/-15/15 -I0.3 X Y HYPOT DUP 2 MUL PI MUL 8 DIV COS EXCH NEG 10 DIV \

EXP MUL = sombrero.nc

echo ’-5 128 5 128’ > gray.cpt

gmt grdgradient sombrero.nc -A225 -Gintensity.nc -Nt0.75

gmt grdview sombrero.nc -JX6i -JZ2i -B5 -Bz0.5 -BSEwnZ -N-1+gwhite -Qs -Iintensity.nc -X1.5i \

-Cgray.cpt -R-15/15/-15/15/-1/1 -K -p120/30 > $ps

echo "4.1 5.5 z(r) = cos (2@~p@~r/8) @~\327@~e@+-r/10@+" | gmt pstext -R0/11/0/8.5 -Jx1i \

-F+f50p,ZapfChancery-MediumItalic+jBC -O >> $ps

rm -f gray.cpt sombrero.nc intensity.nc

The variations in intensity could be made more dramatic by using grdmath to scale the intensity file
before running grdview. For very rough data sets one may improve the smoothness of the intensities
by passing the output of grdgradient to grdhisteq. The shell-script above will result in a plot
like the one in Figure Example 05.

-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

-0
.5

0
.0

0
.5

1
.0

z(r) = cos (2πr/8) ⋅e-r/10

11.6 Plotting of histograms

GMT provides two tools to render histograms: pshistogram and psrose. The former takes care of
regular histograms whereas the latter deals with polar histograms (rose diagrams, sector diagrams, and
wind rose diagrams). We will show an example that involves both programs. The file fractures.yx
contains a compilation of fracture lengths and directions as digitized from geological maps. The file
v3206.t contains all the bathymetry measurements from Vema cruise 3206. Our complete figure (Fig-
ure Example 06) was made running this script:

11.6. Plotting of histograms 121

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 06

#

Purpose: Make standard and polar histograms

GMT progs: pshistogram, psrose

Unix progs: rm

#

ps=example_06.ps

gmt psrose fractures.d -: -A10r -S1.8in -P -Gorange -R0/1/0/360 -X2.5i -K -Bx0.2g0.2 \

-By30g30 -B+glightblue -W1p > $ps

gmt pshistogram -Bxa2000f1000+l"Topography (m)" -Bya10f5+l"Frequency"+u" %" \

-BWSne+t"Histograms"+glightblue v3206.t -R-6000/0/0/30 -JX4.8i/2.4i -Gorange -O \

-Y5.0i -X-0.5i -L1p -Z1 -W250 >> $ps

SOUTH
0.2

EASTWEST

NORTH

0 %

10 %

20 %

30 %

F
re

q
u

e
n

c
y

-6000 -4000 -2000 0

Topography (m)

Histograms

11.7 A simple location map

Many scientific papers start out by showing a location map of the region of interest. This map will typi-
cally also contain certain features and labels. This example will present a location map for the equatorial
Atlantic ocean, where fracture zones and mid-ocean ridge segments have been plotted. We also would
like to plot earthquake locations and available isochrons. We have obtained one file, quakes.xym,
which contains the position and magnitude of available earthquakes in the region. We choose to use
magnitude/100 for the symbol-size in inches. The digital fracture zone traces (fz.xy) and isochrons (0
isochron as ridge.xy, the rest as isochrons.xy) were digitized from available maps 23. We create
the final location map (Figure Example 07) with the following script:

122 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 07

#

Purpose: Make a basemap with earthquakes and isochrons etc

GMT progs: pscoast, pstext, psxy

Unix progs: echo, rm

#

ps=example_07.ps

gmt pscoast -R-50/0/-10/20 -JM9i -K -Slightblue -GP300/26:FtanBdarkbrown -Dl -Wthinnest \

-B10 --FORMAT_GEO_MAP=dddF > $ps

gmt psxy -R -J -O -K fz.xy -Wthinner,- >> $ps

gmt psxy quakes.xym -R -J -O -K -h1 -Sci -i0,1,2s0.01 -Gred -Wthinnest >> $ps

gmt psxy -R -J -O -K isochron.xy -Wthin,blue >> $ps

gmt psxy -R -J -O -K ridge.xy -Wthicker,orange >> $ps

gmt psxy -R -J -O -K -Gwhite -Wthick -A >> $ps << END

-14.5 15.2

-2 15.2

-2 17.8

-14.5 17.8

END

gmt psxy -R -J -O -K -Gwhite -Wthinner -A >> $ps << END

-14.35 15.35

-2.15 15.35

-2.15 17.65

-14.35 17.65

END

echo "-13.5 16.5" | gmt psxy -R -J -O -K -Sc0.08i -Gred -Wthinner >> $ps

echo "-12.5 16.5 ISC Earthquakes" | gmt pstext -R -J -F+f18p,Times-Italic+jLM -O -K >> $ps

gmt pstext -R -J -O -F+f30,Helvetica-Bold,white=thin >> $ps << END

-43 -5 SOUTH

-43 -8 AMERICA

-7 11 AFRICA

END

50˚W

50˚W

40˚W

40˚W

30˚W

30˚W

20˚W

20˚W

10˚W

10˚W

0˚

0˚

10˚S 10˚S

0˚ 0˚

10˚N 10˚N

20˚N 20˚N

ISC Earthquakes

The same figure could equally well be made in color, which could be rasterized and made into a slide
for a meeting presentation. The script is similar to the one outlined above, except we would choose a
color for land and oceans, and select colored symbols and pens rather than black and white.

11.7. A simple location map 123

GMT Documentation, Release 5.1.1

11.8 A 3-D histogram

The program psxyz allows us to plot three-dimensional symbols, including columnar plots. As a simple
demonstration, we will convert a gridded netCDF of bathymetry into an ASCII xyz table and use the
height information to draw a 2-D histogram in a 3-D perspective view. Our gridded bathymetry file is
called guinea_bay.nc and covers the region from 0 to 5 E and 0 to 5 N. Depth ranges from -5000
meter to sea-level. We produce the Figure Example 08 by running this script:

#!/bin/bash

GMT EXAMPLE 08

#

Purpose: Make a 3-D bar plot

GMT progs: grd2xyz, pstext, psxyz

Unix progs: echo, rm

#

ps=example_08.ps

gmt grd2xyz guinea_bay.nc | gmt psxyz -B1 -Bz1000+l"Topography (m)" -BWSneZ+b+tETOPO5 \

-R-0.1/5.1/-0.1/5.1/-5000/0 -JM5i -JZ6i -p200/30 -So0.0833333ub-5000 -P \

-Wthinnest -Glightgreen -K > $ps

echo ’0.1 4.9 This is the surface of cube’ | gmt pstext -R -J -JZ -Z0 \

-F+f24p,Helvetica-Bold+jTL -p -O >> $ps

ETOPO5

0˚

1˚

2˚

3˚

4˚

5˚

0˚

1˚

2˚

3˚

4˚

5˚

-4
0
0
0

-3
0
0
0

-2
0
0
0

-1
0
0
0

0

T
o

p
o

g
ra

p
h

y
(m

)

This is the surfa
ce of cube

124 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

11.9 Plotting time-series along tracks

A common application in many scientific disciplines involves plotting one or several time-series as as
“wiggles” along tracks. Marine geophysicists often display magnetic anomalies in this manner, and
seismologists use the technique when plotting individual seismic traces. In our example we will show
how a set of Geosat sea surface slope profiles from the south Pacific can be plotted as “wiggles” using
the pswiggle program. We will embellish the plot with track numbers, the location of the Pacific-
Antarctic Ridge, recognized fracture zones in the area, and a “wiggle” scale. The Geosat tracks are
stored in the file tracks.txt, the ridge in ridge.xy, and all the fracture zones are stored in the
multiple segment file fz.xy. The profile id is contained in the segment headers and we wish to use the
last data point in each of the track segments to construct an input file for pstext that will label each
profile with the track number. We know the profiles trend approximately N40E so we want the labels
to have that same orientation (i.e., the angle with the baseline must be 50). We do this by extracting
the last record from each track and select segment header as textstring when running the output through
pstext. Note we offset the positions by -0.05 inch with -D in order to have a small gap between the
profile and the label:

#!/bin/bash

GMT EXAMPLE 09

#

Purpose: Make wiggle plot along track from geoid deflections

GMT progs: gmtconvert, pswiggle, pstext, psxy

Unix progs:

#

ps=example_09.ps

gmt pswiggle tracks.txt -R185/250/-68/-42 -K -Jm0.13i -Ba10f5 -BWSne+g240/255/240 -G+red \

-G-blue -Z2000 -Wthinnest -S240/-67/500/@~m@~rad --FORMAT_GEO_MAP=dddF > $ps

gmt psxy -R -J -O -K ridge.xy -Wthicker >> $ps

gmt psxy -R -J -O -K fz.xy -Wthinner,- >> $ps

Take label from segment header and plot near coordinates of last record of each track

gmt gmtconvert -El tracks.txt | gmt pstext -R -J -F+f10p,Helvetica-Bold+a50+jRM+h \

-D-0.05i/-0.05i -O >> $ps

The output shows the sea-surface slopes along 42 descending Geosat tracks in the Eltanin and Udintsev
fracture zone region in a Mercator projection.

11.10 A geographical bar graph plot

Our next and perhaps most business-like example presents a three-dimensional bar graph plot showing
the geographic distribution of all the languages of the world. The input data was taken from Ethnologue.
We decide to plot a 3-D column centered on each continent with a height that is proportional to the
languages used. We choose a plain linear projection for the basemap and add the columns and text on
top. Eventually we make it a bit more fancy by splitting the columns up in different colors indicating how
commonly the languages are used, from institutional languages to languages threatened by extinction.
The script also shows how to effectively use transparency of the boxes around the numbers and in the
shade surrounding the legend.

Our script that produces Figure Example 10 reads:

#!/bin/bash

GMT EXAMPLE 10

#

Purpose: Make 3-D bar graph on top of perspective map

GMT progs: pscoast, pstext, psxyz, pslegend

Unix progs: $AWK

#

ps=example_10.ps

gmt pscoast -Rd -JX8id/5id -Dc -Sazure2 -Gwheat -Wfaint -A5000 -p200/40 -K > $ps

11.9. Plotting time-series along tracks 125

http://www.ethnologue.com/

GMT Documentation, Release 5.1.1

170˚W 160˚W 150˚W 140˚W 130˚W 120˚W 110˚W

60˚S

50˚S

500 µrad1
0
7

1
0
9

1
1
1

1
3
7

1
3
9

1
6
5

1
6
7

1
9
3

1
9
5

1
9
7

2
1

2
2
3

2
2
5

2
3

2
5

2
5
1

2
5
3

2
7
9

2
8
1

2
8
3

3
0
9

3
1
1

3
3
7

3
3
9

3
6
5

3
6
7

3
6
9

3
9
5

3
9
7

4
2
3

4
2
5

4
2
7

4
5
1

4
5
3

4
5
5

4
8
1

4
8
3

4
9

5
1

5
3

7
9

8
1

$AWK ’{print $1, $2, $3+$4+$5+$6+$7}’ languages.txt \

| gmt pstext -R -J -O -K -p -Gwhite@30 -D-0.25i/0 \

-F+f30p,Helvetica-Bold,firebrick=thinner+jRM >> $ps

gmt psxyz languages.txt -R-180/180/-90/90/0/2500 -J -JZ2.5i -So0.3i -Gpurple -Wthinner \

--FONT_TITLE=30p,Times-Bold --MAP_TITLE_OFFSET=-0.7i -O -K -p --FORMAT_GEO_MAP=dddF \

-Bx60 -By30 -Bza500+lLanguages -BWSneZ+t"World Languages By Continent" >> $ps

$AWK ’{print $1, $2, $3+$4, $3}’ languages.txt \

| gmt psxyz -R -J -JZ -So0.3ib -Gblue -Wthinner -O -K -p >> $ps

$AWK ’{print $1, $2, $3+$4+$5, $3+$4}’ languages.txt \

| gmt psxyz -R -J -JZ -So0.3ib -Gdarkgreen -Wthinner -O -K -p >> $ps

$AWK ’{print $1, $2, $3+$4+$5+$6, $3+$4+$5}’ languages.txt \

| gmt psxyz -R -J -JZ -So0.3ib -Gyellow -Wthinner -O -K -p >> $ps

$AWK ’{print $1, $2, $3+$4+$5+$6+$7, $3+$4+$5+$6}’ languages.txt \

| gmt psxyz -R -J -JZ -So0.3ib -Gred -Wthinner -O -K -p >> $ps

gmt pslegend -R -J -JZ -D-170/-80/1.35i/0/BL -O --FONT=Helvetica-Bold \

-F+glightgrey+pthinner+s-4p/-6p/grey20@40 -p legend.txt >> $ps

11.11 Making a 3-D RGB color cube

In this example we generate a series of 6 color images, arranged so that they can be cut out and assembled
into a 3-D color cube. The six faces of the cube represent the outside of the R-G-B color space. On each
face one of the color components is fixed at either 0 or 255 and the other two components vary smoothly
across the face from 0 to 255. The cube is configured as a right-handed coordinate system with x-y-z

mapping R-G-B. Hence, the 8 corners of the cube represent the primaries red, green, and blue, plus the
secondaries cyan, magenta and yellow, plus black and white.

The 6 color faces are generated by feeding grdimage three grids, one for each color component (R, G,
and B). In some cases the X or Y axes of a face are reversed by specifying a negative width or height in
order to change the variation of the color value in that direction from ascending to descending, or vice
versa.

A number of rays emanating from the white and black corners indicate the Hue value (ranging from 0
to 360). The dashed and dotted lines near the white corner reflect saturation levels, running from 0 to

126 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

World Languages By Continent

180˚

120˚W

60˚W

0˚

60˚E

120˚E

180˚

90˚S

60˚S

30˚S

0˚

30˚N

60˚N

90˚N

50
0

10
00

15
00

20
00

25
00

La
ng

ua
ge

s

dying

in tro
uble

vigorous

developing

institu
tional

1 (in black font). On these 3 faces the brightness is a constant value of 1. On the other 3 faces of the
cube, around the black corner, the white decimal numbers indicate brightnesses between 0 and 1, with
saturation fixed at 1.

Here is the shell script to generate the RGB cube in Figure Example 11:

#!/bin/bash

GMT EXAMPLE 11

#

Purpose: Create a 3-D RGB Cube

GMT progs: gmtset, grdimage, grdmath, pstext, psxy

Unix progs: rm

ps=example_11.ps

Use gmt psxy to plot "cut-along-the-dotted" lines.

gmt gmtset MAP_TICK_LENGTH_PRIMARY 0

gmt psxy cut-here.dat -Wthinnest,. -R-51/306/0/1071 -JX3.5i/10.5i -X2.5i -Y0.5i -P -K > $ps

First, create grids of ascending X and Y and constant 0.

These are to be used to represent R, G and B values of the darker 3 faces of the cube.

gmt grdmath -I1 -R0/255/0/255 X = x.nc

gmt grdmath -I1 -R Y = y.nc

gmt grdmath -I1 -R 0 = c.nc

gmt gmtset FONT_ANNOT_PRIMARY 12p,Helvetica-Bold

gmt grdimage x.nc y.nc c.nc -JX2.5i/-2.5i -R -K -O -X0.5i >> $ps

gmt psxy -Wthinner,white,- rays.dat -J -R -K -O >> $ps

gmt pstext --FONT=white -J -R -K -O -F+f+a >> $ps << END

128 128 12p -45 60\217

102 26 12p -90 0.4

204 26 12p -90 0.8

10 140 16p 180 G

END

echo 0 0 0 128 | gmt psxy -N -Sv0.15i+s+e -Gwhite -W2p,white -J -R -K -O >> $ps

gmt grdimage x.nc c.nc y.nc -JX2.5i/2.5i -R -K -O -Y2.5i >> $ps

11.11. Making a 3-D RGB color cube 127

GMT Documentation, Release 5.1.1

gmt psxy -Wthinner,white,- rays.dat -J -R -K -O >> $ps

gmt pstext --FONT=white -J -R -K -O -F+f+a >> $ps << END

128 128 12p 45 300\217

26 102 12p 0 0.4

26 204 12p 0 0.8

140 10 16p -90 R

100 100 16p -45 V

END

echo 0 0 128 0 | gmt psxy -N -Sv0.15i+s+e -Gwhite -W2p,white -J -R -K -O >> $ps

echo 0 0 90 90 | gmt psxy -N -Sv0.15i+s+e -Gwhite -W2p,white -J -R -K -O >> $ps

gmt grdimage c.nc x.nc y.nc -JX-2.5i/2.5i -R -K -O -X-2.5i >> $ps

gmt psxy -Wthinner,white,- rays.dat -J -R -K -O >> $ps

gmt pstext --FONT=white -J -R -K -O -F+f+a >> $ps << END

128 128 12p 135 180\217

102 26 12p 90 0.4

204 26 12p 90 0.8

10 140 16p 0 B

END

echo 0 0 0 128 | gmt psxy -N -Sv0.15i+s+e -Gwhite -W2p,white -J -R -K -O >> $ps

echo 0 0 128 0 | gmt psxy -N -Sv0.15i+s+e -Gwhite -W2p,white -J -R -K -O >> $ps

Second, create grids of descending X and Y and constant 255.

These are to be used to represent R, G and B values of the lighter 3 faces of the cube.

gmt grdmath -I1 -R 255 X SUB = x.nc

gmt grdmath -I1 -R 255 Y SUB = y.nc

gmt grdmath -I1 -R 255 = c.nc

gmt grdimage x.nc y.nc c.nc -JX-2.5i/-2.5i -R -K -O -X2.5i -Y2.5i >> $ps

gmt psxy -Wthinner,black,- rays.dat -J -R -K -O >> $ps

gmt pstext -J -R -K -O -F+f+a >> $ps << END

128 128 12p 225 240\217

102 26 12p 270 0.4

204 26 12p 270 0.8

END

gmt grdimage c.nc y.nc x.nc -JX2.5i/-2.5i -R -K -O -X2.5i >> $ps

gmt psxy -Wthinner,black,- rays.dat -J -R -K -O >> $ps

gmt pstext -J -R -K -O -F+f+a >> $ps << END

128 128 12p -45 0\217

26 102 12p 0 0.4

26 204 12p 0 0.8

100 100 16p 45 S

204 66 16p 90 H

END

echo 0 0 90 90 | gmt psxy -N -Sv0.15i+s+e -Gblack -W2p -J -R -K -O >> $ps

echo 204 204 204 76 | gmt psxy -N -Sv0.15i+s+e -Gblack -W2p -J -R -K -O >> $ps

gmt grdimage x.nc c.nc y.nc -JX-2.5i/2.5i -R -K -O -X-2.5i -Y2.5i >> $ps

gmt psxy -Wthinner,black,- rays.dat -J -R -K -O >> $ps

gmt pstext -J -R -O -F+f+a >> $ps << END

128 128 12p 135 120\217

26 102 12p 180 0.4

26 204 12p 180 0.8

200 200 16p 225 GMT 5

END

rm -f *.nc gmt.conf

11.12 Optimal triangulation of data

Our next example (Figure Example 12) operates on a data set of topographic readings non-uniformly
distributed in the plane (Table 5.11 in Davis: Statistics and Data Analysis in Geology, J. Wiley). We
use triangulate to perform the optimal Delaunay triangulation, then use the output to draw the
resulting network. We label the node numbers as well as the node values, and call pscontour to make
a contour map and image directly from the raw data. Thus, in this example we do not actually make grid

128 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

6
0
°

0
.4

0
.8

G

3
0
0
°

0.4

0.8

R

V
1

8
0

°

0
.4

0
.8

B

2
4

0
°

0
.4

0
.8

0
°

0.4

0.8

S

H

1
2

0
°

0.4

0.8

G
M

T
 5

11.12. Optimal triangulation of data 129

GMT Documentation, Release 5.1.1

files but still are able to contour and image the data. We use a color palette table topo.cpt (created
via gmtinfo and makecpt). The script becomes:

#!/bin/bash

GMT EXAMPLE 12

#

Purpose: Illustrates Delaunay triangulation of points, and contouring

GMT progs: makecpt, gmtinfo, pscontour, pstext, psxy, triangulate

Unix progs: $AWK, echo, rm

#

First draw network and label the nodes

#

ps=example_12.ps

gmt triangulate table_5.11 -M > net.xy

gmt psxy -R0/6.5/-0.2/6.5 -JX3.06i/3.15i -B2f1 -BWSNe net.xy -Wthinner -P -K -X0.9i -Y4.65i > $ps

gmt psxy table_5.11 -R -J -O -K -Sc0.12i -Gwhite -Wthinnest >> $ps

$AWK ’{print $1, $2, NR-1}’ table_5.11 | gmt pstext -R -J -F+f6p -O -K >> $ps

#

Then draw network and print the node values

#

gmt psxy -R -J -B2f1 -BeSNw net.xy -Wthinner -O -K -X3.25i >> $ps

gmt psxy -R -J -O -K table_5.11 -Sc0.03i -Gblack >> $ps

gmt pstext table_5.11 -R -J -F+f6p+jLM -O -K -Gwhite -W -C0.01i -D0.08i/0i -N >> $ps

#

Then contour the data and draw triangles using dashed pen; use "gmt gmtinfo" and "gmt makecpt" to make a

color palette (.cpt) file

#

T=‘gmt info -T25/2 table_5.11‘

gmt makecpt -Cjet $T > topo.cpt

gmt pscontour -R -J table_5.11 -B2f1 -BWSne -Wthin -Ctopo.cpt -Lthinnest,- -Gd1i -X-3.25i -Y-3.65i \

-O -K >> $ps

#

Finally color the topography

#

gmt pscontour -R -J table_5.11 -B2f1 -BeSnw -Ctopo.cpt -I -X3.25i -O -K >> $ps

echo "3.16 8 Delaunay Triangulation" | \

gmt pstext -R0/8/0/11 -Jx1i -F+f30p,Helvetica-Bold+jCB -O -X-3.25i >> $ps

#

rm -f net.xy topo.cpt

11.13 Plotting of vector fields

In many areas, such as fluid dynamics and elasticity, it is desirable to plot vector fields of various kinds.
GMT provides a way to illustrate 2-component vector fields using the grdvector utility. The two
components of the field (Cartesian or polar components) are stored in separate grid files. In this example
we use grdmath to generate a surface z(x, y) = x · exp(−x2 − y2) and to calculate ∇z by returning
the x- and y-derivatives separately. We superpose the gradient vector field and the surface z and also plot
the components of the gradient in separate windows. A pstext call to place a header finishes the plot
Figure Example 13:

#!/bin/bash

GMT EXAMPLE 13

#

Purpose: Illustrate vectors and contouring

GMT progs: grdmath, grdcontour, grdvector, pstext

Unix progs: echo, rm

#

ps=example_13.ps

gmt grdmath -R-2/2/-2/2 -I0.1 X Y R2 NEG EXP X MUL = z.nc

gmt grdmath z.nc DDX = dzdx.nc

gmt grdmath z.nc DDY = dzdy.nc

gmt grdcontour dzdx.nc -JX3i -B1 -BWSne -C0.1 -A0.5 -K -P -Gd2i -S4 -T0.1i/0.03i > $ps

gmt grdcontour dzdy.nc -J -B -C0.05 -A0.2 -O -K -Gd2i -S4 -T0.1i/0.03i -Xa3.45i >> $ps

gmt grdcontour z.nc -J -B -C0.05 -A0.1 -O -K -Gd2i -S4 -T0.1i/0.03i -Y3.45i >> $ps

gmt grdcontour z.nc -J -B -C0.05 -O -K -Gd2i -S4 -X3.45i >> $ps

gmt grdvector dzdx.nc dzdy.nc -I0.2 -J -O -K -Q0.1i+e+n0.25i -Gblack -W1p -S5i \

130 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

0

2

4

6

0 2 4 6

0 2 4 6

0
1

2
3 4

5
6

7

8
9

10

11

12
13

14

15 16 17
18

19
20

21

22 23

24

25 26

27

28

29

30
31

32
33 34

35 36

37
38

39 40

41
42

43

44

45

46

47

48

49

50

51

0 2 4 6

0 2 4 6

870
793

755
690 800

800
730

728

710
780

804

855

830
813

762

765 740 765
760

790
820

855

812 773

812

827 805

840

890

820

873
875

873
865 841

862 908

855
850

882 910

940
915

890

880

870

880

960

890

860

830

705

7
2
5

750

7
5
0

7
7
5 775

7
7
5

8
0
0

800

8
0
0

8
0
0

825

825

8
2
5

8
2
5

850

850

8
5
0

850

875

8
7
5

8
7
5

8
7
5

8
7
5

875

9
0
0 900

900

900

925

925

950

0

2

4

6

0 2 4 6 0 2 4 6

Delaunay Triangulation

11.13. Plotting of vector fields 131

GMT Documentation, Release 5.1.1

--MAP_VECTOR_SHAPE=0.5 >> $ps

echo "3.2 3.6 z(x,y) = x@~\327@~exp(-x@+2@+-y@+2@+)" \

| gmt pstext -R0/6/0/4.5 -Jx1i -F+f40p,Times-Italic+jCB -O -X-3.45i >> $ps

rm -f z.nc dzdx.nc dzdy.nc

0 0

0
.5

0
.5

-2

-1

0

1

2

-2 -1 0 1 2

-0
.2

-0.2

-0
.2

-0.2

0

0

0
.2

0.2

0.20.2

-2

-1

0

1

2

-2 -1 0 1 2

-0
.4

-0
.3

-0
.2

-0
.2

-0
.1

-0.1

-0
.1

0

0
.1

0.1

0
.1

0
.2

0
.2

0
.3

0
.4

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

z(x,y) = x⋅exp(-x2-y2)

11.14 Gridding of data and trend surfaces

This example shows how one goes from randomly spaced data points to an evenly sampled surface.
First we plot the distribution and values of our raw data set (same as in Section [sec:example12]). We
choose an equidistant grid and run blockmean which preprocesses the data to avoid aliasing. The
dashed lines indicate the logical blocks used by blockmean; all points inside a given bin will be
averaged. The logical blocks are drawn from a temporary file we make on the fly within the shell script.
The processed data is then gridded with the surface program and contoured every 25 units. A most
important point here is that blockmean, blockmedian, or blockmode should always be run prior
to running surface, and both of these steps must use the same grid interval. We use grdtrend to
fit a bicubic trend surface to the gridded data, contour it as well, and sample both grid files along a
diagonal transect using grdtrack. The bottom panel compares the gridded (solid line) and bicubic
trend (dashed line) along the transect using psxy (Figure Example 14):

#!/bin/bash

GMT EXAMPLE 14

#

Purpose: Showing simple gridding, contouring, and resampling along tracks

GMT progs: blockmean, grdcontour, grdtrack, grdtrend, gmtinfo, project

GMT progs: gmtset, pstext, psbasemap, psxy, surface

Unix progs: rm

#

132 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

ps=example_14.ps

First draw network and label the nodes

gmt gmtset MAP_GRID_PEN_PRIMARY thinnest,-

gmt psxy table_5.11 -R0/7/0/7 -JX3.06i/3.15i -B2f1 -BWSNe -Sc0.05i -Gblack -P -K -Y6.45i > $ps

gmt pstext table_5.11 -R -J -D0.1c/0 -F+f6p+jLM -O -K -N >> $ps

gmt blockmean table_5.11 -R0/7/0/7 -I1 > mean.xyz

Then draw gmt blockmean cells

gmt psbasemap -R0.5/7.5/0.5/7.5 -J -O -K -Bg1 -X3.25i >> $ps

gmt psxy -R0/7/0/7 -J -B2f1 -BeSNw mean.xyz -Ss0.05i -Gblack -O -K >> $ps

Reformat to one decimal for annotation purposes

gmt gmtconvert mean.xyz --FORMAT_FLOAT_OUT=%.1f | \

gmt pstext -R -J -D0.15c/0 -F+f6p+jLM -O -K -Gwhite -W -C0.01i -N >> $ps

Then gmt surface and contour the data

gmt surface mean.xyz -R -I1 -Gdata.nc

gmt grdcontour data.nc -J -B2f1 -BWSne -C25 -A50 -Gd3i -S4 -O -K -X-3.25i -Y-3.55i >> $ps

gmt psxy -R -J mean.xyz -Ss0.05i -Gblack -O -K >> $ps

Fit bicubic trend to data and compare to gridded gmt surface

gmt grdtrend data.nc -N10 -Ttrend.nc

gmt project -C0/0 -E7/7 -G0.1 -N > track

gmt grdcontour trend.nc -J -B2f1 -BwSne -C25 -A50 -Glct/cb -S4 -O -K -X3.25i >> $ps

gmt psxy -R -J track -Wthick,. -O -K >> $ps

Sample along diagonal

gmt grdtrack track -Gdata.nc -o2,3 > data.d

gmt grdtrack track -Gtrend.nc -o2,3 > trend.d

gmt psxy ‘gmt info data.d trend.d -I0.5/25‘ -JX6.3i/1.4i data.d -Wthick -O -K -X-3.25i -Y-1.9i \

-Bx1 -By50 -BWSne >> $ps

gmt psxy -R -J trend.d -Wthinner,- -O >> $ps

rm -f mean.xyz track *.nc *.d gmt.conf

11.15 Gridding, contouring, and masking of unconstrained areas

This example (Figure Example 15) demonstrates some off the different ways one can use to grid data
in GMT, and how to deal with unconstrained areas. We first convert a large ASCII file to binary with
gmtconvert since the binary file will read and process much faster. Our lower left plot illustrates
the results of gridding using a nearest neighbor technique (nearneighbor) which is a local method:
No output is given where there are no data. Next (lower right), we use a minimum curvature technique
(surface) which is a global method. Hence, the contours cover the entire map although the data are
only available for portions of the area (indicated by the gray areas plotted using psmask). The top
left scenario illustrates how we can create a clip path (using psmask) based on the data coverage to
eliminate contours outside the constrained area. Finally (top right) we simply employ pscoast to
overlay gray land masses to cover up the unwanted contours, and end by plotting a star at the deepest
point on the map with psxy. This point was extracted from the grid files using grdinfo.

#!/bin/bash

GMT EXAMPLE 15

#

Purpose: Gridding and clipping when data are missing

GMT progs: blockmedian, gmtconvert, grdclip, grdcontour, grdinfo, gmtinfo

GMT progs: nearneighbor, pscoast, psmask, pstext, surface

Unix progs: echo, rm

#

ps=example_15.ps

gmt gmtconvert ship.xyz -bo > ship.b

11.15. Gridding, contouring, and masking of unconstrained areas 133

GMT Documentation, Release 5.1.1

0

2

4

6

0 2 4 6

0 2 4 6

870
793

755
690 800

800
730

728

710
780

804

855

830
813

762

765 740 765
760

790
820

855

812 773

812

827 805

840

890

820

873
875

873
865 841

862 908

855
850

882 910

940
915

890

880

870

880

960

890

860

830

705

0 2 4 6

0 2 4 6

870.0
793.0

755.0

710.0

697.5

780.0

800.0

781.0

729.0

760.0

804.0

855.0

830.0
813.0

783.3

740.0

788.5

790.0
820.0

855.0

820.0

827.0 805.0 835.0

890.0

873.0
853.0

864.0
862.5

915.0

871.0

908.0

960.0

896.0

940.0

890.0

870.0

880.0

890.0

860.0

800

850

0

2

4

6

0 2 4 6

750

800

850

900

0 2 4 6

800

850

900

950

1000

0 1 2 3 4 5 6 7 8 9 10

134 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#

region=‘gmt info ship.b -I1 -bi3d‘

gmt nearneighbor $region -I10m -S40k -Gship.nc ship.b -bi

gmt grdcontour ship.nc -JM3i -P -B2 -BWSne -C250 -A1000 -Gd2i -K > $ps

#

gmt blockmedian $region -I10m ship.b -b3d > ship_10m.b

gmt surface $region -I10m ship_10m.b -Gship.nc -bi

gmt psmask $region -I10m ship.b -J -O -K -T -Glightgray -bi3d -X3.6i >> $ps

gmt grdcontour ship.nc -J -B -C250 -L-8000/0 -A1000 -Gd2i -O -K >> $ps

#

gmt psmask $region -I10m ship_10m.b -bi3d -J -B -O -K -X-3.6i -Y3.75i >> $ps

gmt grdcontour ship.nc -J -C250 -A1000 -L-8000/0 -Gd2i -O -K >> $ps

gmt psmask -C -O -K >> $ps

#

gmt grdclip ship.nc -Sa-1/NaN -Gship_clipped.nc

gmt grdcontour ship_clipped.nc -J -B -C250 -A1000 -L-8000/0 -Gd2i -O -K -X3.6i >> $ps

gmt pscoast $region -J -O -K -Ggray -Wthinnest >> $ps

gmt grdinfo -C -M ship.nc | gmt psxy -R -J -O -K -Sa0.15i -Wthick -i11,12 >> $ps

echo "-0.3 3.6 Gridding with missing data" | gmt pstext -R0/3/0/4 -Jx1i \

-F+f24p,Helvetica-Bold+jCB -O -N >> $ps

rm -f ship.b ship_10m.b ship.nc ship_clipped.nc

-3000 -3
00

0

-3
0
0
0

-2000

-2000
-1000

-1
0
0
0

-114˚ -112˚ -110˚ -108˚ -106˚

20˚

22˚

24˚

26˚

28˚

30˚

-3000

-3000

-2000

-2
0
0
0

-2000

-1000

-1000

-1
0
0
0

-1
0
0
0

0

0
0

0

0

-114˚ -112˚ -110˚ -108˚ -106˚

20˚

22˚

24˚

26˚

28˚

30˚

-114˚ -112˚ -110˚ -108˚ -106˚

20˚

22˚

24˚

26˚

28˚

30˚

-3000

-3000

-2000
-2

0
0
0

-2000

-1000

-1000

-1
0
0
0

-1
0
0
0

0

0
0

0
0

-3000

-3000

-2000

-2
0
0
0

-2000

-1000

-1000

-1
0
0
0

-1000

-114˚ -112˚ -110˚ -108˚ -106˚

20˚

22˚

24˚

26˚

28˚

30˚

Gridding with missing data

11.16 Gridding of data, continued

pscontour (for contouring) and triangulate (for gridding) use the simplest method of interpo-
lating data: a Delaunay triangulation (see Section [sec:example12]) which forms z(x, y) as a union of
planar triangular facets. One advantage of this method is that it will not extrapolate z(x, y) beyond the
convex hull of the input (x, y) data. Another is that it will not estimate a z value above or below the
local bounds on any triangle. A disadvantage is that the z(x, y) surface is not differentiable, but has sharp

11.16. Gridding of data, continued 135

GMT Documentation, Release 5.1.1

kinks at triangle edges and thus also along contours. This may not look physically reasonable, but it can
be filtered later (last panel below). surface can be used to generate a higher-order (smooth and dif-
ferentiable) interpolation of z(x, y) onto a grid, after which the grid may be illustrated (grdcontour,
grdimage, grdview). surface will interpolate to all (x, y) points in a rectangular region, and thus
will extrapolate beyond the convex hull of the data. However, this can be masked out in various ways
(see Section [sec:example15]).

A more serious objection is that surfacemay estimate z values outside the local range of the data (note
area near x = 0.8, y = 5.3). This commonly happens when the default tension value of zero is used to
create a “minimum curvature” (most smooth) interpolant. surface can be used with non-zero tension
to partially overcome this problem. The limiting value tension = 1 should approximate the triangulation,
while a value between 0 and 1 may yield a good compromise between the above two cases. A value of 0.5
is shown here (Figure Example 16). A side effect of the tension is that it tends to make the contours turn
near the edges of the domain so that they approach the edge from a perpendicular direction. A solution
is to use surface in a larger area and then use grdcut to cut out the desired smaller area. Another
way to achieve a compromise is to interpolate the data to a grid and then filter the grid using grdfft
or grdfilter. The latter can handle grids containing “NaN” values and it can do median and mode
filters as well as convolutions. Shown here is triangulate followed by grdfilter. Note that the
filter has done some extrapolation beyond the convex hull of the original x, y values. The “best” smooth
approximation of z(x, y) depends on the errors in the data and the physical laws obeyed by z. GMT cannot
always do the “best” thing but it offers great flexibility through its combinations of tools. We illustrate
all four solutions using a CPT file that contains color fills, predefined patterns for interval (900,925) and
NaN, an image pattern for interval (875,900), and a “skip slice” request for interval (700,725).

#!/bin/bash

GMT EXAMPLE 16

#

Purpose: Illustrates interpolation methods using same data as Example 12.

GMT progs: gmtset, grdview, grdfilter, pscontour, psscale, pstext, surface, triangulate

Unix progs: echo, rm

#

Illustrate various means of contouring, using triangulate and surface.

#

ps=example_16.ps

gmt gmtset FONT_ANNOT_PRIMARY 9p

#

gmt pscontour -R0/6.5/-0.2/6.5 -Jx0.45i -P -K -Y5.5i -Ba2f1 -BWSne table_5.11 -Cex16.cpt -I > $ps

echo "3.25 7 pscontour (triangulate)" | gmt pstext -R -J -O -K -N -F+f18p,Times-Roman+jCB >> $ps

#

gmt surface table_5.11 -R -I0.2 -Graws0.nc

gmt grdview raws0.nc -R -J -B -Cex16.cpt -Qs -O -K -X3.5i >> $ps

echo "3.25 7 surface (tension = 0)" | gmt pstext -R -J -O -K -N -F+f18p,Times-Roman+jCB >> $ps

#

gmt surface table_5.11 -R -I0.2 -Graws5.nc -T0.5

gmt grdview raws5.nc -R -J -B -Cex16.cpt -Qs -O -K -Y-3.75i -X-3.5i >> $ps

echo "3.25 7 surface (tension = 0.5)" | gmt pstext -R -J -O -K -N -F+f18p,Times-Roman+jCB >> $ps

#

gmt triangulate table_5.11 -Grawt.nc -R -I0.2 > /dev/null

gmt grdfilter rawt.nc -Gfiltered.nc -D0 -Fc1

gmt grdview filtered.nc -R -J -B -Cex16.cpt -Qs -O -K -X3.5i >> $ps

echo "3.25 7 triangulate @~\256@~ grdfilter" | gmt pstext -R -J -O -K -N \

-F+f18p,Times-Roman+jCB >> $ps

echo "3.2125 7.5 Gridding of Data" | gmt pstext -R0/10/0/10 -Jx1i -O -K -N \

-F+f32p,Times-Roman+jCB -X-3.5i >> $ps

gmt psscale -D3.25i/0.35i/5i/0.25ih -Cex16.cpt -O -Y-0.75i >> $ps

#

rm -f *.nc gmt.conf

136 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

0

2

4

6

0 2 4 6

pscontour (triangulate)

0

2

4

6

0 2 4 6

surface (tension = 0)

0

2

4

6

0 2 4 6

surface (tension = 0.5)

0

2

4

6

0 2 4 6

triangulate → grdfilter

Gridding of Data

675 700 725 750 775 800 825 850 875 900 925 950 975

11.16. Gridding of data, continued 137

GMT Documentation, Release 5.1.1

11.17 Images clipped by coastlines

This example demonstrates how pscoast can be used to set up clip paths based on coastlines. This
approach is well suited when different gridded data sets are to be merged on a plot using different color
palette files. Merging the files themselves may not be doable since they may represent different data
sets, as we show in this example. Here, we lay down a color map of the geoid field near India with
grdimage, use pscoast to set up land clip paths, and then overlay topography from the ETOPO5
data set with another call to grdimage. We finally undo the clippath with a second call to pscoast
with the option -Q (Figure Example 17):

We also plot a color legend on top of the land. So here we basically have three layers of “paint” stacked
on top of each other: the underlaying geoid map, the land mask, and finally the color legend. This legend
makes clear how grd2cpt distributed the colors over the range: they are not of equal length put are
associated with equal amounts of area in the plot. Since the high amounts (in red) are not very prevalent,
that color spans a long range.

For this image it is appropriate to use the -I option in psscale so the legend gets shaded, similar to the
geoid grid. See Appendix [app:M] to learn more about color palettes and ways to draw color legends.

#!/bin/bash

GMT EXAMPLE 17

#

Purpose: Illustrates clipping of images using coastlines

GMT progs: grd2cpt, grdgradient, grdimage, pscoast, pstext

Unix progs: rm

#

ps=example_17.ps

First generate geoid image w/ shading

gmt grd2cpt india_geoid.nc -Crainbow > geoid.cpt

gmt grdgradient india_geoid.nc -Nt1 -A45 -Gindia_geoid_i.nc

gmt grdimage india_geoid.nc -Iindia_geoid_i.nc -JM6.5i -Cgeoid.cpt -P -K > $ps

Then use gmt pscoast to initiate clip path for land

gmt pscoast -Rindia_geoid.nc -J -O -K -Dl -Gc >> $ps

Now generate topography image w/shading

echo "-10000 150 10000 150" > gray.cpt

gmt grdgradient india_topo.nc -Nt1 -A45 -Gindia_topo_i.nc

gmt grdimage india_topo.nc -Iindia_topo_i.nc -J -Cgray.cpt -O -K >> $ps

Finally undo clipping and overlay basemap

gmt pscoast -R -J -O -K -Q -B10f5 -B+t"Clipping of Images" >> $ps

Put a color legend on top of the land mask

gmt psscale -D4i/7.6i/4i/0.2ih -Cgeoid.cpt -Bx5f1 -By+lm -I -O -K >> $ps

Add a text paragraph

gmt pstext -R -J -O -M -Gwhite -Wthinner -TO -D-0.1i/0.1i -F+f12,Times-Roman+jRB >> $ps << END

> 90 -10 12p 3i j

@_@%5%Example 17.@%%@_ We first plot the color geoid image

for the entire region, followed by a gray-shaded @#etopo5@#

image that is clipped so it is only visible inside the coastlines.

END

Clean up

rm -f geoid.cpt gray.cpt *_i.nc

138 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

Clipping of Images

60˚

60˚

70˚

70˚

80˚

80˚

90˚

90˚

-10˚ -10˚

0˚ 0˚

10˚ 10˚

20˚ 20˚

0 5 10 15

m

Example 17. We first plot the color geoid
image for the entire region, followed by a
gray-shaded ETOPO5 image that is clipped so
it is only visible inside the coastlines.

11.17. Images clipped by coastlines 139

GMT Documentation, Release 5.1.1

11.18 Volumes and Spatial Selections

To demonstrate potential usage of the new programs grdvolume and gmtselect we extract a subset
of the Sandwell & Smith altimetric gravity field 2 for the northern Pacific and decide to isolate all
seamounts that (1) exceed 50 mGal in amplitude and (2) are within 200 km of the Pratt seamount. We
do this by dumping the 50 mGal contours to disk, then making a simple AWK script center.awk that
returns the mean location of the points making up each closed polygon, and then pass these locations to
gmtselect which retains only the points within 200 km of Pratt. We then mask out all the data outside
this radius and use grdvolume to determine the combined area and volumes of the chosen seamounts.
Our illustration is presented in Figure Example 18.

#!/bin/bash

GMT EXAMPLE 18

#

Purpose: Illustrates volumes of grids inside contours and spatial

selection of data

GMT progs: gmtset, gmtselect, gmtspatial, grdclip, grdcontour, grdgradient, grdimage

GMT progs: grdmath, grdvolume, makecpt, pscoast, psscale, pstext, psxy

Unix progs: $AWK, cat, rm

#

ps=example_18.ps

Use spherical gmt projection since SS data define on sphere

gmt gmtset PROJ_ELLIPSOID Sphere FORMAT_FLOAT_OUT %g

Define location of Pratt seamount and the 400 km diameter

echo "-142.65 56.25 400" > pratt.d

First generate gravity image w/ shading, label Pratt, and draw a circle

of radius = 200 km centered on Pratt.

gmt makecpt -Crainbow -T-60/60/120 -Z > grav.cpt

gmt grdgradient AK_gulf_grav.nc -Nt1 -A45 -GAK_gulf_grav_i.nc

gmt grdimage AK_gulf_grav.nc -IAK_gulf_grav_i.nc -JM5.5i -Cgrav.cpt -B2f1 -P -K -X1.5i \

-Y5.85i > $ps

gmt pscoast -RAK_gulf_grav.nc -J -O -K -Di -Ggray -Wthinnest >> $ps

gmt psscale -D2.75i/-0.4i/4i/0.15ih -Cgrav.cpt -Bx20f10 -By+l"mGal" -O -K >> $ps

$AWK ’{print $1, $2, "Pratt"}’ pratt.d | gmt pstext -R -J -O -K -D0.1i/0.1i \

-F+f12p,Helvetica-Bold+jLB >> $ps

gmt psxy pratt.d -R -J -O -K -SE- -Wthinnest >> $ps

Then draw 10 mGal contours and overlay 50 mGal contour in green

gmt grdcontour AK_gulf_grav.nc -J -C20 -B2f1 -BWSEn -O -K -Y-4.85i >> $ps

Save 50 mGal contours to individual files, then plot them

gmt grdcontour AK_gulf_grav.nc -C10 -L49/51 -Dsm_%d_%c.txt

gmt psxy -R -J -O -K -Wthin,green sm_*.txt >> $ps

gmt pscoast -R -J -O -K -Di -Ggray -Wthinnest >> $ps

gmt psxy pratt.d -R -J -O -K -SE- -Wthinnest >> $ps

rm -f sm_*_O.txt # Only consider the closed contours

Now determine centers of each enclosed seamount > 50 mGal but only plot

the ones within 200 km of Pratt seamount.

First determine mean location of each closed contour and

add it to the file centers.d

gmt gmtspatial -Q -fg sm_*_C.txt > centers.d

Only plot the ones within 200 km

gmt gmtselect -C200k/pratt.d centers.d -fg | gmt psxy -R -J -O -K -SC0.04i -Gred -Wthinnest >> $ps

gmt psxy -R -J -O -K -ST0.1i -Gyellow -Wthinnest pratt.d >> $ps

Then report the volume and area of these seamounts only

by masking out data outside the 200 km-radius circle

2 See http://topex.ucsd.edu/marine_grav/mar_grav.html.

140 Chapter 11. Creating GMT Graphics

http://topex.ucsd.edu/marine_grav/mar_grav.html

GMT Documentation, Release 5.1.1

and then evaluate area/volume for the 50 mGal contour

gmt grdmath -R ‘$AWK ’{print $1, $2}’ pratt.d‘ SDIST = mask.nc

gmt grdclip mask.nc -Sa200/NaN -Sb200/1 -Gmask.nc

gmt grdmath AK_gulf_grav.nc mask.nc MUL = tmp.nc

area=‘gmt grdvolume tmp.nc -C50 -Sk | cut -f2‘

volume=‘gmt grdvolume tmp.nc -C50 -Sk | cut -f3‘

gmt psxy -R -J -A -O -K -L -Wthin -Gwhite >> $ps << END

-148.5 52.75

-141 52.75

-141 53.75

-148.5 53.75

END

gmt pstext -R -J -O -F+f14p,Helvetica-Bold+jLM >> $ps << END

-148 53.08 Areas: $area km@+2@+

-148 53.42 Volumes: $volume mGal\264km@+2@+

END

Clean up

rm -f grav.cpt sm_*.txt *_i.nc tmp.nc mask.nc pratt.d center* gmt.conf

-148˚

-148˚

-146˚

-146˚

-144˚

-144˚

-142˚

-142˚

-140˚

-140˚

-138˚

-138˚

-136˚

-136˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

-60 -40 -20 0 20 40 60

mGal

Pratt

-148˚ -146˚ -144˚ -142˚ -140˚ -138˚ -136˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

Areas: 4610.51 km2

Volumes: 191402 mGal·km2

11.18. Volumes and Spatial Selections 141

GMT Documentation, Release 5.1.1

11.19 Color patterns on maps

GMT 3.1 introduced color patterns and this examples give a few cases of how to use this new fea-
ture. We make a phony poster that advertises an international conference on GMT in Honolulu. We
use grdmath, makecpt, and grdimage to draw pleasing color backgrounds on maps, and overlay
pscoast clip paths to have the patterns change at the coastlines. The middle panel demonstrates a
simple pscoast call where the built-in pattern # 86 is drawn at 100 dpi but with the black and white
pixels replaced with color combinations. At the same time the ocean is filled with a repeating image of
a circuit board (provides in Sun raster format). The text GMT in the center is an off-line PostScript file
that was overlaid using psimage. The final panel repeats the top panel except that the land and sea
images have changed places (Figure Example 19).

#!/bin/bash

GMT EXAMPLE 19

#

Purpose: Illustrates various color pattern effects for maps

GMT progs: gmtset, grdimage, grdmath, makecpt, pscoast, pstext, psimage

Unix progs: rm

#

ps=example_19.ps

First make a worldmap with graded blue oceans and rainbow continents

gmt grdmath -Rd -I1 -r Y COSD 2 POW = lat.nc

gmt grdmath -Rd -I1 -r X = lon.nc

echo "0 white 1 blue" > lat.cpt

gmt makecpt -Crainbow -T-180/180/360 -Z > lon.cpt

gmt grdimage lat.nc -JI0/6.5i -Clat.cpt -P -K -Y7.5i -B0 -nl > $ps

gmt pscoast -R -J -O -K -Dc -A5000 -Gc >> $ps

gmt grdimage lon.nc -J -Clon.cpt -O -K -nl >> $ps

gmt pscoast -R -J -O -K -Q >> $ps

gmt pscoast -R -J -O -K -Dc -A5000 -Wthinnest >> $ps

echo "0 20 10TH INTERNATIONAL" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,red=thinner >> $ps

echo "0 -10 GMT CONFERENCE" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,red=thinner >> $ps

echo "0 -30 Honolulu, Hawaii, April 1, 2013" | gmt pstext -R -J -O -K \

-F+f18p,Helvetica-Bold,green=thinnest >> $ps

Then show example of color patterns and placing a PostScript image

gmt pscoast -R -J -O -K -Dc -A5000 -Gp100/86:FredByellow -Sp100/circuit.ras -B0 -Y-3.25i >> $ps

echo "0 30 SILLY USES OF" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,lightgreen=thinner >> $ps

echo "0 -30 COLOR PATTERNS" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,magenta=thinner >> $ps

gmt psimage -C3.25i/1.625i/CM -W3i GMT_covertext.eps -O -K >> $ps

Finally repeat 1st plot but exchange the patterns

gmt grdimage lon.nc -J -Clon.cpt -O -K -Y-3.25i -B0 -nl >> $ps

gmt pscoast -R -J -O -K -Dc -A5000 -Gc >> $ps

gmt grdimage lat.nc -J -Clat.cpt -O -K -nl >> $ps

gmt pscoast -R -J -O -K -Q >> $ps

gmt pscoast -R -J -O -K -Dc -A5000 -Wthinnest >> $ps

echo "0 20 10TH INTERNATIONAL" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,red=thinner >> $ps

echo "0 -10 GMT CONFERENCE" | gmt pstext -R -J -O -K -F+f32p,Helvetica-Bold,red=thinner >> $ps

echo "0 -30 Honolulu, Hawaii, April 1, 2013" | gmt pstext -R -J -O \

-F+f18p,Helvetica-Bold,green=thinnest >> $ps

rm -f l*.nc l*.cpt gmt.conf

11.20 Custom plot symbols

One is often required to make special maps that shows the distribution of certain features but one would
prefer to use a custom symbol instead of the built-in circles, squares, triangles, etc. in the GMT plotting
programs psxy and psxyz. Here we demonstrate one approach that allows for a fair bit of flexibility

142 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

11.20. Custom plot symbols 143

GMT Documentation, Release 5.1.1

in designing ones own symbols. The following recipe is used when designing a new symbol.

1. Use psbasemap (or engineering paper!) to set up an empty grid that goes from -0.5 to +0.5 in
both x and y. Use ruler and compass to draw your new symbol using straight lines, arcs of circles,
and stand-alone geometrical objects (see psxy man page for a full description of symbol design).
In this Section we will create two new symbols: a volcano and a bulls eye.

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

1. After designing the symbol we will encode it using a simple set of rules. In our case we describe
our volcano and bulls eye using these three freeform polygon generators:

x0 y0 r C [-Gfill] [-Wpen] Draw x0 y0 M [-Gfill] [-Wpen] Start new element at x0, y0

x1 y1 D Draw straight line from current point to x1, y1 around (x0, y0)

x0 y0 r α1 α2 A Draw arc segment of radius r from angle α1 to α2

We also add a few stand-alone circles (for other symbols, see psxy man page):

x0 y0 r C [-Gfill] [-Wpen] Draw x0 y0 r c [-Gfill] [-Wpen] Draw single circle of radius r

around x0, y0

The optional -G and -W can be used to hardwire the color fill and pen for segments (use - to
disallow fill or line for any specific feature). By default the segments are painted based on the
values of the command line settings.

Manually applying these rules to our volcano symbol results in a definition file volcano.def:

Without much further discussion we also make a definition file bullseye.def for a multi-
colored bulls eye symbol. Note that the symbol can be created beyond the -0.5 to +0.5 range, as
shown by the red lines. There is no limit in GMT to the size of the symbols. The center, however,
will always be at (0,0). This is the point to which the coordinates in psxy refers.

The values refer to positions and dimensions illustrated in the Figure above.

2. Given proper definition files we may now use them with psxy or psxyz.

We are now ready to give it a try. Based on the hotspot locations in the file hotspots.d (with a 3rd
column giving the desired symbol sizes in inches) we lay down a world map and overlay red volcano
symbols using our custom-built volcano symbol and psxy. We do something similar with the bulls eye
symbols. Without the -G option, however, they get the colors defined in bullseye.def.

Here is our final map script that produces Figure Example 20:

144 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 20

#

Purpose: Extend GMT to plot custom symbols

GMT progs: pscoast, psxy

Unix progs: rm

#

Plot a world-map with volcano symbols of different sizes

on top given locations and sizes in hotspots.d

ps=example_20.ps

cat > hotspots.d << END

55.5 -21.0 0.25

63.0 -49.0 0.25

-12.0 -37.0 0.25

-28.5 29.34 0.25

48.4 -53.4 0.25

155.5 -40.4 0.25

-155.5 19.6 0.5

-138.1 -50.9 0.25

-153.5 -21.0 0.25

-116.7 -26.3 0.25

-16.5 64.4 0.25

END

gmt pscoast -Rg -JR9i -Bx60 -By30 -B+t"Hotspot Islands and Cities" -Gdarkgreen -Slightblue \

-Dc -A5000 -K > $ps

gmt psxy -R -J hotspots.d -Skvolcano -O -K -Wthinnest -Gred >> $ps

Overlay a few bullseyes at NY, Cairo, and Perth

cat > cities.d << END

286 40.45 0.8

31.15 30.03 0.8

115.49 -31.58 0.8

END

gmt psxy -R -J cities.d -Skbullseye -O >> $ps

rm -f hotspots.d cities.d

Hotspot Islands and Cities

0˚

0˚

60˚

60˚

120˚

120˚

180˚

180˚

-120˚

-120˚

-60˚

-60˚

0˚

0˚

-90˚ -90˚

-60˚ -60˚

-30˚ -30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

90˚ 90˚

11.20. Custom plot symbols 145

GMT Documentation, Release 5.1.1

Given these guidelines you can easily make your own symbols. Symbols with more than one color can be
obtained by making several symbol components. E.g., to have yellow smoke coming out of red volcanoes
we would make two symbols: one with just the cone and caldera and the other with the bubbles. These
would be plotted consecutively using the desired colors. Alternatively, like in bullseye.def, we
may specify colors directly for the various segments. Note that the custom symbols (Appendix [app:N]),
unlike the built-in symbols in GMT, can be used with the built-in patterns (Appendix [app:E]). Other
approaches are also possible, of course.

11.21 Time-series of RedHat stock price

As discussed in Section [sec:timeaxis], the annotation of time-series is generally more complicated due
to the extra degrees of freedom afforded by the dual annotation system. In this example we will display
the trend of the stock price of RedHat (RHAT) from their initial public offering until late 2006. The data
file is a comma-separated table and the records look like this:

Date,Open,High,Low,Close,Volume,Adj.Close*
12-Mar-04,17.74,18.49,17.67,18.02,4827500,18.02

11-Mar-04,17.60,18.90,17.37,18.09,7700400,18.09

Hence, we have a single header record and various prices in USD for each day of business. We will
plot the trend of the opening price as a red line superimposed on a yellow envelope representing the
low-to-high fluctuation during each day. We also indicate when and at what cost Paul Wessel bought a
few shares, and zoom in on the developments since 2004; in the inset we label the time-axis in Finnish in
honor of Linus Thorvalds. Because the time coordinates are Y2K-challenged and the order is backwards
(big units of years come after smaller units like days) we must change the default input/output formats
used by GMT. Finally, we want to prefix prices with the $ symbol to indicate the currency. Here is how
it all comes out:

#!/bin/bash

GMT EXAMPLE 21

#

Purpose: Plot a time-series

GMT progs: gmtset, gmtconvert, gmtinfo, psbasemap, psxy

Unix progs: cut, echo

#

ps=example_21.ps

File has time stored as dd-Mon-yy so set input format to match it

gmt gmtset FORMAT_DATE_IN dd-o-yy FORMAT_DATE_MAP o FONT_ANNOT_PRIMARY +10p

gmt gmtset FORMAT_TIME_PRIMARY_MAP abbreviated PS_CHAR_ENCODING ISOLatin1+

Pull out a suitable region string in yyy-mm-dd format

gmt info -fT -I50 -C RHAT_price.csv > RHAT.info

w=‘cut -f1 RHAT.info‘

e=‘cut -f2 RHAT.info‘

s=‘cut -f3 RHAT.info‘

n=‘cut -f4 RHAT.info‘

R="-R$w/$e/$s/$n"

Lay down the basemap:

gmt psbasemap $R -JX9i/6i -K -Bsx1Y -Bpxa3Of1o -Bpy50+p"$ " \

-BWSen+t"RedHat (RHT) Stock Price Trend since IPO"+glightgreen > $ps

Plot main window with open price as red line over yellow envelope of low/highs

gmt gmtset FORMAT_DATE_OUT dd-o-yy

gmt gmtconvert -o0,2 -f0T RHAT_price.csv > RHAT.env

gmt gmtconvert -o0,3 -f0T -I -T RHAT_price.csv >> RHAT.env

gmt psxy -R -J -Gyellow -O -K RHAT.env >> $ps

146 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

gmt psxy -R -J RHAT_price.csv -Wthin,red -O -K >> $ps

Draw P Wessel’s purchase price as line and label it. Note we temporary switch

back to default yyyy-mm-dd format since that is what gmt info gave us.

echo "05-May-00 0" > RHAT.pw

echo "05-May-00 300" >> RHAT.pw

gmt psxy -R -J RHAT.pw -Wthinner,- -O -K >> $ps

echo "01-Jan-99 25" > RHAT.pw

echo "01-Jan-02 25" >> RHAT.pw

gmt psxy -R -J RHAT.pw -Wthick,- -O -K >> $ps

gmt gmtset FORMAT_DATE_IN yyyy-mm-dd

echo "$w 25 PW buy" | gmt pstext -R -J -O -K -D1.5i/0.05i -N -F+f12p,Bookman-Demi+jLB >> $ps

gmt gmtset FORMAT_DATE_IN dd-o-yy

Draw P Wessel’s sales price as line and label it.

echo "25-Jun-07 0" > RHAT.pw

echo "25-Jun-07 300" >> RHAT.pw

gmt psxy -R -J RHAT.pw -Wthinner,- -O -K >> $ps

echo "01-Aug-06 23.8852" > RHAT.pw

echo "01-Jan-08 23.8852" >> RHAT.pw

gmt psxy -R -J RHAT.pw -Wthick,- -O -K >> $ps

gmt gmtset FORMAT_DATE_IN yyyy-mm-dd

echo "$e 23.8852 PW sell" | gmt pstext -R -J -O -K -Dj0.8i/0.05i -N \

-F+f12p,Bookman-Demi+jRB >> $ps

gmt gmtset FORMAT_DATE_IN dd-o-yy

Get smaller region for insert for trend since 2004

R="-R2004T/$e/$s/40"

Lay down the basemap, using Finnish annotations and place the insert in the upper right

gmt psbasemap --TIME_LANGUAGE=fi $R -JX6i/3i -Bpxa3Of3o -Bpy10+p"$ " -BESw+glightblue -Bsx1Y \

-O -K -X3i -Y3i >> $ps

Again, plot close price as red line over yellow envelope of low/highs

gmt psxy -R -J -Gyellow -O -K RHAT.env >> $ps

gmt psxy -R -J RHAT_price.csv -Wthin,red -O -K >> $ps

Draw P Wessel’s sales price as dashed line

gmt psxy -R -J RHAT.pw -Wthick,- -O -K >> $ps

Mark sales date

echo "25-Jun-07 0" > RHAT.pw

echo "25-Jun-07 300" >> RHAT.pw

gmt psxy -R -J RHAT.pw -Wthinner,- -O >> $ps

Clean up after ourselves:

rm -f RHAT.* gmt.conf

which produces the plot in Figure Example 21, suggesting Wessel has missed a few trains if he had
hoped to cash in on the Internet bubble...

11.22 World-wide seismicity the last 7 days

The next example uses the command-line tool wget to obtain a data file from a specified URL. In the
example script this line is commented out so the example will run even if you do not have wget (we use
the supplied neic_quakes.d which normally would be created by wget); remove the comment to get
the actual current seismicity plot using the live data. The main purpose of this script is not to show how
to plot a map background and a few circles, but rather demonstrate how a map legend may be composed

11.22. World-wide seismicity the last 7 days 147

GMT Documentation, Release 5.1.1

$ 0

$ 50

$ 100

$ 150

$ 200

$ 250

$ 300

Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

1999 2000 2001 2002 2003 2004 2005 2006 2007

RedHat (RHT) Stock Price Trend since IPO

PW buy PW sell

$ 0

$ 10

$ 20

$ 30

$ 40

Tam Huh Hei Lok Tam Huh Hei Lok Tam Huh Hei Lok Tam Huh Hei Lok

2004 2005 2006 2007

using the new tool pslegend. Some scripting is used to pull out information from the data file that is
later used in the legend. The legend will normally have the email address of the script owner; here that
command is commented out and the user is hardwired to “GMT guru”. The USGS logo, taken from their
web page and converted to a Sun raster file, is used to spice up the legend.

The script produces the plot in Figure Example 22, giving the URL where these and similar data can be
obtained.

#!/bin/bash

GMT EXAMPLE 22

#

Purpose: Automatic map of last 7 days of world-wide seismicity

GMT progs: gmtset, pscoast, psxy, pslegend

Unix progs: cat, sed, awk, wget|curl

#

ps=example_22.ps

gmt gmtset FONT_ANNOT_PRIMARY 10p FONT_TITLE 18p FORMAT_GEO_MAP ddd:mm:ssF

Get the data (-q quietly) from USGS using the wget (comment out in case

your system does not have wget or curl)

#wget http://neic.usgs.gov/neis/gis/bulletin.asc -q -O neic_quakes.d

#curl http://neic.usgs.gov/neis/gis/bulletin.asc -s > neic_quakes.d

Count the number of events (to be used in title later. one less due to header)

n=‘cat neic_quakes.d | wc -l‘

n=‘expr $n - 1‘

Pull out the first and last timestamp to use in legend title

first=‘sed -n 2p neic_quakes.d | $AWK -F, ’{printf "%s %s\n", $1, $2}’‘

last=‘sed -n ’$p’ neic_quakes.d | $AWK -F, ’{printf "%s %s\n", $1, $2}’‘

Assign a string that contains the current user @ the current computer node.

Note that two @@ is needed to print a single @ in gmt pstext:

148 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#set me = "$user@@‘hostname‘"

me="GMT guru @@ GMTbox"

Create standard seismicity color table

cat > neis.cpt << END

0 red 100 red

100 green 300 green

300 blue 10000 blue

END

Start plotting. First lay down map, then plot quakes with size = magintude/50":

gmt pscoast -Rg -JK180/9i -B45g30 -B+t"World-wide earthquake activity" -Gbrown -Slightblue \

-Dc -A1000 -K -Y2.75i > $ps

$AWK -F, ’{ print $4, $3, $6, $5*0.02}’ neic_quakes.d \

| gmt psxy -R -JK -O -K -Cneis.cpt -Sci -Wthin -h >> $ps

Create legend input file for NEIS quake plot

cat > neis.legend << END

H 16 1 $n events during $first to $last

D 0 1p

N 3

V 0 1p

S 0.1i c 0.1i red 0.25p 0.2i Shallow depth (0-100 km)

S 0.1i c 0.1i green 0.25p 0.2i Intermediate depth (100-300 km)

S 0.1i c 0.1i blue 0.25p 0.2i Very deep (> 300 km)

V 0 1p

D 0 1p

N 7

V 0 1p

S 0.1i c 0.06i - 0.25p 0.3i M 3

S 0.1i c 0.08i - 0.25p 0.3i M 4

S 0.1i c 0.10i - 0.25p 0.3i M 5

S 0.1i c 0.12i - 0.25p 0.3i M 6

S 0.1i c 0.14i - 0.25p 0.3i M 7

S 0.1i c 0.16i - 0.25p 0.3i M 8

S 0.1i c 0.18i - 0.25p 0.3i M 9

V 0 1p

D 0 1p

N 1

END

Put together a reasonable legend text, and add logo and user’s name:

cat << END >> neis.legend

P

T USGS/NEIS most recent earthquakes for the last seven days. The data were

T obtained automatically from the USGS Earthquake Hazards Program page at

T @_http://neic/usgs.gov @_. Interested users may also receive email alerts

T from the USGS.

T This script can be called daily to update the latest information.

G 0.4i

Add USGS logo

I USGS.ras 1i RT

G -0.3i

L 12 6 LB $me

END

OK, now we can actually run gmt pslegend. We center the legend below the map.

Trial and error shows that 1.7i is a good legend height:

gmt pslegend -Dx4.5i/-0.4i/7i/1.7i/TC -O -F+p+glightyellow neis.legend >> $ps

Clean up after ourselves:

rm -f neis.* gmt.conf

11.22. World-wide seismicity the last 7 days 149

GMT Documentation, Release 5.1.1

World-wide earthquake activity

0˚

0˚

45˚E

45˚E

90˚E

90˚E

135˚E

135˚E

180˚

180˚

135˚W

135˚W

90˚W

90˚W

45˚W

45˚W

0˚

0˚

90˚S 90˚S

45˚S 45˚S

0˚ 0˚

45˚N 45˚N

90˚N 90˚N

77 events during 04/04/19 00:04:33 to 04/04/25 11:11:33
Shallow depth (0-100 km) Intermediate depth (100-300 km) Very deep (> 300 km)

M 3 M 4 M 5 M 6 M 7 M 8 M 9

GMT guru @ GMTbox

USGS/NEIS most recent earthquakes for the last seven days. The data were obtained automatically from the
USGS Earthquake Hazards Program page at http://neic/usgs.gov . Interested users may also receive email
alerts from the USGS. This script can be called daily to update the latest information.

11.23 All great-circle paths lead to Rome

While motorists recently have started to question the old saying “all roads lead to Rome”, aircraft pilots
have known from the start that only one great-circle path connects the points of departure and arrival
3. This provides the inspiration for our next example which uses grdmath to calculate distances from
Rome to anywhere on Earth and grdcontour to contour these distances. We pick five cities that we
connect to Rome with great circle arcs, and label these cities with their names and distances (in km)
from Rome, all laid down on top of a beautiful world map. Note that we specify that contour labels only
be placed along the straight map-line connecting Rome to its antipode, and request curved labels that
follows the shape of the contours.

The script produces the plot in Figure Example 23; note how interesting the path to Seattle appears in this
particular projection (Hammer). We also note that Rome’s antipode lies somewhere near the Chatham
plateau (antipodes will be revisited in Section [sec:example25]).

#!/bin/bash

GMT EXAMPLE 23

#

Purpose: Plot distances from Rome and draw shortest paths

GMT progs: grdmath, grdcontour, pscoast, psxy, pstext, grdtrack

Unix progs: echo, cat, awk

#

ps=example_23.ps

Position and name of central point:

lon=12.50

lat=41.99

name="Rome"

3 Pedants who wish to argue about the “other” arc going the long way should consider using it.

150 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

Calculate distances (km) to all points on a global 1x1 grid

gmt grdmath -Rg -I1 $lon $lat SDIST = dist.nc

Location info for 5 other cities + label justification

cat << END > cities.d

105.87 21.02 HANOI LM

282.95 -12.1 LIMA LM

178.42 -18.13 SUVA LM

237.67 47.58 SEATTLE RM

28.20 -25.75 PRETORIA LM

END

gmt pscoast -Rg -JH90/9i -Glightgreen -Sblue -A1000 -Dc -Bg30 \

-B+t"Distances from $name to the World" -K -Wthinnest > $ps

gmt grdcontour dist.nc -A1000+v+u" km"+fwhite -Glz-/z+ -S8 -C500 -O -K -J \

-Wathin,white -Wcthinnest,white,- >> $ps

For each of the cities, plot great circle arc to Rome with gmt psxy

while read clon clat city; do

(echo $lon $lat; echo $clon $clat) | gmt psxy -R -J -O -K -Wthickest,red >> $ps

done < cities.d

Plot red squares at cities and plot names:

gmt psxy -R -J -O -K -Ss0.2 -Gred -Wthinnest cities.d >> $ps

$AWK ’{print $1, $2, $4, $3}’ cities.d | gmt pstext -R -J -O -K -Dj0.15/0 \

-F+f12p,Courier-Bold,red+j -N >> $ps

Place a yellow star at Rome

echo "$lon $lat" | gmt psxy -R -J -O -K -Sa0.2i -Gyellow -Wthin >> $ps

Sample the distance grid at the cities and use the distance in km for labels

gmt grdtrack -Gdist.nc cities.d \

| $AWK ’{printf "%s %s %d\n", $1, $2, int($NF+0.5)}’ \

| gmt pstext -R -J -O -D0/-0.2i -N -Gwhite -W -C0.02i -F+f12p,Helvetica-Bold+jCT >> $ps

Clean up after ourselves:

rm -f cities.d dist.nc

Distances from Rome to the World

1000

k
m

200
0

km

30
00

 k

m

4

00
0
 k
m

5
0

0

0
 k

m

6
0
00

 k
m

7
0

0
0
 k

m

8
00

0

km

9

0
0

0
km

1
00

00
 k
m

1
1

0
0
0
 k

m

12
0
0

0
 k

m

13
00

0

 k
m

1
4
0

0
0

km

15
00

0
km

1
6
0
0

0

k

m

1
7

00

0

km

18

00

0

 k
m

1
9
00

0 km

HANOI

LIMA
SUVA

SEATTLE

PRETORIA

8744

10864
17045

9134

7672

11.23. All great-circle paths lead to Rome 151

GMT Documentation, Release 5.1.1

11.24 Data selection based on geospatial criteria

Although we are not seismologists, we have yet another example involving seismicity. We use seismicity
data for the Australia/New Zealand region to demonstrate how we can extract subsets of data using
geospatial criteria. In particular, we wish to plot the epicenters given in the file oz_quakes.d as red
or green circles. Green circles should only be used for epicenters that satisfy the following three criteria:

1. They are located in the ocean and not on land

2. They are within 3000 km of Hobart

3. They are more than 1000 km away from the International Dateline

All remaining earthquakes should be plotted in red. Rather that doing the selection process twice we
simply plot all quakes as red circles and then replot those that pass our criteria. Most of the work here
is done by gmtselect; the rest is carried out by the usual pscoast and psxy workhorses. Note for
our purposes the Dateline is just a line along the 180 meridian.

The script produces the plot in Figure Example 24. Note that the horizontal distance from the dateline
seems to increase as we go south; however that is just the projected distance (Mercator distortion) and
not the actual distance which remains constant at 1000 km.

#!/bin/bash

GMT EXAMPLE 24

#

Purpose: Extract subsets of data based on geospatial criteria

GMT progs: gmtselect, pscoast, psxy, gmtinfo

Unix progs: echo, cat, awk

#

Highlight oceanic earthquakes within 3000 km of Hobart and > 1000 km from dateline

ps=example_24.ps

echo "147:13 -42:48 6000 Hobart" > point.d

cat << END > dateline.d

> Our proxy for the dateline

180 0

180 -90

END

R=‘gmt info -I10 oz_quakes.d‘

gmt pscoast $R -JM9i -K -Gtan -Sdarkblue -Wthin,white -Dl -A500 -Ba20f10g10 -BWeSn > $ps

gmt psxy -R -J -O -K oz_quakes.d -Sc0.05i -Gred >> $ps

gmt gmtselect oz_quakes.d -L1000k/dateline.d -Nk/s -C3000k/point.d -fg -R -Il \

| gmt psxy -R -JM -O -K -Sc0.05i -Ggreen >> $ps

gmt psxy point.d -R -J -O -K -SE- -Wfat,white >> $ps

$AWK ’{print $1, $2, $4}’ point.d | gmt pstext -R -J -O -K -F+f14p,Helvetica-Bold,white+jLT \

-D0.1i/-0.1i >> $ps

gmt psxy -R -J -O -K point.d -Wfat,white -S+0.2i >> $ps

gmt psxy -R -J -O dateline.d -Wfat,white -A >> $ps

rm -f point.d dateline.d

11.25 Global distribution of antipodes

As promised in Section [sec:example23], we will study antipodes. The antipode of a point at (φ, λ) is
the point at (−φ, λ + 180). We seek an answer to the question that has plagued so many for so long:
Given the distribution of land and ocean, how often is the antipode of a point on land also on land?
And what about marine antipodes? We use grdlandmask and grdmath to map these distributions
and calculate the area of the Earth (in percent) that goes with each of the three possibilities. To make
sense of our grdmath equations below, note that we first calculate a grid that is +1 when a point and
its antipode is on land, -1 if both are in the ocean, and 0 elsewhere. We then seek to calculate the area
distribution of dry antipodes by only pulling out the nodes that equal +1. As each point represent an area
approximated by ∆φ×∆λ where the ∆λ term’s actual dimension depends on cos(φ), we need to allow

152 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

100˚ 120˚ 140˚ 160˚ 180˚ -160˚

-60˚

-40˚

-20˚

0˚

Hobart

for that shrinkage, normalize our sum to that of the whole area of the Earth, and finally convert that
ratio to percent. Since the ∆λ, ∆φ terms appear twice in these expressions they cancel out, leaving the
somewhat intractable expressions below where the sum of cos(φ) for all φ is known to equal 2Ny/π:

In the end we obtain a funny-looking map depicting the antipodal distribution as well as displaying
in legend form the requested percentages (Figure Example 25). Note that the script is set to evaluate a
global 30 minute grid for expediency (D = 30), hence several smaller land masses that do have terrestrial
antipodes do not show up. If you want a more accurate map you can set the parameter D to a smaller
increment (try 5 and wait a few minutes).

The call to grdimage includes the -Sn to suspend interpolation and only return the value of the nearest
neighbor. This option is particularly practical for plotting categorical data, like these, that should not be
interpolated.

#!/bin/bash

GMT EXAMPLE 25

#

Purpose: Display distribution of antipode types

GMT progs: gmtset, grdlandmask, grdmath, grd2xyz, gmtmath, grdimage, pscoast, pslegend

Unix progs: cat

#

Create D minutes global grid with -1 over oceans and +1 over land

ps=example_25.ps

D=30

gmt grdlandmask -Rg -Im -Dc -A500 -N-1/1/1/1/1 -r -Gwetdry.nc

Manipulate so -1 means ocean/ocean antipode, +1 = land/land, and 0 elsewhere

gmt grdmath -fg wetdry.nc DUP 180 ROTX FLIPUD ADD 2 DIV = key.nc

Calculate percentage area of each type of antipode match.

gmt grdmath -Rg -Im -r Y COSD 60 $D DIV 360 MUL DUP MUL PI DIV DIV 100 MUL = scale.nc

gmt grdmath -fg key.nc -1 EQ 0 NAN scale.nc MUL = tmp.nc

gmt grd2xyz tmp.nc -s -ZTLf > key.b

ocean=‘gmt gmtmath -bi1f -Ca -S key.b SUM UPPER RINT =‘

gmt grdmath -fg key.nc 1 EQ 0 NAN scale.nc MUL = tmp.nc

gmt grd2xyz tmp.nc -s -ZTLf > key.b

land=‘gmt gmtmath -bi1f -Ca -S key.b SUM UPPER RINT =‘

11.25. Global distribution of antipodes 153

GMT Documentation, Release 5.1.1

gmt grdmath -fg key.nc 0 EQ 0 NAN scale.nc MUL = tmp.nc

gmt grd2xyz tmp.nc -s -ZTLf > key.b

mixed=‘gmt gmtmath -bi1f -Ca -S key.b SUM UPPER RINT =‘

Generate corresponding color table

cat << END > key.cpt

-1.5 blue -0.5 blue

-0.5 gray 0.5 gray

0.5 red 1.5 red

END

Create the final plot and overlay coastlines

gmt gmtset FONT_ANNOT_PRIMARY +10p FORMAT_GEO_MAP dddF

gmt grdimage key.nc -JKs180/9i -Bx60 -By30 -BWsNE+t"Antipodal comparisons" -K -Ckey.cpt -Y1.2i -nn > $ps

gmt pscoast -R -J -O -K -Wthinnest -Dc -A500 >> $ps

Place an explanatory legend below

gmt pslegend -R0/9/0/0.5 -Jx1i -O -Dx4.5i/0/6i/TC -Y-0.2i -F+pthick >> $ps << END

N 3

S 0.15i s 0.2i red 0.25p 0.3i Terrestrial Antipodes [$land %]

S 0.15i s 0.2i blue 0.25p 0.3i Oceanic Antipodes [$ocean %]

S 0.15i s 0.2i gray 0.25p 0.3i Mixed Antipodes [$mixed %]

END

rm -f *.nc key.* gmt.conf

Antipodal comparisons
0˚ 60˚E 120˚E 180˚ 120˚W 60˚W 0˚

90˚S 90˚S

60˚S 60˚S

30˚S 30˚S

0˚ 0˚

30˚N 30˚N

60˚N 60˚N

90˚N 90˚N

Terrestrial Antipodes [4 %] Oceanic Antipodes [46 %] Mixed Antipodes [50 %]

11.26 General vertical perspective projection

Next, we present a recent extension to the -JG projection option which allows the user to specify a
particular altitude (this was always at infinity before), as well as several further parameters to limit the
view from the chosen vantage point. In this example we show a view of the eastern continental US from
a height of 160 km. Below we add a view with a specific tilt of 55 and azimuth 210; here we have chosen
a boresight twist of 45. We view the land from New York towards Washington, D.C.

At this point the full projection has not been properly optimized and the map annotations will need
additional work. Also, note that the projection is only implemented in pscoast and grdimage. We
hope to refine this further and extend the availability of the full projection to all of the GMT mapping
programs.

#!/bin/bash

GMT EXAMPLE 26

#

154 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

Purpose: Demonstrate general vertical perspective projection

GMT progs: pscoast

Unix progs: rm

#

ps=example_26.ps

first do an overhead of the east coast from 160 km altitude point straight down

latitude=41.5

longitude=-74.0

altitude=160.0

tilt=0

azimuth=0

twist=0

Width=0.0

Height=0.0

PROJ=-JG////////4i

gmt pscoast -Rg $PROJ -X1i -B5g5 -Glightbrown -Slightblue -W -Dl -N1/1p,red -N2,0.5p -P -K \

-Y5i > $ps

now point from an altitude of 160 km with a specific tilt and azimuth and with a wider restricted

view and a boresight twist of 45 degrees

tilt=55

azimuth=210

twist=45

Width=30.0

Height=30.0

PROJ=-JG////////5i

gmt pscoast -R $PROJ -B5g5 -Glightbrown -Slightblue -W -Ia/blue -Di -Na -O -X1i -Y-4i >> $ps

11.27 Plotting Sandwell/Smith Mercator img grids

Next, we show how to plot a data grid that is distributed in projected form. The gravity and predicted
bathymetry grids produced by David Sandwell and Walter H. F. Smith are not geographical grids but
instead given on a spherical Mercator grid. The GMT supplement img has tools to extract subsets of
these large grids. If you need to make a non-Mercator map then you must extract a geographic grid
using supplements/img/img2grd and then plot it using your desired map projection. However,
if you want to make a Mercator map then you can save time and preserve data quality by avoiding
to re-project the data set twice since it is already in a Mercator projection. This example shows how
this is accomplished. We use the -M option in supplements/img/img2grd to pull out the grid in
Mercator units (i.e., do not invert the Mercator projection) and then simply plot the grid using a linear
projection with a suitable scale (here 0.25 inches per degrees of longitude). To overlay basemaps and
features that has geographic longitude/latitude coordinates we must remember two key issues:

1. This is a spherical Mercator grid so we must use –PROJ_ELLIPSOID=Sphere with all com-
mands that involve projections (or use gmtset to change the setting).

2. Select Mercator projection and use the same scale that was used with the linear projection.

This map of the Tasman Sea shows the marine gravity anomalies with land painted black. A color scale
bar was then added to complete the illustration.

#!/bin/bash

GMT EXAMPLE 27

#

Purpose: Illustrates how to plot Mercator img grids

GMT progs: makecpt, mapproject, grdgradient, grdimage, grdinfo, pscoast

GMT supplement: img2grd (to read Sandwell/Smith img files)

11.27. Plotting Sandwell/Smith Mercator img grids 155

GMT Documentation, Release 5.1.1

-8
5˚

-8
0˚

-75˚

3
0
˚

3
5
˚

4
0
˚

4
0
˚

156 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

Unix progs: rm, grep, $AWK

#

ps=example_27.ps

Gravity in tasman_grav.nc is in 0.1 mGal increments and the grid

is already in projected Mercator x/y units.

First get gradients.

gmt grdgradient tasman_grav.nc -Nt1 -A45 -Gtasman_grav_i.nc

Make a suitable cpt file for mGal

gmt makecpt -T-120/120/240 -Z -Crainbow > grav.cpt

Since this is a Mercator grid we use a linear projection

gmt grdimage tasman_grav.nc=ns/0.1 -Itasman_grav_i.nc -Jx0.25i -Cgrav.cpt -P -K > $ps

Then use gmt pscoast to plot land; get original -R from grid remark

and use Mercator gmt projection with same scale as above on a spherical Earth

R=‘gmt grdinfo tasman_grav.nc | grep Remark | $AWK ’{print $NF}’‘

gmt pscoast $R -Jm0.25i -Ba10f5 -BWSne -O -K -Gblack --PROJ_ELLIPSOID=Sphere \

-Cwhite -Dh+ --FORMAT_GEO_MAP=dddF >> $ps

Put a color legend on top of the land mask justified with 147E,31S

pos=‘echo 147E 31S | gmt mapproject -R -J -Di --PROJ_ELLIPSOID=Sphere | \

$AWK ’{printf "%si/%si\n", $1, $2}’‘

gmt psscale -D$pos/2i/0.15i -Cgrav.cpt -Bx50f10 -By+lmGal -I -O -T+gwhite+p1p >> $ps

Clean up

rm -f grav.cpt *_i.nc

11.28 Mixing UTM and geographic data sets

Next, we present a similar case: We wish to plot a data set given in UTM coordinates (meter) and want it
to be properly registered with overlying geographic data, such as coastlines or data points. The mistake
many GMT rookies make is to specify the UTM projection with their UTM data. However, that data
have already been projected and is now in linear meters. The only sensible way to plot such data is with
a linear projection, yielding a UTM map. In this step one can choose to annotate or tick the map in UTM
meters as well. To plot geographic (lon/lat) data on the same map you simply have to specify the region
using the UTM meters but supply the actual UTM projection parameters. Make sure you use the same
scale with both the linear and UTM projection.

Our script illustrates how we would plot a UTM grid (with coordinates in meters) of elevations near
Kilauea volcano on the Big Island of Hawaii and overlay geographical information (with longitude,
latitude coordinates). We first lay down the UTM grid using the linear projection. Then, given we are
in UTM zone 5Q, we use the UTM domain and the UTM projection when overlaying the coastline and
light blue ocean. We do some trickery by converting the UTM domain to km so that we can add custom
annotations to the map. Finally, we place a scale bar and label Kilauea crater to complete the figure.

#!/bin/bash

GMT EXAMPLE 28

#

Purpose: Illustrates how to mix UTM data and UTM gmt projection

GMT progs: makecpt, grdgradient, grdimage, grdinfo, grdmath, pscoast, pstext, mapproject

Unix progs: rm, echo

#

ps=example_28.ps

11.28. Mixing UTM and geographic data sets 157

GMT Documentation, Release 5.1.1

150˚E 160˚E 170˚E

50˚S

40˚S

30˚S

-100

-50

0

50

100

mGal

158 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

Get intensity grid and set up a color table

gmt grdgradient Kilauea.utm.nc -Nt1 -A45 -GKilauea.utm_i.nc

gmt makecpt -Ccopper -T0/1500/100 -Z > Kilauea.cpt

Lay down the UTM topo grid using a 1:16,000 scale

gmt grdimage Kilauea.utm.nc -IKilauea.utm_i.nc -CKilauea.cpt -Jx1:160000 -P -K \

--FORMAT_FLOAT_OUT=%.10g --FONT_ANNOT_PRIMARY=9p > $ps

Overlay geographic data and coregister by using correct region and gmt projection with the same scale

gmt pscoast -RKilauea.utm.nc -Ju5Q/1:160000 -O -K -Df+ -Slightblue -W0.5p -B5mg5m -BNE \

--FONT_ANNOT_PRIMARY=12p --FORMAT_GEO_MAP=ddd:mmF >> $ps

echo 155:16:20W 19:26:20N KILAUEA | gmt pstext -R -J -O -K -F+f12p,Helvetica-Bold+jCB >> $ps

gmt psbasemap -R -J -O -K --FONT_ANNOT_PRIMARY=9p -Lf155:07:30W/19:15:40N/19:23N/5k+l1:16,000+u \

--FONT_LABEL=10p >> $ps

Annotate in km but append ,000m to annotations to get customized meter labels

gmt psbasemap -RKilauea.utm.nc+Uk -Jx1:160 -B5g5+u"@:8:000m" -BWSne -O --FONT_ANNOT_PRIMARY=10p \

--MAP_GRID_CROSS_SIZE_PRIMARY=0.1i --FONT_LABEL=10p >> $ps

Clean up

rm -f Kilauea.utm_i.nc Kilauea.cpt tmp.txt

155˚20'W 155˚15'W 155˚10'W

19˚20'N

19˚25'N

KILAUEA

0 km 5 km

1:16,000

2130000m

2135000m

2140000m

2145000m

2150000m

255000m 260000m 265000m 270000m 275000m 280000m

11.29 Gridding spherical surface data using splines

Finally, we demonstrate how gridding on a spherical surface can be accomplished using Green’s func-
tions of surface splines, with or without tension. Global gridding does not work particularly well in
Cartesian coordinates hence the chosen approach. We use greenspline to produce a crude topog-
raphy grid for Mars based on radii estimates from the Mariner 9 and Viking Orbiter spacecrafts. This
data comes from Smith and Zuber [Science, 1996] and is used here as a small (N = 370) data set we
can use to demonstrate spherical surface gridding. Since greenspline must solve a N by N matrix
system your system memory may impose limits on how large data sets you can handle; also note that
the spherical surface spline in tension is particularly slow to compute.

Our script must first estimate the ellipsoidal shape of Mars from the parameters given by Smith and

Zuber so that we can remove this reference surface from the gridded radii. We run the gridding twice:
First with no tension using Parker‘s [1990] method and then with tension using the Wessel and Becker

[2008] method. The grids are then imaged with grdimage and grdcontour and a color scale is
placed between them.

11.29. Gridding spherical surface data using splines 159

GMT Documentation, Release 5.1.1

#!/bin/bash

GMT EXAMPLE 29

#

Purpose: Illustrates spherical surface gridding with Green’s function of splines

GMT progs: makecpt, grdcontour, grdgradient, grdimage, grdmath greenspline, psscale, pstext

Unix progs: rm, echo

#

ps=example_29.ps

This example uses 370 radio occultation data for Mars to grid the topography.

Data and information from Smith, D. E., and M. T. Zuber (1996), The shape of

Mars and the topographic signature of the hemispheric dichotomy, Science, 271, 184-187.

Make Mars PROJ_ELLIPSOID given their three best-fitting axes:

a=3399.472

b=3394.329

c=3376.502

gmt grdmath -Rg -I4 -r X COSD $a DIV DUP MUL X SIND $b DIV DUP MUL ADD Y COSD DUP MUL MUL Y \

SIND $c DIV DUP MUL ADD SQRT INV = PROJ_ELLIPSOID.nc

Do both Parker and Wessel/Becker solutions (tension = 0.9975)

gmt greenspline -RPROJ_ELLIPSOID.nc mars370.in -D4 -Sp -Gmars.nc

gmt greenspline -RPROJ_ELLIPSOID.nc mars370.in -D4 -Sq0.9975 -Gmars2.nc

Scale to km and remove PROJ_ELLIPSOID

gmt grdmath mars.nc 1000 DIV PROJ_ELLIPSOID.nc SUB = mars.nc

gmt grdmath mars2.nc 1000 DIV PROJ_ELLIPSOID.nc SUB = mars2.nc

gmt makecpt -Crainbow -T-7/15/22 -Z > mars.cpt

gmt grdgradient mars2.nc -fg -Ne0.75 -A45 -Gmars2_i.nc

gmt grdimage mars2.nc -Imars2_i.nc -Cmars.cpt -B30g30 -BWsne -JH0/7i -P -K -E200 \

--FONT_ANNOT_PRIMARY=12p -X0.75i > $ps

gmt grdcontour mars2.nc -J -O -K -C1 -A5 -Glz+/z- >> $ps

gmt psxy -Rg -J -O -K -Sc0.045i -Gblack mars370.in >> $ps

echo "0 90 b)" | gmt pstext -R -J -O -K -N -D-3.5i/-0.2i -F+f14p,Helvetica-Bold+jLB >> $ps

gmt grdgradient mars.nc -fg -Ne0.75 -A45 -Gmars_i.nc

gmt grdimage mars.nc -Imars_i.nc -Cmars.cpt -B30g30 -BWsne -J -O -K -Y4.2i -E200 \

--FONT_ANNOT_PRIMARY=12p >> $ps

gmt grdcontour mars.nc -J -O -K -C1 -A5 -Glz+/z- >> $ps

gmt psxy -Rg -J -O -K -Sc0.045i -Gblack mars370.in >> $ps

gmt psscale -Cmars.cpt -O -K -D3.5i/-0.15i/6i/0.1ih -I --FONT_ANNOT_PRIMARY=12p -Bx2f1 -By+lkm >> $ps

echo "0 90 a)" | gmt pstext -R -J -O -N -D-3.5i/-0.2i -F+f14p,Helvetica-Bold+jLB >> $ps

Clean up

rm -f *.nc mars.cpt

11.30 Trigonometric functions plotted in graph mode

Finally, we end with a simple mathematical illustration of sine and cosine, highlighting the graph mode
for linear projections and the new curved vectors for angles.

The script simply draws a graph basemap, computes sine and cosine and plots them as lines, then indi-
cates on a circle that these quantities are simply the projections of an unit vector on the x- and y-axis, at
the given angle.

#!/bin/bash

GMT EXAMPLE 30

#

Purpose: Show graph mode and math angles

GMT progs: gmtmath, psbasemap, pstext and psxy

Unix progs: echo, rm

#

Draw generic x-y axes with arrows

ps=example_30.ps

gmt psbasemap -R0/360/-1.25/1.75 -JX8i/6i -Bx90f30+u"\\312" -By1g10 -BWS+t"Two Trigonometric Functions" \

-K --MAP_FRAME_TYPE=graph --MAP_VECTOR_SHAPE=0.5 > $ps

Draw sine an cosine curves

160 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

-60˚

-30˚

0˚

30˚

60˚

-5

-5-5
0005

10

b)

-60˚

-30˚

0˚

30˚

60˚

-5

-5-5

0

005

1
0

-6 -4 -2 0 2 4 6 8 10 12 14

km

a)

gmt gmtmath -T0/360/0.1 T COSD = | gmt psxy -R -J -O -K -W3p >> $ps

gmt gmtmath -T0/360/0.1 T SIND = | gmt psxy -R -J -O -K -W3p,0_6:0 --PS_LINE_CAP=round >> $ps

Indicate the x-angle = 120 degrees

gmt psxy -R -J -O -K -W0.5p,- << EOF >> $ps

120 -1.25

120 1.25

EOF

gmt pstext -R -J -O -K -Dj0.2c -N -F+f+j << EOF >> $ps

360 1 18p,Times-Roman RB x = cos(@%12%a@%%)

360 0 18p,Times-Roman RB y = sin(@%12%a@%%)

120 -1.25 14p,Times-Roman LB 120\\312

370 -1.35 24p,Symbol LT a

-5 1.85 24p,Times-Roman RT x,y

EOF

Draw a circle and indicate the 0-70 degree angle

echo 0 0 | gmt psxy -R-1/1/-1/1 -Jx1.5i -O -K -X3.625i -Y2.75i -Sc2i -W1p -N >> $ps

gmt psxy -R -J -O -K -W1p << EOF >> $ps

> x-gridline -Wdefault

-1 0

1 0

> y-gridline -Wdefault

0 -1

0 1

> angle = 0

0 0

1 0

> angle = 120

0 0

-0.5 0.866025

> x-gmt projection -W2p

-0.3333 0

11.30. Trigonometric functions plotted in graph mode 161

GMT Documentation, Release 5.1.1

0 0

> y-gmt projection -W2p

-0.3333 0.57735

-0.3333 0

EOF

gmt pstext -R -J -O -K -Dj0.05i -F+f+a+j << EOF >> $ps

-0.16666 0 12p,Times-Roman 0 CT x

-0.3333 0.2888675 12p,Times-Roman 0 RM y

0.22 0.27 12p,Symbol -30 CB a

-0.33333 0.6 12p,Times-Roman 30 LB 120\\312

EOF

echo 0 0 0.5i 0 120 | gmt psxy -R -J -O -Sm0.15i+e -W1p -Gblack >> $ps

-1

0

1

0˚ 90˚ 180˚ 270˚ 360˚

Two Trigonometric Functions

x = cos(α)

y = sin(α)

120˚

α

x,y

x

y
α

120˚

11.31 Using non-default fonts in PostScript

[sec:non-default-fonts-example]

This example illustrates several possibilities to create GMTplots with non-default fonts. As these fonts
are not part of the standard PostScript font collection they have to be embedded in the PS- or PDF-file
with Ghostscript. See also Appendix [sec:non-default-fonts] for further information. The script includes
the following steps:

• create a CUSTOM_font_info.d file;

• set the GMT parameters MAP_DEGREE_SYMBOL, PS_CHAR_ENCODING, and FONT;

• replace the default Helvetica font in the GMT-PostScript-File with sed;

• create a PostScript-File with outlined fonts (optional);

• convert GMT’s PostScript output to PDF or any image format (optional).

162 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

The script produces the plot in Figure Example 31. All standard fonts have been substituted by the free
OpenType fonts Linux Libertine (title) and Linux Biolinum (annotations). Uncomment the appropriate
lines in the script to make a PostScript-file with outlined fonts or to convert to a PDF-file.

#!/bin/bash

GMT EXAMPLE 31

#

Purpose: Illustrate usage of non-default fonts in PostScript

GMT progs: gmtset, pscoast, psxy, pstext, pslegend

Unix progs: gs, awk, cat, rm

#

file=example_31

ps=.ps

ps_outlined=_outlined.ps

eps_outlined=_outlined.eps

create file CUSTOM_font_info.d in current working directory

and add PostScript font names of Linux Biolinum and Libertine

$AWK ’{print $1, 0.700, 0}’ << EOF > CUSTOM_font_info.d

LinBiolinumO

LinBiolinumOI

LinBiolinumOB

LinLibertineOB

EOF

common settings

gmt gmtset FORMAT_GEO_MAP ddd:mm:ssF \

MAP_DEGREE_SYMBOL colon \

MAP_TITLE_OFFSET 20p \

MAP_GRID_CROSS_SIZE_PRIMARY 0.4c \

PS_LINE_JOIN round \

PS_CHAR_ENCODING ISO-8859-5 \

FONT LinBiolinumO \

FONT_TITLE 24p,LinLibertineOB \

MAP_ANNOT_OBLIQUE 42

map of countries

gmt pscoast -Dl -R-7/31/64/66/r -JL15/50/40/60/16c -P \

-Bx10g10 -By5g5 -B+t"Europe\072 Countries and Capital Cities" -A250 \

-Slightblue -Glightgreen -W0.25p -N1/1p,white -K > $ps

mark capitals

gmt psxy europe-capitals-ru.csv -R -J -i0,1 \

-Sc0.15c -G196/80/80 -O -K >> $ps

small EU cities

$AWK ’BEGIN {FS=","} $4 !="" && $4 <= 1000000 {print $1, $2}’ europe-capitals-ru.csv | \

gmt psxy -R -J -Sc0.15c -W0.25p -O -K >> $ps

big EU cities

$AWK ’BEGIN {FS=","} $4 > 1000000 {print $1, $2}’ europe-capitals-ru.csv | \

gmt psxy -R -J -Sc0.15c -W1.25p -O -K >> $ps

label big EU cities

$AWK ’BEGIN {FS=","} $4 > 1000000 {print $1, $2, $3}’ europe-capitals-ru.csv | \

gmt pstext -R -J -F+f7p,LinBiolinumOI+jBL -Dj0.1c -Gwhite -C5% -Qu -TO -O -K >> $ps

construct legend

cat << EOF > legend.txt

G -0.1c

H 10 LinBiolinumOB Population of the European Union capital cities

G 0.15c

N 2

S 0.15c c 0.15c 196/80/80 0.25p 0.5c < 1 Million inhabitants

S 0.15c c 0.15c 196/80/80 1.25p 0.5c > 1 Million inhabitants

N 1

G 0.15c

L 8 LinBiolinumOB L Population in Millions

N 6

EOF

append city names and population to legend

11.31. Using non-default fonts in PostScript 163

GMT Documentation, Release 5.1.1

$AWK ’BEGIN {FS=","; f="L 8 LinBiolinumO L"}

$4 > 1000000 {printf "%s %s:\n%s %.2f\n", f, $3, f, $4/1e6}’ \

europe-capitals-ru.csv >> legend.txt

reduce annotation font size for legend

gmt gmtset FONT_ANNOT_PRIMARY 8p

plot legend

gmt pslegend -R -J -Dx7.9c/12.6c/8.0c/BL \

-C0.3c/0.4c -L1.2 -F+p+gwhite -O legend.txt >> $ps

make a PostScript and a PDF file with outlined fonts

unfortunately gmt ps2raster won’t be able to crop that file correctly anymore

use Heiko Oberdiek’s pdfcrop (http://code.google.com/p/pdfcrop2/) instead

or crop with gmt ps2raster -A -Te before

#

a. remove GMT logo and crop EPS:

#gmt ps2raster -P -Au -Te -C-sFONTPATH="/fonts" -Fex31CropNoLogo $ps

b. make PS with outlined fonts:

#gs -q -sPAPERSIZE=a3 -dNOCACHE -dSAFER -dNOPAUSE -dBATCH -dNOPLATFONTS \

-sDEVICE=pswrite -sFONTPATH="/fonts" -sOutputFile=$ps_outlined ex31CropNoLogo.eps

c. make croppepd EPS:

#gs -q -dNOCACHE -dSAFER -dNOPAUSE -dBATCH -dEPSCrop -sDEVICE=epswrite \

-sOutputFile=$eps_outlined $ps_outlined

d. make cropped PDF:

#gmt ps2raster -P -A -Tf $ps_outlined

uncomment to do conversation to PDF and PNG

you will get a PDF with subsetted TrueType/PostScript fonts embedded

which you can still edit with your favorite vector graphics editor

#export GS_FONTPATH="/fonts"

#gmt ps2raster -P -A -Tf $ps

#gmt ps2raster -P -A -Tg -E110 $ps

clean up

rm -f gmt.history gmt.conf CUSTOM_font_info.d legend.txt ex31CropNoLogo.eps

exit 0

Europe: Countries and Capital Cities
10W

0

0

10E

10E

20E

20E

30E

30E 40E

35
N

35
N

40
N

40
N

45
N

45
N

50
N

50
N

55
N

55
N

60
N

60
N

65
N

65
N

Берлин

Брюссель

Бухарест

Будапешт

Лондон

Мадрид

Париж
Прага

Рим

София

Вена

Варшава

Population of the European Union capital cities

< 1 Million inhabitants > 1 Million inhabitants

Population in Millions

Берлин: 3.44 Брюссель: 1.05 Бухарест: 1.94

Будапешт: 1.72 Лондон: 7.56 Мадрид: 3.26

Париж: 2.20 Прага: 1.29 Рим: 2.75

София: 1.40 Вена: 1.69 Варшава: 1.71

164 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

11.32 Draping an image over topography

In some cases, it is nice to “drape” an arbitrary image over a topographic map. We have already seen
how to use psimage to plot an image anywhere in out plot. But here are aim is different, we want to
manipulate an image to shade it and plot it in 3-D over topography. This example was originally created
by Stephan Eickschen for a flyer emphasizing the historical economical and cultural bond between
Brussels, Maastricht and Bonn. Obviously, the flag of the European Union came to mind as a good
“background”.

To avoid adding large files to this example, some steps have been already done. First we get the EU flag
directly from the web and convert it to a grid with values ranging from 0 to 255, where the higher values
will become yellow and the lower values blue. This use of grdreformat requires GDAL support.
grdedit then adds the right grid dimension.

The second step is to reformat the GTOPO30 DEM file to a netCDF grid as well and then subsample
it at the same pixels as the EU flag. We then illuminate the topography grid so we can use it later to
emphasize the topography. The colors that we will use are those of the proper flag. Lower values will
become blue and the upper values yellow.

The call the grdview plots a topography map of northwest continental Europe, with the flagged draped
over it and with shading to show the little topography there is. pscoast is used in conjunction with
grdtrack and GMTpsxyz to plot borders “at altitude”. Something similar is done at the end to plot
some symbols and names for cities.

The script produces the plot in Figure Example 32. Note that the PNG image of the flag can be down-
loaded directly in the call the grdreformat, but we have commented that out in the example because
it requires compilation with GDAL support. You will also see the grdcut command commented out
because we did not want to store the 58 MB DEM file, whose location is mentioned in the script.

#!/bin/bash

GMT EXAMPLE 32

#

Purpose: Illustrate draping of an image over topography

GMT progs: grdcut, grdedit, grdgradient, grdreformat, grdtrack, grdview

GMT progs: pscoast, pstext, psxyz

Unix progs: cat, rm

Credits: Original by Stephan Eickschen

#

ps=example_32.ps

Here we get and convert the flag of Europe directly from the web through grdreformat using

GDAL support. We take into account the dimension of the flag (1000x667 pixels)

for a ratio of 3x2.

Because GDAL support will not be standard for most users, we have stored

the result, euflag.nc in this directory.

Rflag=-R3/9/50/54

gmt grdreformat \

http://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Flag_of_Europe.svg/1000px-Flag_of_Europe.svg.png=gd

euflag.nc=ns

gmt grdedit euflag.nc -fg $Rflag

Now get the topography for the same area from GTOPO30 and store it as topo.nc.

The DEM file comes from http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/w020n90

We make an gradient grid as well, which we will use to "illuminate" the flag.

gmt grdcut W020N90.DEM $Rflag -Gtopo.nc=ns

gmt grdgradient topo.nc -A0/270 -Gillum.nc -Ne0.6

The color map assigns "Reflex Blue" to the lower half of the 0-255 range and

"Yellow" to the upper half.

cat << EOF > euflag.cpt

0 0/51/153 127 0/51/153

11.32. Draping an image over topography 165

GMT Documentation, Release 5.1.1

127 255/204/0 255 255/204/0

EOF

The next step is the plotting of the image.

We use gmt grdview to plot the topography, euflag.nc to give the color, and illum.nc to give

the shading.

Rplot=$Rflag/-10/790

gmt grdview topo.nc -JM13c $Rplot -Ceuflag.cpt -Geuflag.nc -Iillum.nc -Qc -JZ1c -p157.5/30 -P -K > $ps

We now add borders. Because we have a 3-D plot, we want them to be plotted "at elevation".

So we write out the borders, pipe them through grdtack and then plot them with psxyz.

gmt pscoast $Rflag -Df -M -N1 | gmt grdtrack -Gtopo.nc -sa | gmt psxyz $Rplot -J -JZ -p -W1p,white \

-O -K >> $ps

Finally, we add dots and names for three cities.

Again, gmt grdtrack is used to put the dots "at elevation".

cat << EOF > cities.txt

05:41:27 50:51:05 Maastricht

04:21:00 50:51:00 Bruxelles

07:07:03 50:43:09 Bonn

EOF

gmt grdtrack -Gtopo.nc -sa cities.txt | gmt psxyz -i0,1,3 $Rplot -J -JZ -p -Sc7p -W1p,white -Gred \

-K -O >> $ps

gmt pstext $Rplot -J -JZ -p -F+f12p,Helvetica-Bold,red+jRM -Dj0.1i/0.0i -O cities.txt >> $ps

cleanup

rm -f gmt.conf euflag.cpt illum.nc cities.txt

Maastricht

Bruxelles

Bonn

11.33 Stacking automatically generated cross-profiles

The script produces the plot in Figure Example 33. Here we demonstrate how grdtrack can be used
to automatically create a suite of crossing profiles of uniform spacing and length and then sample one
or more grids along these profiles; we also use the median stacking option to create a stacked profile,
showed above the map, with the gray area representing the variations about the stacked median profile.

#!/bin/bash

GMT EXAMPLE 33

$Id $

#

Purpose: Illustrate grdtrack’s new cross-track and stacking options

GMT progs: makecpt, gmtconvert, grdimage, grdgradient, grdtrack, pstext, psxy

GMT progs: pscoast, pstext

Unix progs: cat, rm

166 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

#

ps=example_33.ps

Extract a subset of ETOPO1m for the East Pacific Rise

gmt grdcut etopo1m_grd.nc -R118W/107W/49S/42S -Gspac.nc

gmt makecpt -Crainbow -T-5000/-2000/500 -Z > z.cpt

gmt grdgradient spac.nc -A15 -Ne0.75 -Gspac_int.nc

gmt grdimage spac.nc -Ispac_int.nc -Cz.cpt -JM6i -P -Baf -K -Xc --FORMAT_GEO_MAP=dddF > $ps

Select two points along the ridge

cat << EOF > ridge.txt

-111.6 -43.0

-113.3 -47.5

EOF

Plot ridge segment and end points

gmt psxy -Rspac.nc -J -O -K -W2p,blue ridge.txt >> $ps

gmt psxy -R -J -O -K -Sc0.1i -Gblue ridge.txt >> $ps

Generate cross-profiles 400 km long, spaced 10 km, samped every 2km

and stack these using the median, write stacked profile

gmt grdtrack ridge.txt -Gspac.nc -C400k/2k/10k -Sm+sstack.txt > table.txt

gmt psxy -R -J -O -K -W0.5p table.txt >> $ps

Show upper/lower values encountered as an envelope

gmt gmtconvert stack.txt -o0,5 > env.txt

gmt gmtconvert stack.txt -o0,6 -I -T >> env.txt

gmt psxy -R-200/200/-3500/-2000 -Bxafg1000+l"Distance from ridge (km)" -Byaf+l"Depth (m)" -BWSne \

-JX6i/3i -O -K -Glightgray env.txt -Y6.5i >> $ps

gmt psxy -R -J -O -K -W3p stack.txt >> $ps

echo "0 -2000 MEDIAN STACKED PROFILE" | gmt pstext -R -J -O -K -Gwhite -F+jTC+f14p -Dj0.1i >> $ps

gmt psxy -R -J -O -T >> $ps

cleanup

rm -f gmt.conf z.cpt spac_int.nc ridge.txt table.txt env.txt stack.txt

11.34 Using country polygons for plotting and shading

The script produces the plot in Figure Example 34. Here we demonstrate how pscoast can be used
to extract and plot country polygons. We show two panels; one in which we do a basic basemap and
another where we lay down a color topography image and then place a transparent layer identifying the
future Franco-Italian Union whose untimely breakup in 2045 the historians will continue to debate for
some time.

#!/bin/bash

GMT EXAMPLE 34

#

Purpose: Illustrate pscoast with DCW country polygons

GMT progs: pscoast, makecpt, grdimage, grdgradient

Unix progs: rm

#

ps=example_34.ps

gmt gmtset FORMAT_GEO_MAP dddF

gmt pscoast -JM4.5i -R-6/20/35/52 -FFR,IT+gP300/8 -Glightgray -Baf -BWSne -P -K -X2i > $ps

Extract a subset of ETOPO2m for this part of Europe

gmt grdcut etopo2m_grd.nc -R -GFR+IT.nc=ns

gmt makecpt -Cglobe -T-5000/5000/500 -Z > z.cpt

gmt grdgradient FR+IT.nc -A15 -Ne0.75 -GFR+IT_int.nc

gmt grdimage FR+IT.nc -IFR+IT_int.nc -Cz.cpt -J -O -K -Y4.5i \

-Baf -BWsnE+t"Franco-Italian Union, 2042-45" >> $ps

gmt pscoast -J -R -FFR,IT+gred@60 -O >> $ps

cleanup

rm -f gmt.conf FR+IT_int.nc z.cpt

11.35 Spherical triangulation and distance calculations

The script produces the plot in Figure Example 35. Here we demonstrate how sphtriangulate

and sphdistance are used to compute the Delauney and Voronoi information on a sphere, using a

11.34. Using country polygons for plotting and shading 167

GMT Documentation, Release 5.1.1

118˚W

118˚W

116˚W

116˚W

114˚W

114˚W

112˚W

112˚W

110˚W

110˚W

108˚W

108˚W

48˚S 48˚S

46˚S 46˚S

44˚S 44˚S

42˚S 42˚S

-3500

-3000

-2500

-2000

D
e

p
th

 (
m

)

-200 -100 0 100 200

Distance from ridge (km)

MEDIAN STACKED PROFILE

168 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

5˚W 0˚ 5˚E 10˚E 15˚E 20˚E

35˚N

40˚N

45˚N

50˚N

Franco-Italian Union, 2042-45

35˚N 35˚N

40˚N 40˚N

45˚N 45˚N

50˚N 50˚N

11.35. Spherical triangulation and distance calculations 169

GMT Documentation, Release 5.1.1

decimated GSHHG crude coastline. We show a color image of the distances, highlighted with 500-km
contours, and overlay the Voronoi polygons in green. Finally, the continents are placed on top.

#!/bin/bash

GMT EXAMPLE 35

Id

#

Purpose: Illustrate sphtriangulate and sphdistance with GSHHG crude data

GMT progs: pscoast, psxy, makecpt, grdimage, grdcontour, sphtriangulate, sphdistance

Unix progs: rm

#

ps=example_35.ps

Get the crude GSHHS data, select GMT format, and decimate to ~20%:

gshhs $GMTHOME/src/coast/gshhs/gshhs_c.b | $AWK ’{if ($1 == ">" || NR%5 == 0) print $0}’ > gshhs_c.txt

Get Voronoi polygons

gmt sphtriangulate gshhs_c.txt -Qv -D > tt.pol

Compute distances in km

gmt sphdistance -Rg -I1 -Qtt.pol -Gtt.nc -Lk

gmt makecpt -Chot -T0/3500/500 -Z > t.cpt

Make a basic image plot and overlay contours, Voronoi polygons and coastlines

gmt grdimage tt.nc -JG-140/30/7i -P -K -Ct.cpt -X0.75i -Y2i > $ps

gmt grdcontour tt.nc -J -O -K -C500 -A1000+f10p,Helvetica,white -L500 -GL0/90/203/-10,175/60/170/-30,-50/30/220/-5

gmt psxy -R -J -O -K tt.pol -W0.25p,green,. >> $ps

gmt pscoast -R -J -O -W1p -Gsteelblue -A0/1/1 -B30g30 -B+t"Distances from GSHHG crude coastlines" >> $ps

cleanup

rm -f gmt.conf tt.pol tt.nc t.cpt

1000

1000

1000

1
0
0
0

1000

1000

1000

1000

2000

2000

2000

2
0
0
0

Distances from GSHHG crude coastlines

11.36 Spherical gridding using Renka’s algorithms

The next script produces the plot in Figure Example 36. Here we demonstrate how sphinterpolate

can be used to perform spherical gridding. Our example uses early measurements of the radius of Mars

170 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

from Mariner 9 and Viking Orbiter spacecrafts. The middle panels shows the data distribution while
the top and bottom panel are images of the interpolation using a piecewise linear interpolation and
a smoothed spline interpolation, respectively. For spherical gridding with large volumes of data we
recommend sphinterpolate while for small data sets (such as this one, actually) you have more
flexibility with greenspline.

#!/bin/bash

GMT EXAMPLE 36

Id

#

Purpose: Illustrate sphinterpolate with Mars radii data

GMT progs: psxy, makecpt, grdimage, sphinterpolate

Unix progs: rm

#

ps=example_36.ps

Interpolate data of Mars radius from Mariner9 and Viking Orbiter spacecrafts

gmt makecpt -Crainbow -T-7000/15000/1000 -Z > tt.cpt

Piecewise linear interpolation; no tension

gmt sphinterpolate mars370.txt -Rg -I1 -Q0 -Gtt.nc

gmt grdimage tt.nc -JH0/6i -Bag -Ctt.cpt -P -Xc -Y7.25i -K > $ps

gmt psxy -Rg -J -O -K mars370.txt -Sc0.05i -G0 -B30g30 -Y-3.25i >> $ps

Smoothing

gmt sphinterpolate mars370.txt -Rg -I1 -Q3 -Gtt.nc

gmt grdimage tt.nc -J -Bag -Ctt.cpt -Y-3.25i -O -K >> $ps

gmt psxy -Rg -J -O -T >> $ps

cleanup

rm -f gmt.conf tt.cpt tt.nc

11.37 Spectral coherence between gravity and bathymetry grids

The next script produces the plot in Figure Example 37. We demonstrate how grdfft is used to com-
pute the spectral coherence between two data sets, here multibeam bathymetry and satellite-derived
gravity. The grids are detrended and tapered before the Fourier transform is computed; the intermediate
plots show the grids being extended and padded to a suitable dimension.

#!/bin/bash

GMT EXAMPLE 37

Id

#

Purpose: Illustrate 2-D FFT and coherence between gravity and bathymetry grids

GMT progs: psbasemap, psxy, makecpt, grdfft, grdimage, grdinfo, grdgradient

Unix progs: rm

#

ps=example_37.ps

Testing gmt grdfft coherence calculation with Karen Marks example data

Prefix of two .nc files

G=grav.V18.par.surf.1km.sq

T=mb.par.surf.1km.sq

gmt gmtset FONT_TITLE 14p

gmt makecpt -Crainbow -T-5000/-3000/100 -Z > z.cpt

gmt makecpt -Crainbow -T-50/25/5 -Z > g.cpt

gmt grdinfo $T.nc -Ib > bbox

gmt grdgradient $G.nc -A0 -Nt1 -G_int.nc

gmt grdgradient $T.nc -A0 -Nt1 -G_int.nc

scl=1.4e-5

sclkm=1.4e-2

gmt grdimage $T.nc -I_int.nc -Jxi -Cz.cpt -P -K -X1.474i -Y1i > $ps

gmt psbasemap -R-84/75/-78/81 -Jxi -O -K -Ba -BWSne+t"Multibeam bathymetry" >> $ps

gmt grdimage $G.nc -I_int.nc -Jxi -Cg.cpt -O -K -X3.25i >> $ps

gmt psbasemap -R-84/75/-78/81 -Jxi -O -K -Ba -BWSne+t"Satellite gravity" >> $ps

gmt grdfft $T.nc $G.nc -Ewk -N192/192+d+wtmp > cross.txt

gmt grdgradient _tmp.nc -A0 -Nt1 -G_tmp_int.nc

11.37. Spectral coherence between gravity and bathymetry grids 171

GMT Documentation, Release 5.1.1

-60˚ -60˚

0˚ 0˚

60˚ 60˚

-60˚ -60˚

-30˚ -30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

-60˚ -60˚

0˚ 0˚

60˚ 60˚

172 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

gmt grdgradient _tmp.nc -A0 -Nt1 -G_tmp_int.nc

gmt makecpt -Crainbow -T-1500/1500/100 -Z > z.cpt

gmt makecpt -Crainbow -T-40/40/5 -Z > g.cpt

gmt grdimage _tmp.nc -I_tmp_int.nc -Jxi -Cz.cpt -O -K -X-3.474i -Y3i >> $ps

gmt psxy -R_tmp.nc -J bbox -O -K -L -W0.5p,- >> $ps

gmt psbasemap -R-100/91/-94/97 -Jxi -O -K -Ba -BWSne+t"Detrended and extended" >> $ps

gmt grdimage _tmp.nc -I_tmp_int.nc -Jxi -Cg.cpt -O -K -X3.25i >> $ps

gmt psxy -R_tmp.nc -J bbox -O -K -L -W0.5p,- >> $ps

gmt psbasemap -R-100/91/-94/97 -Jxi -O -K -Ba -BWSne+t"Detrended and extended" >> $ps

gmt gmtset FONT_TITLE 24p

gmt psxy -R2/160/0/1 -JX-6il/2.5i -Bxa2f3g3+u" km" -Byafg0.5+l"Coherency@+2@+" -BWsNe+t"Coherency between gravity

gmt psxy -R -J cross.txt -O -K -i0,15,16 -Sc0.075i -Gred -W0.25p -Ey >> $ps

gmt psxy -R -J -O -T >> $ps

rm -f cross.txt *_tmp.nc *_int.nc ?.cpt bbox

-50

0

50

-50 0 50

Multibeam bathymetry

-50

0

50

-50 0 50

Satellite gravity

-50

0

50

-100 -50 0 50

Detrended and extended

-50

0

50

-100 -50 0 50

Detrended and extended

0.0

0.2

0.4

0.6

0.8

1.0

C
o

h
e

re
n

c
y

2

2 km5 km10 km20 km50 km100 km

Coherency between gravity and bathymetry

11.37. Spectral coherence between gravity and bathymetry grids 173

GMT Documentation, Release 5.1.1

11.38 Histogram equalization of bathymetry grids

The next script produces the plot in Figure Example 38. This example shows how to use histogram
equalization to enhance various ranges of a grid depending on its frequency distribution. The key tool
used here is grdhisteq.

#!/bin/bash

GMT EXAMPLE 38

Id

#

Purpose: Illustrate histogram equalization on topography grids

GMT progs: psscale, pstext, makecpt, grdhisteq, grdimage, grdinfo, grdgradient

Unix progs: rm

#

ps=example_38.ps

gmt makecpt -Crainbow -T0/1700/100 -Z > t.cpt

gmt makecpt -Crainbow -T0/15/1 > c.cpt

gmt grdgradient topo.nc -Nt1 -fg -A45 -Gitopo.nc

gmt grdhisteq topo.nc -Gout.nc -C16

gmt grdimage topo.nc -Iitopo.nc -Ct.cpt -JM3i -Y5i -K -P -B5 -BWSne > $ps

echo "315 -10 Original" | gmt pstext -Rtopo.nc -J -O -K -F+jTR+f14p -T -Gwhite -W1p -Dj0.1i >> $ps

gmt grdimage out.nc -Cc.cpt -J -X3.5i -K -O -B5 -BWSne >> $ps

echo "315 -10 Equalized" | gmt pstext -R -J -O -K -F+jTR+f14p -T -Gwhite -W1p -Dj0.1i >> $ps

gmt psscale -D0i/-0.4i/5i/0.15ih -O -K -Ct.cpt -Ba500 -By+lm -E+n >> $ps

gmt grdhisteq topo.nc -Gout.nc -N

gmt makecpt -Crainbow -T-3/3/0.1 -Z > c.cpt

gmt grdimage out.nc -Cc.cpt -J -X-3.5i -Y-3.3i -K -O -B5 -BWSne >> $ps

echo "315 -10 Normalized" | gmt pstext -R -J -O -K -F+jTR+f14p -T -Gwhite -W1p -Dj0.1i >> $ps

gmt grdhisteq topo.nc -Gout.nc -N

gmt grdimage out.nc -Cc.cpt -J -X3.5i -K -O -B5 -BWSne >> $ps

echo "315 -10 Quadratic" | gmt pstext -R -J -O -K -F+jTR+f14p -T -Gwhite -W1p -Dj0.1i >> $ps

gmt psscale -D0i/-0.4i/5i/0.15ih -O -Cc.cpt -Bx1 -By+lz -E+n >> $ps

rm -f itopo.nc out.nc ?.cpt

-60˚ -55˚ -50˚ -45˚
-20˚

-15˚

-10˚
Original

-60˚ -55˚ -50˚ -45˚
-20˚

-15˚

-10˚
Equalized

NaN

0 500 1000 1500

m

-60˚ -55˚ -50˚ -45˚
-20˚

-15˚

-10˚
Normalized

-60˚ -55˚ -50˚ -45˚
-20˚

-15˚

-10˚
Quadratic

NaN

-3 -2 -1 0 1 2 3

z

174 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

11.39 Evaluation of spherical harmonics coefficients

The next script produces the plot in Figure Example 39. We use a spherical harmonic model for the
topography of Venus and evaluate the resulting global grid for three sets of upper order/degrees, here
30, 90, and 180; the original file (see below) goes to order and degree 720. We use the coefficients to
evaluate the grids and make perspective globes of the different resolutions. The key tool used here is
sph2grd.

#!/bin/bash

GMT EXAMPLE 39

Id

#

Purpose: Illustrate evaluation of spherical harmonic coefficients

GMT progs: psscale, pstext, makecpt, grdimage, grdgradient, sph2grd

Unix progs: rm

#

ps=example_39.ps

Evaluate the first 180, 90, and 30 order/degrees of Venus spherical

harmonics topography model, skipping the L = 0 term (radial mean).

File truncated from http://www.ipgp.fr/~wieczor/SH/VenusTopo180.txt.zip

Wieczorek, M. A., Gravity and topography of the terrestrial planets,

Treatise on Geophysics, 10, 165-205, doi:10.1016/B978-044452748-6/00156-5, 2007

gmt sph2grd VenusTopo180.txt -I1 -Rg -Ng -Gv1.nc -F1/1/25/30

gmt sph2grd VenusTopo180.txt -I1 -Rg -Ng -Gv2.nc -F1/1/85/90

gmt sph2grd VenusTopo180.txt -I1 -Rg -Ng -Gv3.nc -F1/1/170/180

gmt grd2cpt v3.nc -Crainbow -E16 -Z > t.cpt

gmt grdgradient v1.nc -Nt0.75 -A45 -Gvint.nc

gmt grdimage v1.nc -Ivint.nc -JG90/30/5i -P -K -Bg -Ct.cpt -X3i -Y1.1i > $ps

echo 4 4.5 L = 30 | gmt pstext -R0/6/0/6 -Jx1i -O -K -Dj0.2i -F+f16p+jLM -N >> $ps

gmt psscale -Ct.cpt -O -K -D1.25i/-0.2i/5.5i/0.1ih -Bxaf -By+lm >> $ps

gmt grdgradient v2.nc -Nt0.75 -A45 -Gvint.nc

gmt grdimage v2.nc -Ivint.nc -JG -O -K -Bg -Ct.cpt -X-1.25i -Y1.9i >> $ps

echo 4 4.5 L = 90 | gmt pstext -R0/6/0/6 -Jx1i -O -K -Dj0.2i -F+f16p+jLM -N >> $ps

gmt sph2grd VenusTopo180.txt -I1 -Rg -Ng -Gv3.nc -F1/1/170/180

gmt grdgradient v3.nc -Nt0.75 -A45 -Gvint.nc

gmt grdimage v3.nc -Ivint.nc -JG -O -K -Bg -Ct.cpt -X-1.25i -Y1.9i >> $ps

echo 4 4.5 L = 180 | gmt pstext -R0/6/0/6 -Jx1i -O -K -Dj0.2i -F+f16p+jLM -N >> $ps

echo 3.75 5.4 Venus Spherical Harmonic Model | gmt pstext -R0/6/0/6 -Jx1i -O -F+f24p+jCM -N >> $ps

rm -f v*.nc t.cpt

11.40 line simplification and area calculations

#!/bin/bash

GMT EXAMPLE 40

$Id $

#

Purpose: Illustrate line simplification and area calculations

GMT progs: psbasemap, pstext, psxy, gmtsimplify, gmtspatial

Unix progs: awk, rm

#

ps=example_40.ps

gmt gmtspatial GSHHS_h_Australia.txt -fg -Qk > centroid.txt

gmt psbasemap -R112/154/-40/-10 -JM5.5i -P -K -B20 -BWSne+g240/255/240 -Xc > $ps

gmt psxy GSHHS_h_Australia.txt -R -J -O -Wfaint -G240/240/255 -K >> $ps

gmt psxy GSHHS_h_Australia.txt -R -J -O -Sc0.01c -Gred -K >> $ps

gmt gmtsimplify GSHHS_h_Australia.txt -T500k > T500k.txt

gmt gmtspatial GSHHS_h_Australia.txt -fg -Qk | awk ’{printf "Full area = %.0f km@+2@+\n", $3}’ > area.txt

gmt gmtspatial T500k.txt -fg -Qk | awk ’{printf "Reduced area = %.0f km@+2@+\n", $3}’ > area_T500k.txt

gmt psxy -R -J -O -K -W1p,blue T500k.txt >> $ps

gmt psxy -R -J -O -K -Sx0.3i -W3p centroid.txt >> $ps

echo 112 -10 T = 500 km | gmt pstext -R -J -O -K -Dj0.1i/0.1i -F+jTL+f18p >> $ps

gmt pstext -R -J -O -K area.txt -F+14p+cCM >> $ps

gmt pstext -R -J -O -K area_T500k.txt -F+14p+cLB -Dj0.2i >> $ps

11.39. Evaluation of spherical harmonics coefficients 175

GMT Documentation, Release 5.1.1

L = 30

-2000 0 2000 4000 6000 8000 10000

m

L = 90

L = 180

Venus Spherical Harmonic Model

176 Chapter 11. Creating GMT Graphics

GMT Documentation, Release 5.1.1

gmt psbasemap -R -J -O -K -B20+lightgray -BWsne+g240/255/240 -Y4.7i >> $ps

gmt psxy GSHHS_h_Australia.txt -R -J -O -Wfaint -G240/240/255 -K >> $ps

gmt psxy GSHHS_h_Australia.txt -R -J -O -Sc0.01c -Gred -K >> $ps

gmt gmtsimplify GSHHS_h_Australia.txt -T100k > T100k.txt

gmt gmtspatial T100k.txt -fg -Qk | awk ’{printf "Reduced area = %.0f km@+2@+\n", $3}’ > area_T100k.txt

gmt psxy -R -J -O -K -W1p,blue T100k.txt >> $ps

gmt psxy -R -J -O -K -Sx0.3i -W3p centroid.txt >> $ps

echo 112 -10 T = 100 km | gmt pstext -R -J -O -K -Dj0.1i/0.1i -F+jTL+f18p >> $ps

gmt pstext -R -J -O -K area.txt -F+14p+cCM >> $ps

gmt pstext -R -J -O -K area_T100k.txt -F+14p+cLB -Dj0.2i >> $ps

gmt psxy -R -J -O -T >> $ps

rm -f centroid.txt area*.txt T*.txt

120˚ 140˚

-40˚

-20˚

T = 500 km

Full area = 7592695 km2

Reduced area = 7462699 km2

-40˚

-20˚

T = 100 km

Full area = 7592695 km2

Reduced area = 7593158 km2

11.40. line simplification and area calculations 177

GMT Documentation, Release 5.1.1

178 Chapter 11. Creating GMT Graphics

CHAPTER 12

Creating GMT Animations

Unlike the previous chapter, in this chapter we will explore what is involved in creating animations (i.e.,
movies). Of course, an animation is nothing more than a series of individual images played back in an
orderly fashion. Here, these images will have been created with GMT. To ensure a smooth transition
from frame to frame we will be following some general guidelines when writing our scripts. Since there
is no “movie” mode in GMT we must take care of all the book-keeping in our script. Thus, animations
may require a bit of planning and may use more advanced scripting than the previous static examples.
Note: This is a new chapter introduced with the 4.4.0 version and should be considered work in progress.

Most, if not all, animation scripts must deal with several specific phases of movie making:

1. Define parameters that determine the dimension of the final movie.

2. Pre-calculate all variables, data tables, grids, or background map layers that are independent of
your time variable.

3. Have a frame-number loop where each frame is created as a PostScript plot, then rasterized to a
TIFF file of chosen dimension.

4. Convert the individual frames to a single movie of suitable format.

5. Clean up temporary files and eventually the individual frames.

We will discuss these phases in more detail before showing our first example.

1. There are several coordinates that you need to consider when planning your movie. The first is
the coordinates of your data, i.e., the user coordinates. As with all GMT plots you will transform
those to the second set of plot coordinates in inches (or cm) by applying a suitable region and map
projection. As before, you normally do this with a particular paper size in mind. When printed you
get a high-resolution plot in monochrome or color. However, movies are not device-independent
and you must finally consider the third set of pixel coordinates which specifies the resolution of
the final movie. We control the frame size by selecting a suitable dpi setting that will scale your
physical dimensions to the desired frame size in pixels. If you decide up front on a particular
resolution (e.g., 480 by 320 pixels) then you should specify a paper size and dpi so that their
product yields the desired pixel dimensions. For instance, here it might make sense to plan your
plotting on a 4.8 by 3.2 inch “paper” and use 100 dpi to convert it to pixels, but you are free to use
any combination that multiplies to the desired dimensions. After deciding on frame size you need
to consider how many frames your movie should have. This depends on lots of things such as how
patient you are, how many frames per second you need and the time range of your animation. We
recommend you use variables to specify the items that go into computing the number of frames
so that you can easily test your script with a few frames before changing settings and running the
full Hollywood production overnight.

179

GMT Documentation, Release 5.1.1

2. Depending on what you want to display, there are usually many elements that do not change be-
tween frames. Examples include a coastline base map for background, an overlay of text legends,
perhaps some variables that hold information that will be used during the movie, and possibly
subsets of larger data sets. Since movie-making can take a long time if you are ambitious, it is
best to compute or plot all the elements that can be done outside your main frame-loop rather than
waste time doing the same thing over and over again. You are then ready for the main loop.

3. Initialize a frame counter to 0 and have a loop that continues until your frame counter equals
the desired number of frames. You must use your frame counter to create a unique file name for
each frame image so that the series of images can be lexically arranged. We recommend using
the GMT shell function gmt_set_framename to format the frame counter with an adequate num-
ber of leading zeros; see our examples for details. The bulk of your main loop involves create
the single PostScript plot for this particular frame (time). This can be trivial or a serious script-
ing exercise depending on what you want to show. We will give a few examples with increas-
ing complexity. Once the PostScript plot is created you need to rasterize it; we recommend you
use ps2raster to generate a TIFF image at the agreed-upon resolution. We also recommend
that you place all frame images in a sub-directory. You may increment your frame counter using
gmt_set_framenext.

4. Once you have all your frames you are ready to combine them into an animation. There are two
general approaches. (a) If your image sequence is not too long then you can convert the images
into a single animated GIF file. This file can be included in PowerPoint presentations or placed
on a web page and will play back as a movie by pausing the specified amount between frames,
optionally repeating the entire sequence one or more times. (b) For more elaborate projects you
will need to convert the frames into a proper movie format such as Quicktime, AVI, MPEG-2,
MPEG-4, etc., etc. There are both free and commercial tools that can help with this conversion
and they tend to be platform-specific. Most movie tools such as iMovie or MovieMaker can ingest
still images and let you specify the frame duration. Under OS X we prefer to use Quicktime. 1 Free
tools exist to call the Quicktime library functions from the command line as we prefer to do in
our scripts. Another choice is to use the free mencoder. You will find yourself experimenting with
compression settings and movie formats so that the final movie has the resolution and portability
you require.

5. Finally, when all is done you should delete any temporary files created. However, since creating
the frames may take a lot of time it is best to not automatically delete the frame sub directory. That
way you can redo the frames-to-movie conversion with different settings until you are satisfied.

12.1 Animation of the sine function

Our first animation is not very ambitious: We wish to plot the sine function from 0-360 and take snap
shots every 20. To get a smooth curve we must sample the function much more frequently; we settle on
10 times more frequently than the frame spacing. We place a bright red circle at the leading edge of the
curve, and as we move forward in time (here, angles) we dim the older circles to a dark red color. We
add a label that indicates the current angle value. Once the 18 frames are completed we convert them to
a single animated GIF file and write a plain HTML wrapper with a simple legend. Opening the HTML
page in anim01.html the browser will display the animation.

#!/bin/bash

GMT ANIMATION 01

#

Purpose: Make web page with simple animated GIF of sine function

1 While Quicktime is free you must upgrade to QuickTime Pro (USD 30) to use the authoring functions.

180 Chapter 12. Creating GMT Animations

http://www.mplayerhq.hu/

GMT Documentation, Release 5.1.1

GMT progs: gmt gmtset, gmt gmtmath, gmt psbasemap, gmt pstext, gmt psxy, gmt ps2raster

Unix progs: printf, mkdir, rm, mv, echo, convert, cat

Note: Run with any argument to build movie; otherwise 1st frame is plotted only.

#

1. Initialization

1a) Assign movie parameters

width=4i

height=2i

dpi=125

n_frames=18

name=anim_01

ps=.ps

1b) Do frame-independent calculations and setup

angle_step=‘gmt gmtmath -Q 360 DIV =‘

angle_inc=‘gmt gmtmath -Q 10 DIV =‘

gmt psbasemap -R0/360/-1.2/1.6 -JX3.5i/1.65i -P -K -X0.35i -Y0.25i \

-BWSne+glightgreen -Bxa90g90f30+u\\312 -Bya0.5f0.1g1 \

--PS_MEDIA=x --FONT_ANNOT_PRIMARY=9p > $$.map.ps

2. Main frame loop

mkdir -p $$

frame=0

while [-le]; do

Create file name using a name_##.tif format

file=‘gmt_set_framename ‘

cp -f $$.map.ps $$.ps

angle=‘gmt gmtmath -Q MUL =‘

if [-gt 0]; then # First plot has no curves

Plot smooth blue curve and dark red dots at all angle steps so far

gmt gmtmath -T0// T SIND = $$.sin.d

gmt psxy -R -J -O -K -W1p,blue $$.sin.d >> $$.ps

gmt gmtmath -T0// T SIND = $$.sin.d

gmt psxy -R -J -O -K -Sc0.1i -Gdarkred $$.sin.d >> $$.ps

fi

Plot red dot at current angle and annotate

sin=‘gmt gmtmath -Q SIND =‘

gmt psxy -R -J -O -K -Sc0.1i -Gred >> $$.ps <<< " "

printf "0 1.6 a = %03d" | gmt pstext -R -J -F+f14p,Helvetica-Bold+jTL -O -K \

-N -Dj0.1i/0.05i >> $$.ps

gmt psxy -R -J -O -T >> $$.ps

if [$# -eq 0]; then

mv $$.ps

gmt_cleanup .gmt

gmt_abort ": First frame plotted to .ps"

fi

RIP to TIFF at specified dpi

gmt ps2raster -E -Tt $$.ps

mv -f $$.tif $$/.tif

echo "Frame completed"

frame=‘gmt_set_framenext ‘

done

cp $$.ps t.ps

3. Create animated GIF file and HTML for web page

convert -delay 20 -loop 0 $$/_*.tif .gif

cat << END > .html

<HTML>

<TITLE>GMT Trigonometry: The sine movie</TITLE>

<BODY bgcolor="#ffffff">

<CENTER>

<H1>GMT Trigonometry: The sine movie</H1>

</CENTER>

<HR>

We demonstrate how the sine function <I>y = sin(a)</I> varies with <I>a</I> over

the full 360-degree interval. We plot a bright red circle at each

new angle, letting previous circles turn dark red. The underlying

sine curve is sampled at 10 times the frame sampling rate in order to reproduce

a smooth curve. Our animation uses Imagemagick’s convert tool to make an animated GIF file

with a 0.2 second pause between frames, set to repeat forever.

<HR>

<I>.sh: Created by on ‘date‘</I>

</BODY>

</HTML>

12.1. Animation of the sine function 181

GMT Documentation, Release 5.1.1

END

4. Clean up temporary files

gmt_cleanup .gmt

Make sure you understand the purpose of all the steps in our script. In this case we did some trial-and-
error to determine the exact values to use for the map projection, the region, the spacing around the
frame, etc. so that the final result gave a reasonable layout. Do this planning on a single PostScript plot
before running a lengthy animation script.

12.2 Examining DEMs using variable illumination

Our next animation uses a gridded topography for parts of Colorado (US); the file is distributed with
the tutorial examples. Here, we want to use grdimage to generate a shaded-relief image sequence in
which we sweep the illumination azimuth around the entire horizon. The resulting animation illustrates
how changing the illumination azimuth can bring out subtle features (or artifacts) in the gridded data.
The red arrow points in the direction of the illumination.

#!/bin/bash

GMT ANIMATION 02

#

Purpose: Make web page with simple animated GIF of a DEM grid

GMT progs: gmt gmtset, gmt gmtmath, gmt grdgradient, gmt makecpt, gmt grdimage gmt psxy, gmt ps2raster

Unix progs: awk, mkdir, rm, mv, echo, convert, cat

Note: Run with any argument to build movie; otherwise 1st frame is plotted only.

#

1. Initialization

1a) Assign movie parameters

width=3.5i

height=4.15i

dpi=72

n_frames=36

name=anim_02

ps=.ps

1b) setup

del_angle=‘gmt gmtmath -Q 360 DIV =‘

gmt makecpt -Crainbow -T500/4500/5000 -Z > $$.cpt

2. Main loop

mkdir -p $$

frame=0

while [-lt]; do

Create file name using a name_##.tif format

file=‘gmt_set_framename ‘

angle=‘gmt gmtmath -Q MUL =‘

dir=‘gmt gmtmath -Q 180 ADD =‘

gmt grdgradient us.nc -A -Nt2 -fg -G$$.us_int.nc

gmt grdimage us.nc -I$$.us_int.nc -JM3i -P -K -C$$.cpt -BWSne -B1 -X0.35i -Y0.3i \

--PS_MEDIA=x --FONT_ANNOT_PRIMARY=9p > $$.ps

gmt psxy -Rus.nc -J -O -K -Sc0.8i -Gwhite -Wthin >> $$.ps <<< "256.25 35.6"

gmt psxy -Rus.nc -J -O -Sv0.1i+e -Gred -Wthick >> $$.ps <<< "256.25 35.6 0.37"

if [$# -eq 0]; then

mv $$.ps

gmt_cleanup .gmt

gmt_abort ": First frame plotted to .ps"

fi

RIP to TIFF at specified dpi

gmt ps2raster -E -Tt $$.ps

mv -f $$.tif $$/.tif

echo "Frame completed"

frame=‘gmt_set_framenext ‘

done

3. Create animated GIF file and HTML for web page

convert -delay 10 -loop 0 $$/*.tif .gif

cat << END > .html

<HTML>

<TITLE>GMT shading: A tool for feature detection</TITLE>

182 Chapter 12. Creating GMT Animations

GMT Documentation, Release 5.1.1

<BODY bgcolor="#ffffff">

<CENTER>

<H1>GMT shading: A tool for feature detection</H1>

</CENTER>

<HR>

We make illuminated images of topography from a section of Colorado and

vary the azimuth of the illumination (see arrow). As the light-source sweeps around

the area over 360 degrees we notice that different features in the data

become hightlighted. This is because the illumination is based on data

gradients and such derivatives will high-light short-wavelength signal.

Again, our animation uses Imagemagick’s convert tool to make an animated GIF file

with a 0.1 second pause between the 36 frames.

<HR>

<I>.sh: Created by on ‘date‘</I>

</BODY>

</HTML>

END

4. Clean up temporary files

gmt_cleanup .gmt

As you can see, these sorts of animations are not terribly difficult to put together, especially since our
vantage point is fixed. In the next example we will move the “camera” around and must therefore deal
with how to frame perspective views.

12.3 Orbiting a static map

Our third animation keeps a fixed gridded data set but moves the camera angle around the full 360.
We use grdview to generate a shaded-relief image sequence using the new enhanced -E option. No
additional information is plotted on the image. As before we produce an animated GIF image and a
simple HTML wrapper for it.

#!/bin/bash

GMT ANIMATION 03

#

Purpose: Make web page with simple animated GIF of Iceland topo

GMT progs: gmt gmtset, gmt gmtmath, gmt psbasemap, gmt psxy, gmt ps2raster

Unix progs: awk, mkdir, rm, mv, echo, convert, cat

Note: Run with any argument to build movie; otherwise 1st frame is plotted only.

#

1. Initialization

1a) Assign movie parameters

lon=-20

lat=65

dpi=100

x0=1.5

y0=0.75

px=4

py=2.5

el=35

az=0

name=anim_03

ps=.ps

mkdir -p $$

frame=0

gmt grdclip -Sb0/-1 -G$.nc Iceland.nc

gmt grdgradient -fg -A45 -Nt1 $.nc -G$$.nc

gmt makecpt -Crelief -Z > $$.cpt

while [-lt 360]; do

file=‘gmt_set_framename ‘

if [$# -eq 0]; then # If a single frame is requested we pick this view

az=135

fi

gmt grdview $.nc -R-26/-12/63/67 -JM2.5i -C$$.cpt -Qi -Bx5g10 -By5g5 -P -X0.5i -Y0.5i \

-p/+w/+v/ --PS_MEDIA=ixi > $$.ps

if [$# -eq 0]; then

12.3. Orbiting a static map 183

GMT Documentation, Release 5.1.1

mv $$.ps

gmt_cleanup .gmt

gmt_abort ": First frame plotted to .ps"

fi

gmt ps2raster $$.ps -Tt -E

mv $$.tif $$/.tif

az=‘expr + 5‘

echo "Frame completed"

frame=‘gmt_set_framenext ‘

done

convert -delay 10 -loop 0 $$/*.tif .gif

cat << END > .html

<HTML>

<TITLE>GMT 3-D perspective of Iceland</TITLE>

<BODY bgcolor="#ffffff">

<CENTER>

<H1>GMT 3-D perspective of Iceland</H1>

</CENTER>

<HR>

Here we show ETOPO2 topography of Iceland as we move the view

point around the island.

<I>.sh: Created by on ‘date‘</I>

</BODY>

</HTML>

END

4. Clean up temporary files

gmt_cleanup .gmt

12.4 Flying over topography

Our next animation simulates what an imaginary satellite might see as it passes in a great circle from
New York to Miami at an altitude of 160 km. We use the general perspective view projection with
grdimage and use project to create a great circle path between the two cities, sampled every 5 km.
The main part of the script will make the DVD-quality frames from different view points, draw the path
on the ground, and add frame numbers to each frame. As this animation generates 355 frames we can
use 3rd party tools to turn the image sequence into a MPEG-4 movie 2. Note: At the moment, grdview
cannot use general perspective view projection to allow “fly-through” animations like Fledermaus; we
expect to add this functionality in a future version.

#!/bin/bash

GMT ANIMATION 04

#

Purpose: Make DVD-res Quicktime movie of NY to Miami flight

GMT progs: gmt gmtset, gmt gmtmath, gmt psbasemap, gmt pstext, gmt psxy, gmt ps2raster

Unix progs: awk, mkdir, rm, mv, echo, qt_export, cat

Note: Run with any argument to build movie; otherwise 1st frame is plotted only.

#

1. Initialization

1a) Assign movie parameters

REGION=-Rg

altitude=160.0

tilt=55

azimuth=210

twist=0

Width=36.0

Height=34.0

px=7.2

py=4.8

dpi=100

name=anim_04

ps=.ps

2 QuickTime Pro can do this, as can most video-editing programs.

184 Chapter 12. Creating GMT Animations

GMT Documentation, Release 5.1.1

Set up flight path

gmt project -C-73.8333/40.75 -E-80.133/25.75 -G5 -Q > $$.path.d

frame=0

mkdir -p frames

gmt grdgradient USEast_Coast.nc -A90 -Nt1 -G$.nc

gmt makecpt -Cglobe -Z > $$.cpt

while read lon lat dist; do

file=‘gmt_set_framename ‘

ID=‘echo | $AWK ’{printf "%04d\n", $1}’‘

gmt grdimage -JG////////7i+ \

-P -Y0.1i -X0.1i USEast_Coast.nc -I$.nc -C$$.cpt \

--PS_MEDIA=ixi -K > $$.ps

gmt psxy -R -J -O -K -W1p $$.path.d >> $$.ps

gmt pstext -R0//0/ -Jx1i -F+f14p,Helvetica-Bold+jTL -O >> $$.ps <<< "0 4.6 "

if [$# -eq 0]; then

mv $$.ps

gmt_cleanup .gmt

gmt_abort ": First frame plotted to .ps"

fi

gmt ps2raster $$.ps -Tt -E

mv $$.tif frames/.tif

echo "Frame completed"

frame=‘gmt_set_framenext ‘

done < $$.path.d

if [$# -eq 0]; then

echo "anim_04.sh: Made frames at 480x720 pixels placed in subdirectory frames"

qt_export $$/anim_0_123456.tiff --video=h263,24,100, _movie.m4v

fi

4. Clean up temporary files

gmt_cleanup .gmt

12.4. Flying over topography 185

GMT Documentation, Release 5.1.1

186 Chapter 12. Creating GMT Animations

CHAPTER 13

A. GMT Supplemental Packages

These packages are for the most part written and supported by us, but there are some exceptions. They
provide extensions of GMT that are needed for particular rather than general applications. The software
is provided in a separate, supplemental archive (GMT_suppl.tar.gz (or .bz2)). Questions or bug reports
for this software should be addressed to the person(s) listed in the README file associated with the par-
ticular program. It is not guaranteed that these programs are fully ANSI-C, Y2K, or POSIX compliant,
or that they necessarily will install smoothly on all platforms, but most do. Note that the data sets some
of these programs work on are not distributed with these packages; they must be obtained separately.
The contents of the supplemental archive may change without notice; at this writing it contains these
directories:

13.1 gshhg: GSHHG data extractor

This package contains gshhg which you can use to extract shoreline polygons from the Global Self-
consistent Hierarchical High-resolution Shorelines (GSHHG) available separately from or the (GSHHG
is the polygon data base from which the GMT coastlines derive). The package is maintained by Paul
Wessel.

13.2 img: gridded altimetry extractor

This package consists of the program img2grd to extract subsets of the global gravity and predicted
topography solutions derived from satellite altimetry 1. The package is maintained by Walter Smith and
Paul Wessel.

13.3 meca: seismology and geodesy symbols

This package contains the programs pscoupe, psmeca, pspolar, and psvelo which are used by
seismologists and geodesists for plotting focal mechanisms (including cross-sections and polarities),
error ellipses, velocity arrows, rotational wedges, and more. The package was developed by Kurt Feigl
and Genevieve Patau but is now maintained by the GMT team.

1 For data bases, see http://topex.ucsd.edu/marine_grav/mar_grav.html.

187

http://topex.ucsd.edu/marine_grav/mar_grav.html

GMT Documentation, Release 5.1.1

13.4 mgd77: MGD77 extractor and plotting tools

This package currently holds the programs mgd77convert, mgd77info, mgd77list,
mgd77magref, mgd77manage, mgd77path, mgd77sniffer, and mgd77track which can be
used to extract information or data values from or plot marine geophysical data files in the ASCII
MGD77 or netCDF MGD77+ formats 2). This package has replaced the old mgg package. The package
is maintained by Paul Wessel.

13.5 misc: Miscellaneous tools

At the moment, this package contains the program dimfilter, which is an extension of grdfilter
in that it allows for spatial directional filtering. The package is maintained by Paul Wessel.

13.6 potential: Geopotential tools

At the moment, this package contains the programs gravfft, which performs gravity, isostasy, and
admittance calculation for grids, grdredpol, which compute the continuous reduction to the pole,
AKA differential RTP for magnetic data, grdseamount, which computes synthetic bathymetry over
various seamount shapes, and gmtgravmag3d and grdgravmag3d, which computes the gravity or
magnetic anomaly of a body by the method of Okabe 3. The package is maintained by Joaquim Luis and
Paul Wessel.

13.7 segyprogs: plotting SEGY seismic data

This package contains programs to plot SEGY seismic data files using the GMT mapping transforma-
tions and postscript library. pssegy generates a 2-D plot (x:location and y:time/depth) while pssegyz
generates a 3-D plot (x and y: location coordinates, z: time/depth). Locations may be read from prede-
fined or arbitrary portions of each trace header. Finally, segy2grd can convert SEGY data to a GMT
grid file. The package is maintained by Tim Henstock 4.

13.8 spotter: backtracking and hotspotting

This package contains the plate tectonic programs backtracker, which you can use to move ge-
ologic markers forward or backward in time, grdpmodeler which evaluates predictions of a plate
motion model on a grid, grdrotater which rotates entire grids using a finite rotation, hotspotter
which generates CVA grids based on seamount locations and a set of absolute plate motion stage poles
(grdspotter does the same using a bathymetry grid instead of seamount locations), originator,
which associates seamounts with the most likely hotspot origins, and rotconverter which does
various operations involving finite rotations on a sphere. The package is maintained by Paul Wessel.

2 The ASCII MGD77 data are available on CD-ROM from NGDC (http://www.ngdc.noaa.gov/).
3 Okabe, M., 1979, Analytical expressions for gravity anomalies due to polyhedral bodies and translation into magnetic

anomalies, Geophysics, 44, 730–741.
4 Timothy J. Henstock, University of Southampton

188 Chapter 13. A. GMT Supplemental Packages

http://www.ngdc.noaa.gov/
http://www.southampton.ac.uk/oes/research/staff/then.page

GMT Documentation, Release 5.1.1

13.9 x2sys: track crossover error estimation

This package contains the tools x2sys_datalist, which allows you to extract data from almost any
binary or ASCII data file, and x2sys_cross which determines crossover locations and errors gener-
ated by one or several geospatial tracks. Newly added are the tools x2sys_init, x2sys_binlist,
x2sys_get, x2sys_list, x2sys_put, x2sys_report, x2sys_solve and x2sys_merge
which extends the track-management system employed by the mgg supplement to generic track data of
any format. This package represents a new generation of tools and replaces the old x_system package.
The package is maintained by Paul Wessel.

13.9. x2sys: track crossover error estimation 189

GMT Documentation, Release 5.1.1

190 Chapter 13. A. GMT Supplemental Packages

CHAPTER 14

B. GMT File Formats

14.1 Table data

These files have N records which have M fields each. All programs that handle tables can read multicol-
umn files. GMT can read both ASCII, native binary, and netCDF table data.

14.1.1 ASCII tables

Optional file header records

The first data record may be preceded by one or more header records. Any records that begins with
‘#’ is considered a header or comment line and are always processed correctly. If your data file has
leading header records that do not start with ‘#’ then you must make sure to use the -h option and set
the parameter IO_N_HEADER_RECS in the gmt.conf file (GMT default is one header record if -h

is given; you may also use -hnrecs directly). Fields within a record must be separated by spaces, tabs,
or commas. Each field can be an integer or floating-point number or a geographic coordinate string
using the [+|-]dd[:mm[:ss]][W:|S|N|E|w|s|n|e] format. Thus, 12:30:44.5W, 17.5S, 1:00:05, and 200:45E
are all valid input strings. On output, fields will be separated by the character given by the parameter
IO_COL_SEPARATOR, which by default is a TAB.

Optional segment header records

When dealing with time- or (x,y)-series it is usually convenient to have each profile in separate files.
However, this may sometimes prove impractical due to large numbers of profiles. An example is files
of digitized lineations where the number of individual features may range into the thousands. One file
per feature would in this case be unreasonable and furthermore clog up the directory. GMT provides
a mechanism for keeping more than one profile in a file. Such files are called multiple segment files

and are identical to the ones just outlined except that they have segment headers interspersed with data
records that signal the start of a new segment. The segment headers may be of any format, but all must
have the same character in the first column. The unique character is by default ‘>’, but you can over-
ride that by modifying the IO_SEGMENT_MARKER default setting. Programs can examine the segment
headers to see if they contain -D for a distance value, -W and -G options for specifying pen and fill at-
tributes for individual segments, -Z to change color via a CPT file, -L for label specifications, or -T for
general-purpose text descriptions. These settings (and occasionally others) will override the correspond-
ing command line options. GMT also provides for two special values for IO_SEGMENT_MARKER that
can make interoperability with other software packages easier. Choose the marker B to have blank lines
recognized as segment breaks, or use N to have data records whose fields equal NaN mean segment

191

GMT Documentation, Release 5.1.1

breaks (e.g., as used by Matlab or Octave). When these markers are used then no other segment header
will be considered. Note that IO_SEGMENT_MARKER can be set differently for input and output. Fi-
nally, if a segment represents a closed polygon that is a hole inside another polygon you indicate this
with -Ph. This setting will be read and processed if converting a file to the OGR format.

14.1.2 Binary tables

GMT programs also support native binary tables to speed up input-output for i/o-intensive tasks like
gridding and preprocessing. This is discussed in more detail in section Binary table i/o: The -b option.

14.1.3 NetCDF tables

More and more programs are now producing binary data in the netCDF format, and so GMT programs
started to support tabular netCDF data (files containing one or more 1-dimensional arrays) starting with
GMT version 4.3.0. Because of the meta data contained in those files, reading them is much less complex
than reading native binary tables, and even than ASCII tables. GMT programs will read as many 1-
dimensional columns as are needed by the program, starting with the first 1-dimensional it can find
in the file. To specifically specify which variables are to be read, append the suffix ?var1/var2/... to
the netCDF file name or add the option -bicvar1/var2/..., where var1, var2, etc.are the names of the
variables to be processed. The latter option is particularly practical when more than one file is read: the
-bic option will apply to all files. Currently, GMT only reads, but does not write, netCDF tabular data.

14.2 Grid files

GMT allows numerous grid formats to be read. In addition to the default netCDF format it can use binary
floating points, short integers, bytes, and bits, as well as 8-bit Sun raster files (colormap ignored). Addi-
tional formats may be used by supplying read/write functions and linking these with the GMT libraries.
The source file gmt_customio.c has the information that programmers will need to augment GMT
to read custom grid files. See Section Grid file format specifications for more information.

14.2.1 NetCDF files

By default, GMT stores 2-D grids as COARDS-compliant netCDF files. COARDS (which stands for
Cooperative Ocean/Atmosphere Research Data Service) is a convention used by many agencies dis-
tributing gridded data for ocean and atmosphere research. Sticking to this convention allows GMT to
read gridded data provided by other institutes and other programs. Conversely, other general domain
programs will be able to read grids created by GMT. COARDS is a subset of a more extensive con-
vention for netCDF data called CF-1.5 (Climate and Forecast, version 1.5). Hence, GMT grids are also
automatically CF-1.5-compliant. However, since CF-1.5 has more general application than COARDS,
not all CF-1.5 compliant netCDF files can be read by GMT.

The netCDF grid file in GMT has several attributes (See Table netcdf-format) to de-
scribe the content. The routine that deals with netCDF grid files is sufficiently flexible
so that grid files slightly deviating from the standards used by GMT can also be read.

192 Chapter 14. B. GMT File Formats

GMT Documentation, Release 5.1.1

Atributte Description

Global attributes

Conventions COARDS, CF-1.5 (optional)
title Title (optional)
source How file was created (optional)
node_offset 0 for gridline node registration (default), 1 for pixel registration

x- and y-variable attributes

long_name Coordinate name (e.g., “Longitude” and “Latitude”)
units Unit of the coordinate (e.g., “degrees_east” and “degrees_north”)
actual range (or
valid range)

Minimum and maximum x and y of region; if absent the first and last x- and
y-values are queried
z-variable attributes

long_name Name of the variable (default: “z”)
units Unit of the variable
scale_factor Factor to multiply z with (default: 1)
add_offset Offset to add to scaled z (default: 0)
actual_range Minimum and maximum z (in unpacked units, optional) and z

_FillValue (or
missing_value)

Value associated with missing or invalid data points; if absent an appropriate
default value is assumed, depending on data type.

By default, the first 2-dimensional variable in a netCDF file will be read as the z variable and the coordi-
nate axes x and y will be determined from the dimensions of the z variable. GMT will recognize whether
the y (latitude) variable increases or decreases. Both forms of data storage are handled appropriately.

For more information on the use of COARDS-compliant netCDF files, and on how to load multi-
dimensional grids, read Section Modifiers for COARDS-compliant netCDF files.

14.2.2 Chunking and compression with netCDF

GMT supports reading and writing of netCDF-4 files since release 5.0. For performance reasons with
ever-increasing grid sizes, the default output format of GMT is netCDF-4 with chunking enabled for
grids with more than 16384 cells. Chunking means that the data is not stored sequentially in rows along
latitude but rather split up into tiles. Figure Grid split into 3 by 3 chunks illustrates the layout in a
chunked netCDF file. To access a subset of the data (e.g., the four blue tiles in the lower left), netCDF
only reads those tiles (“chunks”) instead of extracting data from long rows.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

46 47 48

49 50 51

52 53 54

55 56 57

58 59 60

61 62 63

64 65 66

67 68 69

70 71 72

73 74 75

76 77 78

79 80 81

82 83 84

85 86 87

88 89 90

91 92 93

94 95 96

97 98 99

100 101 102

103 104 105

106 107 108

Figure 14.1: Grid split into 3 by 3 chunks

14.2. Grid files 193

GMT Documentation, Release 5.1.1

Gridded datasets in the earth sciences usually exhibit a strong spatial dependence (e.g. topography,
potential fields, illustrated by blue and white cells in Figure Grid split into 3 by 3 chunks) and deflation
can greatly reduce the file size and hence the file access time (deflating/inflating is faster than hard
disk I/O). It is therefore convenient to deflate grids with spatial dependence (levels 1–3 give the best
speed/size-tradeoff).

You may control the size of the chunks of data and compression with the configuration parameters
IO_NC4_CHUNK_SIZE and IO_NC 4_DEFLATION_LEVEL as specified in gmt.conf and you can
check the netCDF format with grdinfo.

Classic netCDF files were the de facto standard until netCDF 4.0 was released in 2008. Most programs
supporting netCDF by now are using the netCDF-4 library and are thus capable of reading netCDF files
generated with GMT 5, this includes official GMT releases since revision 4.5.8. In rare occasions, when
you have to load netCDF files with old software, you may be forced to export your grids in the old
classic format. This can be achieved by setting IO_NC4_CHUNK_SIZE to classic.

Further reading:

• Unidata NetCDF Workshop: NetCDF Formats and Performance

• Unidata NetCDF Workshop: What is Chunking?

• HDF NetCDF-4 Performance Report

14.2.3 Gridline and Pixel node registration

Scanline format means that the data are stored in rows (y = constant) going from the “top” (y = ymax

(north)) to the “bottom” (y = ymin (south)). Data within each row are ordered from “left” (x = xmin

(west)) to “right” (x = xmax (east)). The registration signals how the nodes are laid out. The grid is
always defined as the intersections of all x (x = xmin, xmin + xinc, xmin + 2 · xinc, . . . , xmax) and y (
y = ymin, ymin + yinc, ymin + 2 · yinc, . . . , ymax) lines. The two scenarios differ as to which area each
data point represents. The default node registration in GMT is gridline node registration. Most programs
can handle both types, and for some programs like grdimage a pixel registered file makes more sense.
Utility programs like grdsample and grdproject will allow you to convert from one format to
the other; grdedit can make changes to the grid header and convert a pixel- to a gridline-registered
grid, or vice versa. The grid registration is determined by the common GMT -r option (see Section Grid
registration: The -r option).

14.2.4 Boundary Conditions for operations on grids

GMT has the option to specify boundary conditions in some programs that operate on grids (e.g.,
grdsample, grdgradient, grdtrack, nearneighbor, and grdview, to name a few. The
desired condition can be set with the common GMT option -n; see Section Grid interpolation parame-
ters: The -n option. The boundary conditions come into play when interpolating or computing derivatives
near the limits of the region covered by the grid. The default boundary conditions used are those which
are “natural” for the boundary of a minimum curvature interpolating surface. If the user knows that the
data are periodic in x (and/or y), or that the data cover a sphere with x,y representing longitude,latitude,
then there are better choices for the boundary conditions. Periodic conditions on x (and/or y) are chosen
by specifying x (and/or y) as the boundary condition flags; global spherical cases are specified using the
g (geographical) flag. Behavior of these conditions is as follows:

Periodic conditions on x indicate that the data are periodic in the distance (xmax−xmin) and thus repeat
values after every N = (xmax−xmin)/xinc. Note that this implies that in a grid-registered file the

194 Chapter 14. B. GMT File Formats

http://www.unidata.ucar.edu/software/netcdf/workshops/most-recent/performance/index.html
http://www.unidata.ucar.edu/software/netcdf/workshops/most-recent/nc4chunking/WhatIsChunking.html
http://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf

GMT Documentation, Release 5.1.1

values in the first and last columns are equal, since these are located at x = xmin and x = xmax,
and there are N + 1 columns in the file. This is not the case in a pixel-registered file, where there
are only N and the first and last columns are located at xmin + xinc/2 and xmax − xinc/2. If y is
periodic all the same holds for y.

Geographical conditions indicate the following:

1. If (xmax − xmin) ≥ 360 and also 180 modulo xinc = 0 then a periodic condition is used on
x with a period of 360; else a default condition is used on the x boundaries.

2. If condition 1 is true and also ymax = 90 then a “north pole condition” is used at ymax, else
a default condition is used there.

3. If condition 1 is true and also ymin = −90 then a “south pole condition” is used at ymin,
else a default condition is used there.

“Pole conditions” use a 180 phase-shift of the data, requiring 180 modulo xinc = 0.

Default boundary conditions are

∇2f =
∂

∂n
∇2f = 0

on the boundary, where f(x, y) is represented by the values in the grid file, and ∂/∂n is the
derivative in the direction normal to a boundary, and

∇2 =

(

∂2

∂x2
+

∂2

∂y2

)

is the two-dimensional Laplacian operator.

14.2.5 Native binary grid files

The old style native grid file format that was common in earlier version of GMT is still supported, al-
though the use of netCDF files is strongly recommended. The file starts with a header of 892 bytes
containing a number of attributes defining the content. The grdedit utility program will allow you
to edit parts of the header of an existing grid file. The attributes listed in Table grdheader are con-
tained within the header record in the order given (except the z-array which is not part of the header
structure, but makes up the rest of the file). As this header was designed long before 64-bit architec-
tures became available, the jump from the first three integers to the subsequent doubles in the struc-
ture does not occur on a 16-byte alignment. While GMT handles the reading of these structures cor-
rectly, enterprising programmers must take care to read this header correctly (see our code for details).

14.2. Grid files 195

GMT Documentation, Release 5.1.1

Parameter Description

int nx Number of nodes in the x-dimension
int ny Number of nodes in the y-dimension
int registration 0 for grid line registration, 1 for pixel registration
double x_min Minimum x-value of region
double x_max Maximum x-value of region
double y_min Minimum y-value of region
double y_max Maximum y-value of region
double z_min Minimum z-value in data set
double z_max Maximum z-value in data set
double x_inc Node spacing in x-dimension
double y_inc Node spacing in y-dimension
double z_scale_factor Factor to multiply z-values after read
double z_add_offset Offset to add to scaled z-values
char x_units[80] Units of the x-dimension
char y_units[80] Units of the y-dimension
char z_units[80] Units of the z-dimension
char title[80] Descriptive title of the data set
char command[320] Command line that produced the grid file
char remark[160] Any additional comments
TYPE z[nx*ny] 1-D array with z-values in scanline format

14.3 Sun raster files

The Sun raster file format consists of a header followed by a series of unsigned 1-byte integers that
represents the bit-pattern. Bits are scanline oriented, and each row must contain an even number of
bytes. The predefined 1-bit patterns in GMT have dimensions of 64 by 64, but other sizes will be
accepted when using the -Gp|P option. The Sun header structure is outline in Table sunheader.

Parameter Description

int ras_magic Magic number
int ras_width Width (pixels) of image
int ras_height Height (pixels) of image
int ras_depth Depth (1, 8, 24, 32 bits) of pixel
int ras_length Length (bytes) of image
int ras_type Type of file; see RT_ below
int ras_maptype Type of colormap; see RMT_ below
int ras_maplength Length (bytes) of following map

After the header, the color map (if ras_maptype is not RMT_NONE) follows for ras_maplength

bytes, followed by an image of ras_length bytes. Some related definitions are given in Table sundef .
Macro name Description

RAS_MAGIC 0x59a66a95
RT_STANDARD 1 (Raw pixrect image in 68000 byte order)
RT_BYTE_ENCODED 2 (Run-length compression of bytes)
RT_FORMAT_RGB 3 ([X]RGB instead of [X]BGR)
RMT_NONE 0 (ras_maplength is expected to be 0)
RMT_EQUAL_RGB 1 (red[ras_maplength/3],green[],blue[])

Numerous public-domain programs exist, such as xv and convert (in the ImageMagick package), that
will translate between various raster file formats such as tiff, gif, jpeg, and Sun raster. Raster patterns may
be created with GMT plotting tools by generating PostScript plots that can be rasterized by ghostscript

196 Chapter 14. B. GMT File Formats

GMT Documentation, Release 5.1.1

and translated into the right raster format.

14.3. Sun raster files 197

GMT Documentation, Release 5.1.1

198 Chapter 14. B. GMT File Formats

CHAPTER 15

C. Including GMT Graphics into your Documents

Now that you made some nice graphics with GMT, it is time to add them to a document, an article,
a report, your dissertation, a poster, a web page, or a presentation. Of course, you could try the old-
fashioned scissors and glue stick. More likely, you want to incorporate your graphics electronically
into the document. Depending on the application, the GMT PostScript file will need to be converted to
Encapsulated PostScript (EPS), Portable Document Format (PDF), or some raster format (e.g., JPEG,
PNG, or TIFF) in order to incorporate them into the document.

• When creating a document intended for printing (article, dissertation, or poster) it is best to pre-
serve the scalable vector characteristics of the PostScript file. Many applications can directly in-
corporate PostScript in the form of EPS files. Modern programs will often allow the inclusion of
PDF files. Either way, the sharpness of lines and fonts will be preserved and can be scaled up or
down as required.

• When the aim is to display the graphics on a computer screen or present it using a projector, it is
wise to convert the PostScript into a raster format. Although applications like PowerPoint can do
this for you, you can best take the conversion into your own hands for the best results.

A large number of questions to the GMT-Help mailing list are related to these rendering issues, showing
that something as seemingly straightforward as incorporating a PostScript file into a document is a far
from trivial exercise. This Appendix will show how to include GMT graphics into documents and how
to achieve the best quality results.

15.1 Making GMT Encapsulated PostScript Files

GMT produces freeform PostScript files. Note that a freeform PostScript file may contain special op-
erators (such as Setpagedevice) that is specific to printers (e.g., selection of paper tray). Some
previewers (among them, Sun’s pageview) may not understand these valid instructions and may fail to
image the file. Also, embedding freeform PostScript with such instructions in it into a larger document
can cause printing to fail. While you could choose another viewer (we recommend ghostview) to view
single plots prepared by GMT, it is generally wiser to convert PostScript to EPS output when you are
creating a plot intended for inclusion into a larger document. Some programs (and some publishers as
well) do not allow the use of instructions like Setpagedevice as part of embedded graphics.

An EPS file that is to be placed into another document needs to have correct bounding box parameters.
These are found in the PostScript Document Comment %%BoundingBox. Applications that generate
EPS files should set these parameters correctly. Because GMTmakes the PostScript files on the fly, often
with several overlays, it is not possible to do so accurately. Therefore, if you need and EPS version with
a “tight” BoundingBox you need to post-process your PostScript file. There are several ways in which
this can be accomplished.

199

GMT Documentation, Release 5.1.1

• Programs such as Adobe Illustrator, Aldus Freehand, and Corel Draw will allow you to edit the
BoundingBox graphically.

• A command-line alternative is to use freely-available program epstool from the makers of Aladdin
ghostscript. Running

epstool -c -b myplot.ps

should give a tight BoundingBox; epstool assumes the plot is page size and not a huge poster.

• Another option is to use ps2epsi which also comes with the ghostscript package. Running

ps2epsi myplot.ps myplot.eps

should also do the trick. The downside is that this program adds an “image” of the plot in the
preamble of the EPS file, thus increasing the file size significantly. This image is a rough rendering
of your PostScript graphics that some programs will show on screen while you are editing your
document. This image is basically a placeholder for the PostScript graphics that will actually be
printed.

• The preferred option is to use the GMT utility ps2raster. Its -A option will figure out the
tightest BoundingBox, again using ghostscript in the background. For example, running

ps2raster -A -Te myplot.ps

will convert the PostScript file myplot.ps into an encapsulated PostScript file myplot.eps
which is exactly cropped to the tightest possible BoundingBox.

If you do not want to modify your illustration but just include it in a text document: many word proces-
sors (such as Microsoft Word or Apple Pages) will let you include a PostScript file that you may place
but not edit. Newer versions of those programs also allow you to include PDF versions of your graphics.
Except for Pages, you will not be able to view the figure on-screen, but it will print correctly.

15.2 Converting GMT PostScript to PDF or raster images

Since Adobe’s PDF (Portable Document Format) seems to have become the de facto standard for vector
graphics, you are often well off converting GMT produced PostScript files to PDF. Being both vector
formats (i.e., they basically describe all objects, text and graphics as lines and curves), such conversion
sounds awfully straightforward and not worth a full section in this document. But experience has shown
differently, since most converters cut corners by using the same tool (Aladdin’s ghostscript) with basic
default options that are not devised to produce the best quality PDF files.

For some applications it is practical or even essential that you convert your PostScript file into a raster
format, such as GIF (Graphics Interchange Format), TIFF (Tagged Image File Format), PNG (Portable
Network Graphics), or JPEG (Joint Photographic Experts Group). A web page is better served with a
raster image that will immediately show on a web browser, than with a PostScript file that needs to be
downloaded to view, despite the better printing quality of the PostScript image. A less obvious reason to
convert your image to a raster format is to by-pass PowerPoint’s rendering engine in case you want to
embed the image into a presentation.

The are a number of programs that will convert PostScript files to PDF or raster formats, like Al-
addin’s pstopdf, pbmplus’ pstoimg, or ImageMagick’s convert, most of which run ghostscript behind
the scenes. The same is true for viewers like ghostview and Apple’s Preview*. So a lot of the times
when people report that their PostScript plot does not look right but prints fine, it is the way ghostscript
is used with its most basic settings that is to blame.

200 Chapter 15. C. Including GMT Graphics into your Documents

GMT Documentation, Release 5.1.1

15.2.1 When converting or viewing PostScript goes awry

Here are some notorious pitfalls with ghostscript (and other rendering programs for that matter).

Rendering. When you are converting to a raster format, make sure you use a high enough resolution so
that the pixels do not show when it is enlarged onto a screen or using a projector. The right choice
of resolution depends on the application, but do not feel limited to the default 72 dpi (dots-per-
inch) that is offered by most converters.

Image compression. There are lossy and non-lossy compressions. A compression algorithm is called
“lossy” when information is lost in the conversion: there is no way back to get the full original. The
effect can be seen when there are sharp color transitions in your image: the edges will get blurry
in order to allow a more efficient compression. JPEG uses a lossy compression, PNG is non-lossy,
and TIFF generally does not use compression at all. We therefore recommend you convert to PNG
if you need to rasterize your plot, and leave JPEG to photographs.

Embedded image compression. When your GMT plot includes objects produced by grdimage,
psimage or pslegend, they are seen as “images”. The default options of ghostscript will use
a lossy compression (similar to JPEG) on those images when converting them to PDF objects.
This can be avoided, however, by inhibiting the compression altogether, or using the non-lossy
flate compression, similar to the one used in the old compress program. This compression is fully
reversible, so that your image does not suffer any loss.

Auto-rotation. The ghostscript engine has the annoying habit to automatically rotate an image produced
with portrait orientation (using the -P option) so that the height is always larger than the width.
So if you have an image that was printed in portrait mode but happens to have a width larger than
height (for example a global map), it would suddenly get rotated. Again, this function needs to
be switched off. Apple’s Preview uses the ghostscript engine and suffers from the same annoying
habit. Oddly enough, ghostscript does not force landscape plots to be “horizontal”.

Anti-aliasing. This is not something to worry about when converting to PDF, but certainly when pro-
ducing raster images (discussed below). Anti-aliasing in this context means that the rendering tries
to avoid aliasing, for example, sampling only the blacks in a black-and-white hachure. It does so
by first oversampling the image and then using “gray-shades” when a target pixel is only partially
white or black.

Clearly, this can lead to some unwanted results. First, all edges and lines get blurry and second,
the assumption of a white background causes the gray shades to stand out when transferring the
image to background with a different color (like the popular sleep-inducing blue in PowerPoint
presentations). A more surprising effect of anti-aliasing is that the seams between tiles that make
up the land mask when using pscoast will become visible. The anti-aliasing somehow decides
to blur the edges of all polygons, even when they are seamlessly connected to other polygons.

It is therefore wise to overrule the default anti-aliasing option and over-sample the image yourself
by choosing a higher resolution.

Including fonts. When you are producing print-ready copy to publishers, they will often (and justifi-
ably) ask that you include all fonts in your PDF document. Again, ghostscript (and all converters
relying on that engine) will not do so by default.

15.2.2 Using ps2raster

The remedy to all the problems mentioned in the previous section is readily available to you in the form
of the GMT utility ps2raster. It is designed to provide the best quality PDF and raster files using
ghostscript as a rendering engine. The program ps2raster avoids anti-aliasing and lossy compression

15.2. Converting GMT PostScript to PDF or raster images 201

GMT Documentation, Release 5.1.1

techniques that are default to ghostscript and includes the fonts into the resulting PDF file to ensure
portability. By default the fonts are rendered at 720 dots-per-inch in a PDF file and images are sampled
to 300 dpi, but that can be changed with the -E option. Simply run

gmt ps2raster -A -P -Tf *.ps

to convert all PostScript files to PDF while cropping it to the smallest possible BoundingBox. Or use the
-Tg option to convert your files to PNG.

The -P option of ps2raster may also come in handy. When you have not supplied the -P option in
your first GMT plot command, your plot will be in Landscape mode. That means that the plot will be
rotated 90 degrees (anti-clockwise) to fit on a Portrait mode page when coming out of the printer. The -P

option of ps2raster will undo that rotation, so that you do not have to do so within your document.
This will only affect Landscape plots; Portrait plots will not be rotated.

15.3 Examples

15.3.1 GMT graphics in LaTeX

Nearly all illustrations in this GMT documentation were GMT-produced PostScript files. They were
converted to PDF files using ps2raster and then included into a LaTeX document that was processed
with pdflatex to create the PDF document you are reading.

To add the graphics into the LaTeX document we use the \includegraphics command supplied by
the package. In the preamble of your LaTeX document you will need to include the line

\usepackage{graphicx}

The inclusion of the graphics will probably be inside a floating figure environment; something like this

\begin{figure}

\includegraphics{myplot}

\caption{This is my first plot in \LaTeX.}

\label{fig:myplot}

\end{figure}

Note that the \includegraphics command does not require you to add the suffix .pdf to the file
name. If you run pdflatex, it will look automatically for myplot.pdf. If you run latex, it will use
myplot.eps instead.

You can scale your plot using the options width=, height=, or scale=. In addition, if your original
graphics was produced in Landscape mode (i.e., you did not use GMT’s -P option: not while plotting,
nor in ps2raster), you will need to rotate the plot as well. For example,

\includegraphics[angle=-90,width=0.8\textwidth]{myplot}

will rotate the image 90 clockwise and scale it such that its width (after rotation) will be 80% of the
width of the text column.

15.3.2 GMT graphics in PowerPoint

In Figure Rendered images we have attempted to include Figure Example 20 into a PowerPoint presen-
tation. First the PostScript file was converted to PDF (using ps2raster), then loaded into PowerPoint
and the white background color was made transparent using the formatting toolbar (shown on the left

202 Chapter 15. C. Including GMT Graphics into your Documents

GMT Documentation, Release 5.1.1

Figure 15.1: Examples of rendered images in a PowerPoint presentation

Figure 15.2: PowerPoint’s Format Picture dialogue to set scale and rotation.

15.3. Examples 203

GMT Documentation, Release 5.1.1

side of Figure Rendered images). Clearly, when we let PowerPoint do the rendering, we do not get the
best result:

• The anti-aliasing causes the tiles that make up the land to stand out. This is because the anti-
aliasing algorithm blurs all edges, even when the tiles join seamlessly.

• The background color was assumed to be white, hence the text is “smoothed” using gray shades.
Instead, shades of blue which would be appropriate for the background we are using.

On the central column of Figure Rendered images we have included PNG versions of a portion of the
same example. This shows the workings of anti-aliasing and different resolutions. All samples were
obtained with convert. The one on the top uses all default settings, resulting in an anti-aliased image at
72 dpi resolution (very much like the PDF included directly into PowerPoint).

Just switching anti-aliasing off (middle) is clearly not an option either. It is true that we got rid of the gray
blurring and the seams between the tiles, but without anti-aliasing the image becomes very blocky. The
solution is to render the image at a higher resolution (e.g., 300 dpi) without anti-aliasing and then shrink
the image to the appropriate size (bottom of the central column in Figure Rendered images). The scaling,
rotation as well as the selection of the transparent color can be accomplished through the “Formatting”
tool bar and the “Format Picture” dialogue box of PowerPoint (Figure PowerPoint dialogue box), which
can be found by double clicking the included image (or selecting and right-clicking or control-clicking
on a one-button mouse).

15.4 Concluding remarks

These examples do not constitute endorsements of the products mentioned above; they only represent
our limited experience with adding PostScript to various types of documents. For other solutions and
further help, please post messages to.

204 Chapter 15. C. Including GMT Graphics into your Documents

CHAPTER 16

E. Predefined Bit and Hachure Patterns in GMT

GMT provides 90 different bit and hachure patterns that can be selected with the -Gp or -GP option
in most plotting programs. The left side of each image was created using -Gp, the right side shows the
inverted version using -GP. These patterns are reproduced below at 300 dpi using the default black and
white shades.

205

GMT Documentation, Release 5.1.1

85 86 87 88 89 90

79 80 81 82 83 84

73 74 75 76 77 78

67 68 69 70 71 72

61 62 63 64 65 66

55 56 57 58 59 60

49 50 51 52 53 54

43 44 45 46 47 48

37 38 39 40 41 42

31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

206 Chapter 16. E. Predefined Bit and Hachure Patterns in GMT

CHAPTER 17

F. Chart of Octal Codes for Characters

The characters and their octal codes in the Standard and ISOLatin1 encoded fonts are shown in Fig-
ure Octal codes for Standard and ISO. Light red areas signify codes reserved for control charac-
ters. In order to use all the extended characters (shown in the light green boxes) you need to set
PS_CHAR_ENCODING to Standard+ or ISOLatin1+ in your gmt.conf file 1.

The chart for the Symbol character set (GMT font number 12) and Pifont ZapfDingbats character set
(font number 34) are presented in Figure Octal codes for Symbol and ZapfDingbats below. The octal
code is obtained by appending the column value to the \?? value, e.g., ∂ is \266 in the Symbol font. The
euro currency symbol is \240 in the Symbol font and will print if your printer supports it (older printer’s
firmware will not know about the euro).

1 If you chose SI units during the installation then the default encoding is ISOLatin1+, otherwise it is Standard+.

207

GMT Documentation, Release 5.1.1

Figure 17.1: Octal codes and corresponding symbols for StandardEncoding (left) and ISO-
Latin1Encoding (right) fonts.

208 Chapter 17. F. Chart of Octal Codes for Characters

GMT Documentation, Release 5.1.1

Symbol

octal 0 1 2 3 4 5 6 7

\04x ! ∀ # ∃ % & ∋
\05x () ∗ + , − . /
\06x 0 1 2 3 4 5 6 7
\07x 8 9 : ; < = > ?
\10x ≅ Α Β Χ ∆ Ε Φ Γ
\11x Η Ι ϑ Κ Λ Μ Ν Ο
\12x Π Θ Ρ Σ Τ Υ ς Ω
\13x Ξ Ψ Ζ [∴] ⊥ _

\14x α β χ δ ε φ γ
\15x η ι ϕ κ λ µ ν ο
\16x π θ ρ σ τ υ ϖ ω
\17x ξ ψ ζ { | } ∼

\24x € ϒ ′ ≤ ⁄ ∞ ƒ ♣
\25x ♦ ♥ ♠ ↔ ← ↑ → ↓
\26x ° ± ″ ≥ × ∝ ∂ •
\27x ÷ ≠ ≡ ≈ … ↵
\30x ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
\31x ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
\32x ∠ ∇ ∏ √ ⋅

\33x ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
\34x ◊ 〈 ∑
\35x
\36x ð 〉 ∫ ⌠ ⌡
\37x

ZapfDingbats

octal 0 1 2 3 4 5 6 7

\04x ✁ ✂ ✃ ✄ ☎ ✆ ✇

\05x ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏

\06x ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗

\07x ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

\10x ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧

\11x ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

\12x ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷

\13x ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

\14x ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇

\15x ❈ ❉ ❊ ❋ ● ❍ ■ ❏

\16x ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗

\17x ❘ ❙ ❚ ❛ ❜ ❝ ❞

\24x ❡ ❢ ❣ ❤ ❥ ❦ ❧

\25x ♣ ♦ ♥ ♠ ① ② ③ ④

\26x ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷

\27x ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

\30x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

\31x ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

\32x ➐ ➑ ➒ ➓ ➔ → ↔ ↕

\33x ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

\34x ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧

\35x ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

\36x ð ➱ ➲ ➳ ➴ ➵ ➶ ➷

\37x ➸ ➹ ➺ ➻ ➼ ➽ ➾

Figure 17.2: Octal codes and corresponding symbols for Symbol (left) and ZapfDingbats (right) fonts.

209

GMT Documentation, Release 5.1.1

210 Chapter 17. F. Chart of Octal Codes for Characters

CHAPTER 18

G. PostScript Fonts Used by GMT

GMT uses the standard 35 fonts that come with most PostScript laserwriters. If your printer does not
support some of these fonts, it will automatically substitute the default font (which is usually Courier).
The following is a list of the GMT fonts:

Font Name # Font Name

0 Helvetica 17 Bookman−Demi

1 Helvetica−Bold 18 Bookman−DemiItalic

2 Helvetica−Oblique 19 Bookman−Light

3 Helvetica−BoldOblique 20 Bookman−LightItalic

4 Times−Roman 21 Helvetica−Narrow

5 Times−Bold 22 Helvetica−Narrow−Bold

6 Times−Italic 23 Helvetica−Narrow−Oblique

7 Times−BoldItalic 24 Helvetica−Narrow−BoldOblique

8 Courier 25 NewCenturySchlbk−Roman

9 Courier−Bold 26 NewCenturySchlbk−Italic

10 Courier−Oblique 27 NewCenturySchlbk−Bold

11 Courier−BoldOblique 28 NewCenturySchlbk−BoldItalic

12 Σψµβολ (Symbol) 29 Palatino−Roman

13 AvantGarde−Book 30 Palatino−Italic

14 AvantGarde−BookOblique 31 Palatino−Bold

15 AvantGarde−Demi 32 Palatino−BoldItalic

16 AvantGarde−DemiOblique 33 ZapfChancery−MediumItalic

34 ✺❁❐❆✤❉■❇❂❁▼▲ (ZapfDingbats)

Figure 18.1: The standard 35 PostScript fonts recognized by GMT.

For the special fonts Symbol (12) and ZapfDingbats (34), see the octal charts in Appendix [app:F]. When
specifying fonts in GMT, you can either give the entire font name or just the font number listed in this
table. To change the fonts used in plotting basemap frames, see the man page for gmt.conf. For direct
plotting of text-strings, see the man page for pstext.

211

GMT Documentation, Release 5.1.1

18.1 Using non-default fonts with GMT

To add additional fonts that you may have purchased or that are available freely in the internet or at your
institution, see the instructions in the CUSTOM_font_info.d under the share/pslib directory
and continue reading. GMT does not read or process any font files and thus does not know anything
about installed fonts and their metrics. In order to use extra fonts in GMT you need to specify the
PostScript name of the relevant fonts in the file CUSTOM_font_info.d. You can either edit the
existing file distributed with GMT to make the changes global or you can create a new file in the current
working directory, e.g.,

LinBiolinumO 0.700 0

LinLibertineOB 0.700 0

The format is a space delimited list of the PostScript font name, the font height-point size-ratio, and a
boolean variable that tells GMT to re-encode the font (if set to zero). The latter has to be set to zero as
additional fonts will most likely not come in standard PostScript encoding. GMT determines how tall
typical annotations might be from the font size ratio so that the vertical position of labels and titles can be
adjusted to a more uniform typesetting. Now, you can set the GMT font parameters to your non-standard
fonts:

gmt set FONT LinBiolinumO \

FONT_TITLE 28p,LinLibertineOB \

PS_CHAR_ENCODING ISO-8859-1 \

MAP_DEGREE_SYMBOL degree

After setting the encoding and the degree symbol, the configuration part for GMT is finished and you
can proceed to create GMT-maps as usual. An example script is discussed in Example [sec:non-default-
fonts-example].

18.1.1 Embedding fonts in PostScript and PDF

If you have Type 1 fonts in PFA (Printer Font ASCII) format you can embed them directly by copying
them at the very top of your PostScript-file, before even the %!PS header comment. PFB (Printer Font
Binary), TrueType or OpenType fonts cannot be embedded in PostScript directly and therefore have to
be converted to PFA first.

However, you most likely will have to tell Ghostscript where to find your custom fonts in order to convert
your GMT-PostScript-plot to PDF or an image with ps2raster. When you have used the correct
PostScript-names of the fonts in CUSTOM_font_info.d you only need to point the GS_FONTPATH
environment variable to the directory where the font files can be found and invoke ps2raster in the
usual way. Likewise you can specify Ghostscript’s -sFONTPATH option on the command line with
C -sFONTPATH=/path/to/fontdir. Ghostscript, which is invoked by ps2raster, does not
depend on file names. It will automatically find the relevant font files by their PostScript-names and
embed and subset them in PDF-files. This is quite convenient as the document can be displayed and
printed even on other computers when the font is not available locally. There is no need to convert your
fonts as Ghostscript can handle all Type 1, TrueType and OpenType fonts. Note also, that you do not
need to edit Ghostscript’s Fontmap.

If you do not want or cannot embed the fonts you can convert them to outlines (shapes with fills) with
Ghostscript in the following way:

gs -q -dNOCACHE -dSAFER -dNOPAUSE -dBATCH -dNOPLATFONTS \

-sDEVICE=pswrite -sFONTPATH="/path/to/fontdir" \

-sOutputFile=mapWithOutlinedFonts.ps map.ps

212 Chapter 18. G. PostScript Fonts Used by GMT

GMT Documentation, Release 5.1.1

Note, that this only works with the pswrite device. If you need outlined fonts in PDF, create the PDF
from the converted PostScript-file. Also, ps2raster cannot correctly crop Ghostscript converted
PostScript-files anymore. Use Heiko Oberdiek’s instead or crop with ps2raster -A -Te before (See
Example [sec:non-default-fonts-example]).

18.1.2 Character encoding

Since PostScript itself does not support Unicode fonts, Ghostscript will re-encode the fonts on the fly.
You have to make sure to set the correct PS_CHAR_ENCODING with gmtset and save your script file
with the same character encoding. Alternatively, you can substitute all non ASCII characters with their
corresponding octal codes, e.g., \265 instead of µ. Note, that PostScript fonts support only a small range
of glyphs and you may have to switch the PS_CHAR_ENCODING within your script.

18.1. Using non-default fonts with GMT 213

GMT Documentation, Release 5.1.1

214 Chapter 18. G. PostScript Fonts Used by GMT

CHAPTER 19

H. Color Space: The Final Frontier

In this Appendix, we are going to try to explain the relationship between the RGB, CMYK, and HSV
color systems so as to (hopefully) make them more intuitive. GMT allows users to specify colors in CPT
files in either of these three systems. Interpolation between colors is performed in either RGB or HSV,
depending on the specification in the CPT file. Below, we will explain why this all matters.

19.1 RGB color system

Remember your (parents’) first color television set? Likely it had three little bright colored squares on
it: red, green, and blue. And that is exactly what each color on the tube is made of: varying levels of red,
green and blue light. Switch all of them off, r=g=b=0, then you have black. All of them at maximum,
r=g=b=255, creates white. Your computer screen works the same way.

A mix of levels of red, green, and blue creates basically any color imaginable. In GMT each color can be
represented by the triplet r7g7b. For example, 127/255/0 (half red, full green, and no blue) creates a color
called chartreuse. The color sliders in the graphics program GIMP are an excellent way to experiment
with colors, since they show you in advance how moving one of the color sliders will change the color.
As Figure Chartreuse in GIMPa shows: increase the red and you will get a more yellow color, while
lowering the blue level will turn it into brown.

Figure 19.1: Chartreuse in GIMP. (a) Sliders indicate how the color is altered when changing the H, S,
V, R, G, or B levels. (b) For a constant hue (here 90) value increases to the right and saturation increases
up, so the pure color is on the top right.

Is chocolate your favorite color, but you do not know the RGB equivalent values? Then look them up in
Figure RGB chart or type man gmtcolors for a full list. It’s 210/105/30. But GMT makes it easy on
you: you can specify pen, fill, and palette colors by any of the more than 500 unique colors found in that
file.

215

GMT Documentation, Release 5.1.1

Are you very web-savvy and work best with hexadecimal color codes as they are used in HTML? Even
that is allowed in GMT. Just start with a hash mark (#) and follow with the 2 hexadecimal characters for
red, green, and blue. For example, you can use #79ff00 for chartreuse, #D2691E for chocolate.

SNOW GHOSTWHITE FLORALWHITE SEASHELL OLDLACE LINEN ANTIQUEWHITE PAPAYAWHIP BLANCHEDALMOND BISQUE PEACHPUFF NAVAJOWHITE MOCCASIN LEMONCHIFFON CORNSILK

IVORY HONEYDEW MINTCREAM AZURE ALICEBLUE LAVENDER LAVENDERBLUSH MISTYROSE MIDNIGHTBLUE NAVY NAVYBLUE CORNFLOWERBLUE DARKSLATEBLUE SLATEBLUE MEDIUMSLATEBLUE

LIGHTSLATEBLUE MEDIUMBLUE ROYALBLUE BLUE DARKBLUE DODGERBLUE STEELBLUE DEEPSKYBLUE SKYBLUE LIGHTSKYBLUE LIGHTSLATEGRAY SLATEGRAY LIGHTSTEELBLUE LIGHTBLUE LIGHTCYAN POWDERBLUE

PALETURQUOISE CADETBLUE DARKTURQUOISE MEDIUMTURQUOISE TURQUOISE CYAN DARKCYAN DARKSLATEGRAY MEDIUMAQUAMARINE AQUAMARINE DARKGREEN LIGHTGREEN DARKSEAGREEN SEAGREEN MEDIUMSEAGREEN LIGHTSEAGREEN

PALEGREEN SPRINGGREEN LAWNGREEN GREEN CHARTREUSE MEDIUMSPRINGGREEN GREENYELLOW LIMEGREEN YELLOWGREEN FORESTGREEN OLIVEDRAB DARKOLIVEGREEN DARKKHAKI KHAKI PALEGOLDENROD LIGHTGOLDENROD

LIGHTYELLOW LIGHTGOLDENRODYELLOW YELLOW DARKYELLOW GOLD GOLDENROD DARKGOLDENROD ROSYBROWN INDIANRED SADDLEBROWN SIENNA PERU BURLYWOOD BEIGE WHEAT SANDYBROWN

TAN CHOCOLATE FIREBRICK LIGHTBROWN BROWN DARKBROWN DARKSALMON SALMON LIGHTSALMON LIGHTORANGE ORANGE DARKORANGE CORAL LIGHTCORAL TOMATO ORANGERED

RED LIGHTRED DARKRED DEEPPINK HOTPINK PINK LIGHTPINK PALEVIOLETRED MAROON MEDIUMVIOLETRED VIOLETRED DARKMAGENTA MAGENTA LIGHTMAGENTA VIOLET ORCHID

PLUM MEDIUMORCHID DARKORCHID DARKVIOLET BLUEVIOLET PURPLE MEDIUMPURPLE THISTLE BLACK DIMGRAY DARKGRAY GRAY LIGHTGRAY GAINSBORO WHITESMOKE WHITE

SNOW1 SNOW2 SNOW3 SNOW4 SEASHELL1 SEASHELL2 SEASHELL3 SEASHELL4 ANTIQUEWHITE1 ANTIQUEWHITE2 ANTIQUEWHITE3 ANTIQUEWHITE4 BISQUE1 BISQUE2 BISQUE3 BISQUE4

PEACHPUFF1 PEACHPUFF2 PEACHPUFF3 PEACHPUFF4 NAVAJOWHITE1 NAVAJOWHITE2 NAVAJOWHITE3 NAVAJOWHITE4 LEMONCHIFFON1 LEMONCHIFFON2 LEMONCHIFFON3 LEMONCHIFFON4 CORNSILK1 CORNSILK2 CORNSILK3 CORNSILK4

IVORY1 IVORY2 IVORY3 IVORY4 HONEYDEW1 HONEYDEW2 HONEYDEW3 HONEYDEW4 LAVENDERBLUSH1 LAVENDERBLUSH2 LAVENDERBLUSH3 LAVENDERBLUSH4 MISTYROSE1 MISTYROSE2 MISTYROSE3 MISTYROSE4

AZURE1 AZURE2 AZURE3 AZURE4 SLATEBLUE1 SLATEBLUE2 SLATEBLUE3 SLATEBLUE4 ROYALBLUE1 ROYALBLUE2 ROYALBLUE3 ROYALBLUE4 BLUE1 BLUE2 BLUE3 BLUE4

DODGERBLUE1 DODGERBLUE2 DODGERBLUE3 DODGERBLUE4 STEELBLUE1 STEELBLUE2 STEELBLUE3 STEELBLUE4 DEEPSKYBLUE1 DEEPSKYBLUE2 DEEPSKYBLUE3 DEEPSKYBLUE4 SKYBLUE1 SKYBLUE2 SKYBLUE3 SKYBLUE4

LIGHTSKYBLUE1 LIGHTSKYBLUE2 LIGHTSKYBLUE3 LIGHTSKYBLUE4 SLATEGRAY1 SLATEGRAY2 SLATEGRAY3 SLATEGRAY4 LIGHTSTEELBLUE1 LIGHTSTEELBLUE2 LIGHTSTEELBLUE3 LIGHTSTEELBLUE4 LIGHTBLUE1 LIGHTBLUE2 LIGHTBLUE3 LIGHTBLUE4

LIGHTCYAN1 LIGHTCYAN2 LIGHTCYAN3 LIGHTCYAN4 PALETURQUOISE1 PALETURQUOISE2 PALETURQUOISE3 PALETURQUOISE4 CADETBLUE1 CADETBLUE2 CADETBLUE3 CADETBLUE4 TURQUOISE1 TURQUOISE2 TURQUOISE3 TURQUOISE4

CYAN1 CYAN2 CYAN3 CYAN4 DARKSLATEGRAY1 DARKSLATEGRAY2 DARKSLATEGRAY3 DARKSLATEGRAY4 AQUAMARINE1 AQUAMARINE2 AQUAMARINE3 AQUAMARINE4 DARKSEAGREEN1 DARKSEAGREEN2 DARKSEAGREEN3 DARKSEAGREEN4

SEAGREEN1 SEAGREEN2 SEAGREEN3 SEAGREEN4 PALEGREEN1 PALEGREEN2 PALEGREEN3 PALEGREEN4 SPRINGGREEN1 SPRINGGREEN2 SPRINGGREEN3 SPRINGGREEN4 GREEN1 GREEN2 GREEN3 GREEN4

CHARTREUSE1 CHARTREUSE2 CHARTREUSE3 CHARTREUSE4 OLIVEDRAB1 OLIVEDRAB2 OLIVEDRAB3 OLIVEDRAB4 DARKOLIVEGREEN1 DARKOLIVEGREEN2 DARKOLIVEGREEN3 DARKOLIVEGREEN4 KHAKI1 KHAKI2 KHAKI3 KHAKI4

LIGHTGOLDENROD1 LIGHTGOLDENROD2 LIGHTGOLDENROD3 LIGHTGOLDENROD4 LIGHTYELLOW1 LIGHTYELLOW2 LIGHTYELLOW3 LIGHTYELLOW4 YELLOW1 YELLOW2 YELLOW3 YELLOW4 GOLD1 GOLD2 GOLD3 GOLD4

GOLDENROD1 GOLDENROD2 GOLDENROD3 GOLDENROD4 DARKGOLDENROD1 DARKGOLDENROD2 DARKGOLDENROD3 DARKGOLDENROD4 ROSYBROWN1 ROSYBROWN2 ROSYBROWN3 ROSYBROWN4 INDIANRED1 INDIANRED2 INDIANRED3 INDIANRED4

SIENNA1 SIENNA2 SIENNA3 SIENNA4 BURLYWOOD1 BURLYWOOD2 BURLYWOOD3 BURLYWOOD4 WHEAT1 WHEAT2 WHEAT3 WHEAT4 TAN1 TAN2 TAN3 TAN4

CHOCOLATE1 CHOCOLATE2 CHOCOLATE3 CHOCOLATE4 FIREBRICK1 FIREBRICK2 FIREBRICK3 FIREBRICK4 BROWN1 BROWN2 BROWN3 BROWN4 SALMON1 SALMON2 SALMON3 SALMON4

LIGHTSALMON1 LIGHTSALMON2 LIGHTSALMON3 LIGHTSALMON4 ORANGE1 ORANGE2 ORANGE3 ORANGE4 DARKORANGE1 DARKORANGE2 DARKORANGE3 DARKORANGE4 CORAL1 CORAL2 CORAL3 CORAL4

TOMATO1 TOMATO2 TOMATO3 TOMATO4 ORANGERED1 ORANGERED2 ORANGERED3 ORANGERED4 RED1 RED2 RED3 RED4 DEEPPINK1 DEEPPINK2 DEEPPINK3 DEEPPINK4

HOTPINK1 HOTPINK2 HOTPINK3 HOTPINK4 PINK1 PINK2 PINK3 PINK4 LIGHTPINK1 LIGHTPINK2 LIGHTPINK3 LIGHTPINK4 PALEVIOLETRED1 PALEVIOLETRED2 PALEVIOLETRED3 PALEVIOLETRED4

MAROON1 MAROON2 MAROON3 MAROON4 VIOLETRED1 VIOLETRED2 VIOLETRED3 VIOLETRED4 MAGENTA1 MAGENTA2 MAGENTA3 MAGENTA4 ORCHID1 ORCHID2 ORCHID3 ORCHID4

PLUM1 PLUM2 PLUM3 PLUM4 MEDIUMORCHID1 MEDIUMORCHID2 MEDIUMORCHID3 MEDIUMORCHID4 DARKORCHID1 DARKORCHID2 DARKORCHID3 DARKORCHID4 PURPLE1 PURPLE2 PURPLE3 PURPLE4

MEDIUMPURPLE1 MEDIUMPURPLE2 MEDIUMPURPLE3 MEDIUMPURPLE4 THISTLE1 THISTLE2 THISTLE3 THISTLE4 GRAY0 GRAY1 GRAY2 GRAY3 GRAY4 GRAY5 GRAY6 GRAY7

GRAY8 GRAY9 GRAY10 GRAY11 GRAY12 GRAY13 GRAY14 GRAY15 GRAY16 GRAY17 GRAY18 GRAY19 GRAY20 GRAY21 GRAY22 GRAY23

GRAY24 GRAY25 GRAY26 GRAY27 GRAY28 GRAY29 GRAY30 GRAY31 GRAY32 GRAY33 GRAY34 GRAY35 GRAY36 GRAY37 GRAY38 GRAY39

GRAY40 GRAY41 GRAY42 GRAY43 GRAY44 GRAY45 GRAY46 GRAY47 GRAY48 GRAY49 GRAY50 GRAY51 GRAY52 GRAY53 GRAY54 GRAY55

GRAY56 GRAY57 GRAY58 GRAY59 GRAY60 GRAY61 GRAY62 GRAY63 GRAY64 GRAY65 GRAY66 GRAY67 GRAY68 GRAY69 GRAY70 GRAY71

GRAY72 GRAY73 GRAY74 GRAY75 GRAY76 GRAY77 GRAY78 GRAY79 GRAY80 GRAY81 GRAY82 GRAY83 GRAY84 GRAY85 GRAY86 GRAY87

GRAY88 GRAY89 GRAY90 GRAY91 GRAY92 GRAY93 GRAY94 GRAY95 GRAY96 GRAY97 GRAY98 GRAY99 GRAY100

255/250/250 248/248/255 255/250/240 255/245/238 253/245/230 250/240/230 250/235/215 255/239/213 255/235/205 255/228/196 255/218/185 255/222/173 255/228/181 255/250/205 255/248/220

255/255/240 240/255/240 245/255/250 240/255/255 240/248/255 230/230/250 255/240/245 255/228/225 100/149/237

132/112/255 0/191/255 135/206/235 135/206/250 119/136/153 176/196/222 173/216/230 224/255/255 176/224/230

175/238/238 95/158/160 0/206/209 72/209/204 64/224/208 0/255/255 102/205/170 127/255/212 144/238/144 143/188/143 60/179/113 32/178/170

152/251/152 0/255/127 124/252/0 0/255/0 127/255/0 0/250/154 173/255/47 50/205/50 154/205/50 189/183/107 240/230/140 238/232/170 238/221/130

255/255/224 250/250/210 255/255/0 255/215/0 218/165/32 184/134/11 188/143/143 205/133/63 222/184/135 245/245/220 245/222/179 244/164/96

210/180/140 210/105/30 235/190/85 233/150/122 250/128/114 255/160/122 255/192/128 255/165/0 255/140/0 255/127/80 240/128/128 255/99/71

255/128/128 255/105/180 255/192/203 255/182/193 219/112/147 255/128/255 238/130/238 218/112/214

221/160/221 186/85/211 147/112/219 216/191/216 169 190 211 220 245 255

255/250/250 238/233/233 205/201/201 139/137/137 255/245/238 238/229/222 205/197/191 139/134/130 255/239/219 238/223/204 205/192/176 139/131/120 255/228/196 238/213/183 205/183/158 139/125/107

255/218/185 238/203/173 205/175/149 255/222/173 238/207/161 205/179/139 255/250/205 238/233/191 205/201/165 139/137/112 255/248/220 238/232/205 205/200/177 139/136/120

255/255/240 238/238/224 205/205/193 139/139/131 240/255/240 224/238/224 193/205/193 131/139/131 255/240/245 238/224/229 205/193/197 139/131/134 255/228/225 238/213/210 205/183/181 139/125/123

240/255/255 224/238/238 193/205/205 131/139/139 131/111/255

99/184/255 92/172/238 79/148/205 0/191/255 0/178/238 135/206/255 126/192/238 108/166/205

176/226/255 164/211/238 141/182/205 198/226/255 185/211/238 159/182/205 202/225/255 188/210/238 162/181/205 191/239/255 178/223/238 154/192/205

224/255/255 209/238/238 180/205/205 122/139/139 187/255/255 174/238/238 150/205/205 102/139/139 152/245/255 142/229/238 122/197/205 0/245/255 0/229/238 0/197/205

0/255/255 0/238/238 0/205/205 151/255/255 141/238/238 121/205/205 127/255/212 118/238/198 102/205/170 193/255/193 180/238/180 155/205/155

84/255/159 78/238/148 67/205/128 154/255/154 144/238/144 124/205/124 0/255/127 0/238/118 0/205/102 0/255/0 0/238/0

127/255/0 118/238/0 102/205/0 192/255/62 179/238/58 154/205/50 202/255/112 188/238/104 162/205/90 255/246/143 238/230/133 205/198/115 139/134/78

255/236/139 238/220/130 205/190/112 255/255/224 238/238/209 205/205/180 139/139/122 255/255/0 238/238/0 205/205/0 255/215/0 238/201/0 205/173/0

255/193/37 238/180/34 205/155/29 255/185/15 238/173/14 205/149/12 255/193/193 238/180/180 205/155/155 255/106/106 238/99/99

255/130/71 238/121/66 205/104/57 255/211/155 238/197/145 205/170/125 255/231/186 238/216/174 205/186/150 139/126/102 255/165/79 238/154/73 205/133/63

255/127/36 238/118/33 255/140/105 238/130/98 205/112/84

255/160/122 238/149/114 205/129/98 255/165/0 238/154/0 205/133/0 255/127/0 238/118/0 255/114/86 238/106/80

255/99/71 238/92/66

255/110/180 238/106/167 205/96/144 255/181/197 238/169/184 205/145/158 255/174/185 238/162/173 205/140/149 255/130/171 238/121/159 205/104/137

255/52/179 255/62/150 255/131/250 238/122/233 205/105/201

255/187/255 238/174/238 205/150/205 224/102/255 209/95/238

171/130/255 159/121/238 255/225/255 238/210/238 205/181/205 139/123/139

130 133 135 138 140

143 145 148 150 153 156 158 161 163 166 168 171 173 176 179 181

184 186 189 191 194 196 199 201 204 207 209 212 214 217 219 222

224 227 229 232 235 237 240 242 245 247 250 252 255

25/25/112 0/0/128 0/0/128 72/61/139 106/90/205 123/104/238

0/0/205 65/105/225 0/0/255 0/0/139 30/144/255 70/130/180 112/128/144

0/139/139 47/79/79 0/100/0 46/139/87

34/139/34 107/142/35 85/107/47

128/128/0 205/92/92 139/69/19 160/82/45

178/34/34 165/42/42 120/60/30 255/69/0

255/0/0 139/0/0 255/20/147 176/48/96 199/21/133 208/32/144 139/0/139 255/0/255

153/50/204 148/0/211 138/43/226 160/32/240 0 105

139/119/101 139/121/94

122/103/238 105/89/205 71/60/139 72/118/255 67/110/238 58/95/205 39/64/139 0/0/255 0/0/238 0/0/205 0/0/139

30/144/255 28/134/238 24/116/205 16/78/139 54/100/139 0/154/205 0/104/139 74/112/139

96/123/139 108/123/139 110/123/139 104/131/139

83/134/139 0/134/139

0/139/139 82/139/139 69/139/116 105/139/105

46/139/87 84/139/84 0/139/69 0/205/0 0/139/0

69/139/0 105/139/34 110/139/61

139/129/76 139/139/0 139/117/0

139/105/20 139/101/8 139/105/105 205/85/85 139/58/58

139/71/38 139/115/85 139/90/43

205/102/29 139/69/19 255/48/48 238/44/44 205/38/38 139/26/26 255/64/64 238/59/59 205/51/51 139/35/35 139/76/57

139/87/66 139/90/0 205/102/0 139/69/0 205/91/69 139/62/47

205/79/57 139/54/38 255/69/0 238/64/0 205/55/0 139/37/0 255/0/0 238/0/0 205/0/0 139/0/0 255/20/147 238/18/137 205/16/118 139/10/80

139/58/98 139/99/108 139/95/101 139/71/93

238/48/167 205/41/144 139/28/98 238/58/140 205/50/120 139/34/82 255/0/255 238/0/238 205/0/205 139/0/139 139/71/137

139/102/139 180/82/205 122/55/139 191/62/255 178/58/238 154/50/205 104/34/139 155/48/255 145/44/238 125/38/205 85/26/139

137/104/205 93/71/139 0 3 5 8 10 13 15 18

20 23 26 28 31 33 36 38 41 43 46 48 51 54 56 59

61 64 66 69 71 74 77 79 82 84 87 89 92 94 97 99

102 105 107 110 112 115 117 120 122 125 127

THE GENERIC MAPPING TOOLS

Values are R/G/B. Names are case−insensitive.
Optionally, use GREY instead of GRAY.

Figure 19.2: The 555 unique color names that can be used in GMT. Lower, upper, or mixed cases, as
well as the british spelling of grey are allowed. A4, Letter, and Tabloid sized versions of this RGB chart
can be found in the GMT documentation directory.

19.2 HSV color system

If you have played around with RGB color sliders, you will have noticed that it is not intuitive to make
a chosen color lighter or darker, more saturated or more gray. It would involve changing three sliders.
To make it easier to manipulate colors in terms of lightness and saturation, another coordinate system
was invented: HSV (hue, saturation, value). Those terms can be made clear best by looking at the color
sliders in Figure Chartreuse in GIMPa. Hue (running from 0 to 360) gives you the full spectrum of
saturated colors. Saturation (from 0 to 1, or 100%) tells you how ‘full’ your color is: reduce it to zero
and you only have gray scales. Value (from 0 to 1, or 100%) will bring you from black to a fully saturated
color. Note that “value” is not the same as “intensity”, or “lightness”, used in other color geometries.
“Brilliance” may be the best alternative word to describe “value”. Apple calls it as “brightness”, and
hence refers to HSB for this color space.

Want more chartreuse or chocolate? You can specify them in GMT as 90-1-1 and 25-0.86-0.82, respec-
tively.

216 Chapter 19. H. Color Space: The Final Frontier

GMT Documentation, Release 5.1.1

19.3 The color cube

We are going to try to give you a geometric picture of color mixing in RGB and HSV by means of a tour
of the RGB cube depicted in Figure Example 11. The geometric picture is most helpful, we think, since
HSV are not orthogonal coordinates and not found from RGB by a simple algebraic transformation. So
here goes: Look at the cube face with black, red, magenta, and blue corners. This is the g = 0 face.
Orient the cube so that you are looking at this face with black in the lower left corner. Now imagine a
right-handed cartesian (rgb) coordinate system with origin at the black point; you are looking at the g

= 0 plane with r increasing to your right, g increasing away from you, and b increasing up. Keep this
sense of (rgb) as you look at the cube.

Now tip the cube such that the black corner faces down and the white corner up. When looking from
the top, you can see the hue, contoured in gray solid lines, running around in 360 counter-clockwise. It
starts with shades of red (0), then goes through green (120) and blue (240), back to red.

On the three faces that are now on the lower side (with the white print) one of (rgb) is equal to 0. These
three faces meet at the black corner, where r = g = b = 0. On these three faces the colors are fully
saturated: s = 1. The dashed white lines indicate different levels of v, ranging from 0 to 1 with contours
every 0.1.

On the upper three faces (with the black print), one of (rgb) is equal to the maximum value. These three
faces meet at the white corner, where r = g = b = 255. On these three faces value is at its maximum: v

= 1 (or 100%). The dashed black lines indicate varying levels of saturation: s ranges from 0 to 1 with
contours every 0.1.

Now turn the cube around on its vertical axis (running from the black to the white corner). Along the six
edges that zigzag around the “equator”, both saturation and value are maximum, so s = v = 1. Twirling
the cube around and tracing the zigzag, you will visit six of the eight corners of the cube, with changing
hue (h): red (0), yellow (60), green (120), cyan (180), blue (240), and magenta (300). Three of these are
the RGB colors; the other three are the CMY colors which are the complement of RGB and are used in
many color hardcopy devices (see below). The only cube corners you did not visit on this path are the
black and white corners. They lie on the vertical axis where hue is undefined and r = g = b. Any point
on this axis is a shade of gray.

Let us call the points where s = v = 1 (points along the RYGCBM path described above) the “pure”
colors. If we start at a pure color and we want to whiten it, we can keep h constant and v = 1 while
decreasing s; this will move us along one of the cube faces toward the white point. If we start at a pure
color and we want to blacken it, we can keep h constant and s = 1 while decreasing v; this will move us
along one of the cube faces toward the black point. Any point in (rgb) space which can be thought of as
a mixture of pure color + white, or pure color + black, is on a face of the cube.

The points in the interior of the cube are a little harder to describe. The definition for h above works
at all points in (non-gray) (rgb) space, but so far we have only looked at (s, v) on the cube faces, not
inside it. At interior points, none of (rgb) is equal to either 0 or 255. Choose such a point, not on the
gray axis. Now draw a line through your point so that the line intersects the gray axis and also intersects
the RYGCBM path of edges somewhere. It is always possible to construct this line, and all points on
this line have the same hue. This construction shows that any point in RGB space can be thought of
as a mixture of a pure color plus a shade of gray. If we move along this line away from the gray axis
toward the pure color, we are “purifying” the color by “removing gray”; this move increases the color’s
saturation. When we get to the point where we cannot remove any more gray, at least one of (rgb) will
have become zero and the color is now fully saturated; s = 1. Conversely, any point on the gray axis is
completely undersaturated, so that s = 0 there. Now we see that the black point is special, s is both 0
and 1 at the same time. In other words, at the black point saturation in undefined (and so is hue). The
convention is to use h = s = v = 0 at this point.

19.3. The color cube 217

GMT Documentation, Release 5.1.1

It remains to define value. To do so, try this: Take your point in RGB space and construct a line through
it so that this line goes through the black point; produce this line from black past your point until it hits
a face on which v = 1. All points on this line have the same hue. Note that this line and the line we made
in the previous paragraph are both contained in the plane whose hue is constant. These two lines meet at
some arbitrary angle which varies depending on which point you chose. Thus HSV is not an orthogonal
coordinate system. If the line you made in the previous paragraph happened to touch the gray axis at
the black point, then these two lines are the same line, which is why the black point is special. Now, the
line we made in this paragraph illustrates the following: If your chosen point is not already at the end of
the line, where v = 1, then it is possible to move along the line in that direction so as to increase (rgb)
while keeping the same hue. The effect this has on a color monitor is to make the color more “brilliant”,
your hue will become “stronger”; if you are already on a plane where at least one of (rgb) = 255, then
you cannot get a stronger version of the same hue. Thus, v measures brilliance or strength. Note that
it is not quite true to say that v measures distance away from the black point, because v is not equal to
√

r2 + g2 + b2/255.

Another representation of the HSV space is the color cone illustrated in Figure The HSV color space.

Figure 19.3: The HSV color space

19.4 Color interpolation

From studying the RGB cube, we hope you will have understood that there are different routes to follow
between two colors, depending whether you are in the RGB or HSV system. Suppose you would make
an interpolation between blue and red. In the RGB system you would follow a path diagonally across
a face of the cube, from 0/0/255 (blue) via 127/0/127 (purple) to 255/0/0 (red). In the HSV system,
you would trace two edges, from 240-1-1 (blue) via 300-1-1 (magenta) to 360-1-1 (red). That is even
assuming software would be smart enough to go the shorter route. More likely, red will be recorded as
0-1-1, so hue will be interpolated the other way around, reducing hue from 240 to 0, via cyan, green,
and yellow.

Depending on the design of your color palette, you may want to have it either way. By default, GMT
interpolates in RGB space, even when the original color palette is in the HSV system. However, when
you add the line #COLOR_MODEL=+HSV (with the leading ‘+’ sign) in the header of the color palette
file, GMT will not only read the color representation as HSV values, but also interpolate colors in the
HSV system. That means that H, S, and V values are interpolated linearly between two colors, instead
of their respective R, G, and B values.

The top row in Figure Interpolating colors illustrates two examples: a blue-white-red scale (the palette
in Appendix [app:M]) interpolated in RGB and the palette interpolated in HSV. The bottom row of the

218 Chapter 19. H. Color Space: The Final Frontier

GMT Documentation, Release 5.1.1

Figure demonstrates how things can go terribly wrong when you do the interpolation in the other system.

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

polar (RGB)

polar (HSV)

rainbow (HSV)

rainbow (RGB)

Figure 19.4: When interpolating colors, the color system matters. The polar palette on the left needs
to be interpolated in RGB, otherwise hue will change between blue (240) and white (0). The rainbow
palette should be interpolated in HSV, since only hue should change between magenta (300) and red (0).
Diamonds indicate which colors are defined in the palettes; they are fixed, the rest is interpolated.

19.5 Artificial illumination

GMT uses the HSV system to achieve artificial illumination of colored images (e.g., -I option in
grdimage) by changing the saturation s and value v coordinates of the color. When the intensity is zero
(flat illumination), the data are colored according to the CPT file. If the intensity is non-zero, the color is
either lightened or darkened depending on the illumination. The color is first converted to HSV (if neces-
sary) and then darkened by moving (sv) toward (COLOR_HSV_MIN_S, COLOR_HSV_MIN_V) if the in-
tensity is negative, or lightened by sliding (sv) toward (COLOR_HSV_MAX_S, COLOR_HSV_MAX_V)
if the illumination is positive. The extremes of the s and v are defined in the gmt.conf file and are
usually chosen so the corresponding points are nearly black (s = 1, v = 0) and white (s = 0, v = 1).
The reason this works is that the HSV system allows movements in color space which correspond more
closely to what we mean by “tint” and “shade”; an instruction like “add white” is easy in HSV and not
so obvious in RGB.

19.6 Thinking in RGB or HSV

The RGB system is understandable because it is cartesian, and we all learned cartesian coordinates in
school. But it doesn’t help us create a tint or shade of a color; we cannot say, “We want orange, and a
lighter shade of orange, or a less vivid orange”. With HSV we can do this, by saying, “Orange must be
between red and yellow, so its hue is about h = 30; a less vivid orange has a lesser s, a darker orange has
a lesser v”. On the other hand, the HSV system is a peculiar geometric construction, more like a cone
(Figure The HSV color space). It is not an orthogonal coordinate system, and it is not found by a matrix
transformation of RGB; these make it difficult in some cases too. Note that a move toward black or a
move toward white will change both s and v, in the general case of an interior point in the cube. The
HSV system also doesn’t behave well for very dark colors, where the gray point is near black and the
two lines we constructed above are almost parallel. If you are trying to create nice colors for drawing
chocolates, for example, you may be better off guessing in RGB coordinates.

19.5. Artificial illumination 219

GMT Documentation, Release 5.1.1

19.7 CMYK color system

Finally, you can imagine that printers work in a different way: they mix different paints to make a color.
The more paint, the darker the color, which is the reverse of adding more light. Also, mixing more
colored paints does not give you true black, so that means that you really need four colors to do it right.
Open up your color printer and you’ll probably find four cartridges: cyan, magenta, yellow (often these
are combined into one), and black. They form the CMYK system of colors, each value running from 0
to 1 (or 100%). In GMT CMYK color coding can be achieved using c/m/y/k quadruplets.

Obviously, there is no unique way to go from the 3-dimensional RGB system to the 4-dimensional
CMYK system. So, again, there is a lot of hand waving applied in the transformation. Strikingly, CMYK
actually covers a smaller color space than RGB. We will not try to explain you the details behind it, just
know that there is a transformation needed to go from the colors on your screen to the colors on your
printer. It might explain why what you see is not necessarily what you get. If you are really concerned
about how your color plots will show up in your PhD thesis, for example, it might be worth trying to
save and print all your color plots using the CMYK system. Letting GMT do the conversion to CMYK
may avoid some nasty surprises when it comes down to printing. To specify the color space of your
PostScript file, set PS_COLOR_MODEL in the gmt.conf file to RGB, HSV, or CMYK.

220 Chapter 19. H. Color Space: The Final Frontier

CHAPTER 20

I. Filtering of Data in GMT

The GMT programs filter1d (for tables of data indexed to one independent variable) and
grdfilter (for data given as 2-dimensional grids) allow filtering of data by a moving-window
process. (To filter a grid by Fourier transform use grdfft.) Both programs use an argument -

F<type><width> to specify the type of process and the window’s width (in 1-D) or diameter (in 2-D).
(In filter1d the width is a length of the time or space ordinate axis, while in grdfilter it is the
diameter of a circular area whose distance unit is related to the grid mesh via the -D option). If the
process is a median, mode, or extreme value estimator then the window output cannot be written as a
convolution and the filtering operation is not a linear operator. If the process is a weighted average, as in
the boxcar, cosine, and gaussian filter types, then linear operator theory applies to the filtering process.
These three filters can be described as convolutions with an impulse response function, and their transfer
functions can be used to describe how they alter components in the input as a function of wavelength.

Impulse responses are shown here for the boxcar, cosine, and gaussian filters. Only the relative ampli-
tudes of the filter weights shown; the values in the center of the window have been fixed equal to 1
for ease of plotting. In this way the same graph can serve to illustrate both the 1-D and 2-D impulse re-
sponses; in the 2-D case this plot is a diametrical cross-section through the filter weights (Figure Impulse

responses).

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
am

p
li

tu
d
e

−0.5 0.0 0.5

Distance (units of filter width)

Solid Line:

Dotted Line:

Dashed Line:

Boxcar

Gaussian

Cosine

Figure 20.1: Impulse responses for GMT filters.

Although the impulse responses look the same in 1-D and 2-D, this is not true of the transfer functions;
in 1-D the transfer function is the Fourier transform of the impulse response, while in 2-D it is the
Hankel transform of the impulse response. These are shown in Figures Transfer functions for 1D and
2D, respectively. Note that in 1-D the boxcar transfer function has its first zero crossing at f = 1, while

221

GMT Documentation, Release 5.1.1

in 2-D it is around f ∼ 1.2. The 1-D cosine transfer function has its first zero crossing at f = 2; so a
cosine filter needs to be twice as wide as a boxcar filter in order to zero the same lowest frequency. As
a general rule, the cosine and gaussian filters are “better” in the sense that they do not have the “side
lobes” (large-amplitude oscillations in the transfer function) that the boxcar filter has. However, they are
correspondingly “worse” in the sense that they require more work (doubling the width to achieve the
same cut-off wavelength).

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

0 1 2 3 4 5

Frequency (cycles per filter width)

Solid Line:

Dotted Line:

Dashed Line:

Boxcar

Gaussian

Cosine

Figure 20.2: Transfer functions for 1-D GMT filters.

One of the nice things about the gaussian filter is that its transfer functions are the same in 1-D and
2-D. Another nice property is that it has no negative side lobes. There are many definitions of the gaus-
sian filter in the literature (see page 7 of Bracewell 1). We define σ equal to 1/6 of the filter width,
and the impulse response proportional to exp[−0.5(t/σ)2). With this definition, the transfer function is
exp[−2(πσf)2] and the wavelength at which the transfer function equals 0.5 is about 5.34 σ, or about
0.89 of the filter width.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

0 1 2 3 4 5

Frequency (cycles per filter width)

Solid Line:

Dotted Line:

Dashed Line:

Boxcar

Gaussian

Cosine

Figure 20.3: Transfer functions for 2-D (radial) GMT filters.

1 R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill, London, 444 p., 1965.

222 Chapter 20. I. Filtering of Data in GMT

CHAPTER 21

J. The GMT High-Resolution Coastline Data

Starting with version 3.0, GMT use a completely new coastline database and the pscoast utility was
been completely rewritten to handle the new file format. Many users have asked us why it has taken so
long for GMT to use a high-resolution coastline database; after all, such data have been available in the
public domain for years. To answer such questions we will take you along the road that starts with these
public domain data sets and ends up with the database used by GMT.

21.1 Selecting the right data

There are two well-known public-domain data sets that could be used for this purpose. Once is known as
the World Data Bank II or CIA Data Bank (WDB) and contains coastlines, lakes, political boundaries,
and rivers. The other, the World Vector Shoreline (WVS) only contains shorelines between saltwater
and land (i.e., no lakes). It turns out that the WVS data is far superior to the WDB data as far as data
quality goes, but as noted it lacks lakes, not to mention rivers and borders. We decided to use the WVS
whenever possible and supplement it with WDB data. We got these data over the Internet; they are also
available on CD-ROM from the National Geophysical Data Center in Boulder, Colorado 1.

21.2 Format required by GMT

In order to paint continents or oceans it is necessary that the coastline data be organized in polygons
that may be filled. Simple line segments can be used to draw the coastline, but for painting polygons
are required. Both the WVS and WDB data consists of unsorted line segments: there is no information
included that tells you which segments belong to the same polygon (e.g., Australia should be one large
polygon). In addition, polygons enclosing land must be differentiated from polygons enclosing lakes
since they will need different paint. Finally, we want pscoast to be flexible enough that it can paint
the land or the oceans or both. If just land (or oceans) is selected we do not want to paint those areas
that are not land (or oceans) since previous plot programs may have drawn in those areas. Thus, we will
need to combine polygons into new polygons that lend themselves to fill land (or oceans) only (Note
that older versions of pscoast always painted lakes and wiped out whatever was plotted beneath).

21.3 The long and winding road

The WVS and WDB together represent more than 100 Mb of binary data and something like 20 mil-
lion data points. Hence, it becomes obvious that any manipulation of these data must be automated.

1 National Geophysical Data Center, Boulder, Colorado

223

http://www.ngdc.noaa.gov/

GMT Documentation, Release 5.1.1

For instance, the reasonable requirement that no coastline should cross another coastline becomes a
complicated processing step.

• To begin, we first made sure that all data were “clean”, i.e., that there were no outliers and bad
points. We had to write several programs to ensure data consistency and remove “spikes” and
bad points from the raw data. Also, crossing segments were automatically “trimmed” provided
only a few points had to be deleted. A few hundred more complicated cases had to be examined
semi-manually.

• Programs were written to examine all the loose segments and determine which segments should
be joined to produce polygons. Because not all segments joined exactly (there were non-zero gaps
between some segments) we had to find all possible combinations and choose the simplest com-
binations. The WVS segments joined to produce more than 200,000 polygons, the largest being
the Africa-Eurasia polygon which has 1.4 million points. The WDB data resulted in a smaller data
base (~25% of WVS).

• We now needed to combine the WVS and WDB data bases. The main problem here is that we
have duplicates of polygons: most of the features in WVS are also in WDB. However, because
the resolution of the data differ it is nontrivial to figure out which polygons in WDB to include
and which ones to ignore. We used two techniques to address this problem. First, we looked
for crossovers between all possible pairs of polygons. Because of the crossover processing in
step 1 above we know that there are no remaining crossovers within WVS and WDB; thus any
crossovers would be between WVS and WDB polygons. Crossovers could mean two things: (1)
A slightly misplaced WDB polygon crosses a more accurate WVS polygon, both representing the
same geographic feature, or (2) a misplaced WDB polygon (e.g., a small coastal lake) crosses
the accurate WVS shoreline. We distinguished between these cases by comparing the area and
centroid of the two polygons. In almost all cases it was obvious when we had duplicates; a few
cases had to be checked manually. Second, on many occasions the WDB duplicate polygon did
not cross its WVS counterpart but was either entirely inside or outside the WVS polygon. In those
cases we relied on the area-centroid tests.

• While the largest polygons were easy to identify by visual inspection, the majority remain uniden-
tified. Since it is important to know whether a polygon is a continent or a small pond inside an
island inside a lake we wrote programs that would determine the hierarchical level of each poly-
gon. Here, level = 1 represents ocean/land boundaries, 2 is land/lakes borders, 3 is lakes/islands-
in-lakes, and 4 is islands-in-lakes/ponds-in-islands-in-lakes. Level 4 was the highest level encoun-
tered in the data. To automatically determine the hierarchical levels we wrote programs that would
compare all possible pairs of polygons and find how many polygons a given polygon was inside.
Because of the size and number of the polygons such programs would typically run for 3 days on
a Sparc-2 workstation.

• Once we know what type a polygon is we can enforce a common “orientation” for all polygons.
We arranged them so that when you move along a polygon from beginning to end, your left hand
is pointing toward “land”. At this step we also computed the area of all polygons since we would
like the option to plot only features that are bigger than a minimum area to be specified by the
user.

• Obviously, if you need to make a map of Denmark then you do not want to read the entire 1.4
million points making up the Africa-Eurasia polygon. Furthermore, most plotting devices will not
let you paint and fill a polygon of that size due to memory restrictions. Hence, we need to parti-
tion the polygons so that smaller subsets can be accessed rapidly. Likewise, if you want to plot a
world map on a letter-size paper there is no need to plot 10 million data points as most of them
will plot several times on the same pixel and the operation would take a very long time to com-
plete. We chose to make 5 versions on the database, corresponding to different resolutions. The

224 Chapter 21. J. The GMT High-Resolution Coastline Data

GMT Documentation, Release 5.1.1

decimation was carried out using the Douglas-Peucker (DP) line-reduction algorithm 2. We chose
the cutoffs so that each subset was approximately 20% the size of the next higher resolution. The
five resolutions are called full, high, intermediate, low, and crude; they are accessed in pscoast,
gmtselect, and grdlandmask with the -D option 3. For each of these 5 data sets (f, h, i, l, c)
we specified an equidistant grid (1, 2, 5, 10, 20) and split all polygons into line-segments that each
fit inside one of the many boxes defined by these grid lines. Thus, to paint the entire continent of
Australia we instead paint many smaller polygons made up of these line segments and gridlines.
Some book-keeping has to be done since we need to know which parent polygon these smaller
pieces came from in order to prescribe the correct paint or ignore if the feature is smaller than
the cutoff specified by the user. The resulting segment coordinates were then scaled to fit in short
integer format to preserve precision and written in netCDF format for ultimate portability across
hardware platforms 4.

• While we are now back to a file of line-segments we are in a much better position to create smaller
polygons for painting. Two problems must be overcome to correctly paint an area:

– We must be able to join line segments and grid cell borders into meaningful polygons; how
we do this will depend on whether we want to paint the land or the oceans.

– We want to nest the polygons so that no paint falls on areas that are “wet” (or “dry”); e.g.,
if a grid cell completely on land contains a lake with a small island, we do not want to paint
the lake and then draw the island, but paint the annulus or “donut” that is represented by the
land and lake, and then plot the island.

GMT uses a polygon-assembly routine that carries out these tasks on the fly.

21.4 The Five Resolutions

We will demonstrate the power of the new database by starting with a regional hemisphere map centered
near Papua New Guinea and zoom in on a specified point. The map regions will be specified in projected
km from the projection center, e.g., we may want the map to go from km to km in the longitudinal and
the latitudinal direction. Also, as we zoom in on the projection center we want to draw the outline of the
next map region on the plot. To do that we use the -D option in psbasemap.

21.4.1 The crude resolution (-Dc)

We begin with an azimuthal equidistant map of the hemisphere centered on 130°21’E, 0°12’S, which
is slightly west of New Guinea, near the Strait of Dampier. The edges of the map are all 9000 km
true distance from the projection center. At this scale (and for global maps) the crude resolution data
will usually be adequate to capture the main geographic features. To avoid cluttering the map with
insignificant detail we only plot features (i.e., polygons) that exceed 500 km^2 in area. Smaller features
would only occupy a few pixels on the plot and make the map look “dirty”. We also add national borders
to the plot. The crude database is heavily decimated and simplified by the DP-routine: The total file size
of the coastlines, rivers, and borders database is only 283 kbytes. The plot is produced by the script:

2 Douglas, D.H., and T. K. Peucker, 1973, Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature, Canadian Cartographer, 10, 112–122.

3 The full and high resolution files are in separate archives because of their size. Not all users may need these files as the
intermediate data set is better than the data provided with version 2.2.4.

4 If you need complete polygons in a simpler format, see the article on GSHHG (Wessel, P., and W. H. F. Smith, 1996, A
Global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. 101, 8741–8743).

21.4. The Five Resolutions 225

GMT Documentation, Release 5.1.1

gmt set MAP_GRID_CROSS_SIZE_PRIMARY 0 MAP_ANNOT_OBLIQUE 22 MAP_ANNOT_MIN_SPACING 0.3i

gmt pscoast -Rk-9000/9000/-9000/9000 -JE130.35/-0.2/3.5i -P -Dc -A500 \

-Gburlywood -Sazure -Wthinnest -N1/thinnest,- -B20g20 -BWSne -K > GMT_App_K_1.ps

gmt psbasemap -R -J -O -Dk2000+c130.35/-0.2+pthicker >> GMT_App_K_1.ps

20˚ 40˚ 60˚ 100 1̊60−̊160−̊140˚ −120˚

−20˚

0˚

20˚

40˚

Figure 21.1: Map using the crude resolution coastline data.

Here, we use the MAP_ANNOT_OBLIQUE bit flags to achieve horizontal annotations and set
MAP_ANNOT_MIN_SPACING to suppress some longitudinal annotations near the S pole that other-
wise would overprint. The square box indicates the outline of the next map.

21.4.2 The low resolution (-Dl)

We have now reduced the map area by zooming in on the map center. Now, the edges of the map are all
2000 km true distance from the projection center. At this scale we choose the low resolution data that
faithfully reproduce the dominant geographic features in the region. We cut back on minor features less
than 100 km^2 in area. We still add national borders to the plot. The low database is less decimated and
simplified by the DP-routine: The total file size of the coastlines, rivers, and borders combined grows to
907 kbytes; it is the default resolution in GMT. The plot is generated by the script:

gmt pscoast -Rk-2000/2000/-2000/2000 -JE130.35/-0.2/3.5i -P -Dl -A100 -Gburlywood \

-Sazure -Wthinnest -N1/thinnest,- -B10g5 -BWSne -K > GMT_App_K_2.ps

gmt psbasemap -R -J -O -Dk500+c130.35/-0.2+pthicker >> GMT_App_K_2.ps

21.4.3 The intermediate resolution (-Di)

We continue to zoom in on the map center. In this map, the edges of the map are all 500 km true
distance from the projection center. We abandon the low resolution data set as it would look too jagged
at this scale and instead employ the intermediate resolution data that faithfully reproduce the dominant
geographic features in the region. This time, we ignore features less than 20 km^2 in area. Although the

226 Chapter 21. J. The GMT High-Resolution Coastline Data

GMT Documentation, Release 5.1.1

1
2
0
˚

1
3
0
˚ 1

4
0
˚

−10˚

0˚

10˚

Figure 21.2: Map using the low resolution coastline data.

script still asks for national borders none exist within our region. The intermediate database is moderately
decimated and simplified by the DP-routine: The combined file size of the coastlines, rivers, and borders
now exceeds 3.35 Mbytes. The plot is generated by the script:

gmt pscoast -Rk-500/500/-500/500 -JE130.35/-0.2/3.5i -P -Di -A20 -Gburlywood \

-Sazure -Wthinnest -N1/thinnest,- -B2g1 -BWSne -K > GMT_App_K_3.ps

echo 133 2 | gmt psxy -R -J -O -K -Sc1.4i -Gwhite >> GMT_App_K_3.ps

gmt psbasemap -R -J -O -K --FONT_TITLE=12p --MAP_TICK_LENGTH_PRIMARY=0.05i \

-Tm133/2/1i::+45/10/5 --FONT_ANNOT_SECONDARY=8p >> GMT_App_K_3.ps

gmt psbasemap -R -J -O -Dk100+c130.35/-0.2+pthicker >> GMT_App_K_3.ps

21.4.4 The high resolution (-Dh)

The relentless zooming continues! Now, the edges of the map are all 100 km true distance from the
projection center. We step up to the high resolution data set as it is needed to accurately portray the
detailed geographic features within the region. Because of the small scale we only ignore features less
than 1 km^2 in area. The high resolution database has undergone minor decimation and simplification by
the DP-routine: The combined file size of the coastlines, rivers, and borders now swells to 12.3 Mbytes.
The map and the final outline box are generated by these commands:

gmt pscoast -Rk-100/100/-100/100 -JE130.35/-0.2/3.5i -P -Dh -A1 -Gburlywood \

-Sazure -Wthinnest -N1/thinnest,- -B30mg10m -BWSne -K > GMT_App_K_4.ps

gmt psbasemap -R -J -O -Dk20+c130.35/-0.2+pthicker >> GMT_App_K_4.ps

21.4.5 The full resolution (-Df)

We now arrive at our final plot, which shows a detailed view of the western side of the small island
of Waigeo. The map area is approximately 40 by 40 km. We call upon the full resolution data set to

21.4. The Five Resolutions 227

GMT Documentation, Release 5.1.1

126˚ 128˚ 130˚ 132˚ 134˚

−4˚

−2˚

0˚

2˚

4˚
0˚

4
5
˚

9
0
˚

1
3
5
˚

180˚

2
2
5
˚

2
7
0
˚

3
1
5
˚

Figure 21.3: Map using the intermediate resolution coastline data. We have added a compass rose just
because we have the power to do so.

129˚30' 130˚00' 130˚30' 131˚00'

−1˚00'

−0˚30'

0˚00'

0˚30'

Figure 21.4: Map using the high resolution coastline data.

228 Chapter 21. J. The GMT High-Resolution Coastline Data

GMT Documentation, Release 5.1.1

portray the richness of geographic detail within this region; no features are ignored. The full resolution
has undergone no decimation and it shows: The combined file size of the coastlines, rivers, and borders
totals a (once considered hefty) 55.9 Mbytes. Our final map is reproduced by the single command:

gmt pscoast -Rk-20/20/-20/20 -JE130.35/-0.2/3.5i -P -Df -Gburlywood \

-Sazure -Wthinnest -N1/thinnest,- -B10mg2m -BWSne > GMT_App_K_5.ps

130˚20' 130˚30'

−0˚20'

−0˚10'

Figure 21.5: Map using the full resolution coastline data.

We hope you will study these examples to enable you to make efficient and wise use of this vast data set.

21.4. The Five Resolutions 229

GMT Documentation, Release 5.1.1

230 Chapter 21. J. The GMT High-Resolution Coastline Data

CHAPTER 22

K. GMT on non-UNIX Platforms

22.1 Introduction

While GMT was ported to non-UNIX systems such as Windows, it is also true that one of the strengths
of GMT lies its symbiotic relationship with UNIX. We therefore recommend that GMT be installed
in a POSIX-compliant UNIX environment such as traditional UNIX-systems, Linux, or Mac OS X. If
abandoning your non-UNIX operating system is not an option, consider one of these solutions:

WINDOWS: Choose among these three possibilities:

1. Install GMT under MinGW/MSYS (A collection of GNU utilities).

2. Install GMT under Cygwin (A GNU port to Windows).

3. Install GMT in Windows using Microsoft C/C++ or other compilers. Unlike the first two,
this option will not provide you with any UNIX tools so you will be limited to what you can
do with DOS batch files.

22.2 Cygwin and GMT

Because GMT works best in conjugation with UNIX tools we suggest you install GMT using the Cyg-
win product from Cygnus (now assimilated by Redhat, Inc.). This free version works on any Windows
version and it comes with both the Bourne Again shell bash and the tcsh. You also have access to most
standard GNU development tools such as compilers and text processing tools (awk, grep, sed, etc.).
Note that executables prepared for Windows will also run under Cygwin.

Follow the instructions on the Cygwin page on how to install the package; note you must explicitly
add all the development tool packages (e.g., gcc etc) as the basic installation does not include them by
default. Once you are up and running under Cygwin, you may install GMT the same way you do under
any other UNIX platform by either running the automated install via install_gmt or manually running
configure first, then type make all. If you install via the web form, make sure you save the parameter file
without DOS CR/LF endings. Use dos2unix to get rid of those if need be.

Finally, from Cygwin’s User Guide: By default, no Cygwin program can allocate more than 384 MB of
memory (program and data). You should not need to change this default in most circumstances. However,
if you need to use more real or virtual memory in your machine you may add an entry in either the
HKEY_LOCAL_MACHINE (to change the limit for all users) or HKEY_CURRENT_USER (for
just the current user) section of the registry. Add the DWORD value heap_chunk_in_mb and set it to
the desired memory limit in decimal Mb. It is preferred to do this in Cygwin using the regtool program
included in the Cygwin package. (For more information about regtool or the other Cygwin utilities, see

231

GMT Documentation, Release 5.1.1

the Section called Cygwin Utilities in Chapter 3 of the Cygwin’s User Guide or use the help option of
each utility.) You should always be careful when using regtool since damaging your system registry can
result in an unusable system. This example sets the local machine memory limit to 1024 Mb:

regtool -i set /HKLM/Software/Cygnus\ Solutions/Cygwin/heap_chunk_in_mb 1024

regtool -v list /HKLM/Software/Cygnus\ Solutions/Cygwin

For more installation details see the general README file.

22.3 MINGW|MSYS and GMT

Though one can install GMT natively using CMake, the simplest way of installing under
MINGW|MSYS is to just install the Windows binaries and use them from the msys bash shell. As simple
as that. Furthermore, GMT programs launch faster here than on Cygwin so this is the recommended way
of running GMT on Windows.

232 Chapter 22. K. GMT on non-UNIX Platforms

CHAPTER 23

L. Of Colors and Color Legends

23.1 Built-in color palette tables

Figures CPT files a and b show the 36 built-in color palettes, stored in so-called CPT tables 1. The
programs makecpt and grd2cpt are used to access these master CPT tables and translate/scale them
to fit the user’s range of z-values. The top half of the color bars in the Figure shows the original color
scale, which can be either discrete or continuous, though some (like globe) are a mix of the two. The
bottom half the color bar are built by using makecpt -T-1/1/0.25, thus splitting the color scale into 8
discrete colors.

23.2 Labeled and non-equidistant color legends

[app:colorbars] The use of color legends has already been introduced in Chapter [ch:7] (examples 2,
16, and 17). Things become a bit more complicated when you want to label the legend with names for
certain intervals (like geological time periods in the example below). To accomplish that, one should
add a semi-colon and the label name at the end of a line in the CPT table and add the -L option to the
psscale command that draws the color legend. This option also makes all intervals in the legend of
equal length, even it the numerical values are not equally spaced.

Normally, the name labels are plotted at the lower end of the intervals. But by adding a gap amount
(even when zero) to the -L option, they are centered. The example below also shows how to annotate
ranges using -Li (in which case no name labels should appear in the CPT file), and how to switch the
color bar around (by using a negative length).

For additional color tables, visit cpt-city.

1 The 23rd palette is called random and produces a random set of colors suitable for categorical plots.

233

http://soliton.vm.bytemark.co.uk/pub/cpt-city/

GMT Documentation, Release 5.1.1

gray haxby

gebco globe

elevation etopo1

dem4 drywet

dem2 dem3

cyclic dem1

copper cubhelix

categorical cool

abyss bathy

Figure 23.1: The first 18 of the standard 36 CPT files supported by GMT

234 Chapter 23. L. Of Colors and Color Legends

GMT Documentation, Release 5.1.1

topo wysiwyg

seis split

seafloor sealand

red2green relief

polar rainbow

paired panoply

no_green ocean

jet nighttime

hot ibcso

Figure 23.2: The second 18 of the standard 36 CPT files supported by GMT

23.2. Labeled and non-equidistant color legends 235

GMT Documentation, Release 5.1.1

0
23

66

146

200

251

299

359

416
444

488

542

Neogene

Paleogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

Neogene

Paleogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

Neogene

Paleogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian
Neogene

Paleogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

Neogene

Paleogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

0
23

66

146

200

251

299

359

416
444

488

542 0

23

66

146

200

251

299

359

416

444

488

542

0

23

66

146

200

251

299

359

416

444

488

0

23

66

146

200

251

299

359

416

444

488

0 − 23

23 − 66

66 − 146

146 − 200

200 − 251

251 − 299

299 − 359

359 − 416

416 − 444

444 − 488

488 − 542

0 − 23

23 − 66

66 − 146

146 − 200

200 − 251

251 − 299

299 − 359

359 − 416

416 − 444

444 − 488

488 − 542

236 Chapter 23. L. Of Colors and Color Legends

CHAPTER 24

M. Custom Plot Symbols

24.1 Background

The GMT tools psxy and psxyz are capable of using custom symbols as alternatives to the built-in,
standard geometrical shapes like circles, triangles, and many others. One the command line, custom
symbols are selected via the -Sksymbolname[size] symbol selection, where symbolname refers to a spe-
cial symbol definition file called symbolname.def that must be available via the standard GMT user
paths. Several custom symbols comes pre-configured with GMT(see Figure Custom symbols)

You may find it convenient to examine some of these and use them as a starting point for your own
design; they can be found in GMT’s share/custom directory.

24.2 The macro language

To make your own custom plot symbol, you will need to design your own *.def files. This section defines
the language used to build custom symbols. You can place these definition files in your current directory
or your .gmt user directory. When designing the symbol, you are doing so in a relative coordinate system
centered on (0,0). This point will be mapped to the actual location specified by your data coordinates.
Furthermore, your symbol should be constructed within the domain −1

2
,+1

2
,−1

2
,+1

2
, resulting in a 1

by 1 relative canvas area. This 1 x 1 square will be scaled to your actual symbol size when plotted.

24.2.1 Comment lines

Your definition file may have any number of comment lines, defined to begin with the character #. These
are skipped by GMT but provides a mechanism for you to clarify what your symbol does.

24.2.2 Symbol variables

Simple symbols, such as circles and triangles, only take a single parameter: the symbol size, which is
either given on the command line (via -Sk) or as part of the input data. However, more complicated
symbols, such as the ellipse or vector symbols, may require more parameters. If your custom symbol
requires more than the single size parameter you must include the line

N: n_extra_parameters [types]

before any other macro commands. It is an optional statement in that n_extra_parameters will default
to 0 unless explicitly set. By default the extra parameters are considered to be quantities that should be

237

GMT Documentation, Release 5.1.1

ASTROID CROSSHAIR DELTOID FLASH HLENS HLOZENGE

HNEEDLE HURRICANE LCRESCENT LFLAG LTRIANGLE MECA

PACMAN RCRESCENT RFLAG RTRIANGLE SECTOID SQUAROID

STAR3 STAR4 STARP SUN TRIROT1 TRIROT2

TRIROT3 TRIROT4 VLENS VLOZENGE VNEEDLE VOLCANO

Figure 24.1: Custom plot symbols supported by GMT. Note that we only show the symbol outline and
not any fill. These are all single-parameter symbols. Be aware that some symbols may have a hardwired
fill or no-fill component, while others duplicate what is already available as standard built-in symbols.

238 Chapter 24. M. Custom Plot Symbols

GMT Documentation, Release 5.1.1

passed directly to the symbol machinery. However, you can use the types argument to specify different
types of parameters. The available types are

a Geographic angle, to be converted to map angle given the current map projection.

l Length, i.e., an additional length scale (in cm, inch, or point as per PROJ_LENGTH_UNIT)
in addition to the given symbol size.

o Other, i.e., a numerical quantity to be passed to the custom symbol as is.

s String, i.e., a single column of text to be placed by the l command. Use octal \040 to
include spaces while still remaining a single word.

To use the extra parameters in your macro you address them as $1, $2, etc.

24.2.3 Macro commands

The custom symbol language contains commands to rotate the relative coordinate system, draw free-
form polygons and lines, change the current fill and/or pen, place text, and include basic geometric
symbols as part of the overall design (e.g., circles, triangles, etc.). The available commands are listed in

Table custsymb.

Name Code Purpose Arguments

rotate R Rotate the coordinate system α[a]
moveto M Set a new anchor point x0, y0
drawto D Draw line from previous point x, y
arc A Append circular arc to existing path xc, yc, r, α1, α2

stroke S Stroke existing path only
texture T Change current pen and fill
star a Plot a star x, y,size

circle c Plot a circle x, y,size

diamond d Plot a diamond x, y,size

ellipse e Plot a ellipse x, y, α,major,minor

octagon g Plot an octagon x, y,size

hexagon h Plot a hexagon x, y,size

invtriangle i Plot an inverted triangle x, y,size

letter l Plot a letter x, y,size, string

marc m Plot a math arc x, y, r, α1, α2

pentagon n Plot a pentagon x, y,size

plus + Plot a plus sign x, y,size

rect r Plot a rectangle x, y, width, height

square s Plot a square x, y,size

triangle t Plot a triangle x, y,size

wedge w Plot a wedge x, y, r, α1, α2

cross x Plot a cross x, y,size

x-dash - Plot a x-dash x, y,size

y-dash y Plot a y-dash x, y,size

Note for R: if an a is appended then α is considered to be a map azimuth; otherwise it is a Cartesian
angle. For M, T, and all the lower-case symbol codes you may optionally append specific pens (with
-Wpen) and fills (with -Gpen). These settings will override the pens and fills you may have specified on
the command line. Passing -G- or -W- means no fill or outline, respectively.

24.2. The macro language 239

GMT Documentation, Release 5.1.1

24.2.4 Text substitution

Normally, the l macro code will place a hard-wired text string. However, you can also obtain the entire
string from your input file via a single symbol variable that must be declared with type s (string). The
string read from your input file must be a single word, so if you need spaces you must use the octal \040
code. Similarly, to place the dollar sign $ you must use octal \044 so as to not confuse the parser with a
symbol variable. The string itself, if obtained from the symbol definition file, may contain special codes
that will be expanded given the current record. You can embed %X or %Y to add the current longitude
(or x) and latitude (or y) in your label string. You may also use $n to embed a numerical symbol variable
as text. It will be formatted according to FORMAT_FLOAT_MAP, unless you append the modifiers +X

(longitude via FORMAT_GEO_MAP), +Y (latitude via FORMAT_GEO_MAP), or +T (calendar time
via FORMAT_DATE_MAP and FORMAT_CLOCK_MAP.

24.2.5 Text alignment and font

Like the Sl symbol in psxy, you can change the current font by appending to l the modifier +ffont and
the text justification by appending the modifier +jjustify.

24.2.6 Conditional statements

There are two types of conditional statements in the macro language: A simple condition
preceding a single command, or a more elaborate if-then-elseif-else construct. In any test
you may use one (and only one) of many logical operators, as listed in Table custop.

Operator Purpose

< Is var less than constant?
<= Is var less than or equal to constant?
== Is var equal to constant?
!= Is var not equal to constant?
>= Is var greater than or equal to constant?
> Is var greater than constant?
% Does var have a remainder with constant?
!% Is var an exact multiple of constant?
<> Is var within the exclusive range of constant?
[] Is var within the inclusive range of constant?
<] Is var within the in/ex-clusive range of constant?
[> Is var within the ex/in-clusive range of constant?

Simple conditional test

The simple if-test uses a one-line format, defined as

if var OP constant then command

where var must be one of the symbol parameters, specified as $1, $2, $3, etc. You must document what
these additional parameters control. For example, to plot a small cyan circle at (0.2, 0.3) with diameter
0.4 only if $2 exceeds 45 you would write

if $2 > 45 then 0.2 0.3 0.4 c -Gcyan

Note that this form of the conditional test has no mechanism for an else branch, but this can be accom-
plished by repeating the test but reversing the logic for the second copy, e.g.,

240 Chapter 24. M. Custom Plot Symbols

GMT Documentation, Release 5.1.1

if $1 > 10 then 0 0 0.5 c -Gred

if $1 <= 10 then 0 0 0.5 c -Gblue

or you may instead consider the complete conditional construct below.

Complete conditional test

The complete conditional test uses a multi-line format, such as

if var OP constant then {

<one or more lines with commands>

} elseif var OP constant then {

<one or more lines with commands>

} else {

<one or more lines with commands>

}

The elseif (one or more) and else branches are optional. Note that the syntax is strictly enforced, meaning
the opening brace must appear after then with nothing following it, and the closing brace must appear
by itself with no other text, and that the elseif and else statements must have both closing and opening
braces on the same line (and nothing else). You may nest tests as well (up to 10 levels deep), e.g.,

if $1 > 45 then {

if $2 [> 0:10 then 0 0 0.5 c -Gred

} elseif $1 < 15 then {

if $2 [> 0:10 then 0 0 0.5 c -Ggreen

} else {

if $2 [> 10:20 then {

0 0 M -W1p,blue

0.3 0.3 D

S

0.3 0.3 0.3 c -Gcyan

}

}

24.2. The macro language 241

GMT Documentation, Release 5.1.1

242 Chapter 24. M. Custom Plot Symbols

CHAPTER 25

N. Annotation of Contours and “Quoted Lines”

The GMT programs grdcontour (for data given as 2-dimensional grids) and pscontour (for x,y,z

tables) allow for contouring of data sets, while psxy and psxyz can plot lines based on x,y- and x,y,z-
tables, respectively. In both cases it may be necessary to attach labels to these lines. Clever or optimal
placements of labels is a very difficult topic, and GMT provides several algorithms for this placement
as well as complete freedom in specifying the attributes of the labels. Because of the richness of these
choices we present this Appendix which summarizes the various options and gives several examples of
their use.

25.1 Label Placement

While the previous GMT versions 1–3 allowed for a single algorithm that determined where labels
would be placed, GMT 4 allows for five different algorithms. Furthermore, a new “symbol” option (-Sq

for “quoted line”) has been added to psxy and psxyz and hence the new label placement mechanisms
apply to those programs as well. The contouring programs expect the algorithm to be specified as argu-
ments to -G while the line plotting programs expect the same arguments to follow -Sq. The information
appended to these options is the same in both cases and is of the form [code]info. The five algorithms
correspond to the five codes below (some codes will appear in both upper and lower case; they share the
same algorithm but differ in some other ways). In what follows, the phrase “line segment” is taken to
mean either a contour or a line to be labeled. The codes are:

d: Full syntax is ddist[c|i|p][/frac]. Place labels according to the distance measured along the pro-
jected line on the map. Append the unit you want to measure distances in [Default is taken from
PROJ_LENGTH_UNIT]. Starting at the beginning of a line, place labels every dist increment of
distance along the line. To ensure that closed lines whose total length is less than dist get anno-
tated, we may append frac which will place the first label at the distance d = dist × frac from the
start of a closed line (and every dist thereafter). If not given, frac defaults to 0.25.

D: Full syntax is Ddist[d|m|s|e|f|k|M|n][/frac]. This option is similar to d except the original data must
be referred to geographic coordinates (and a map projection must have been chosen) and actual
Earth 1 surface distances along the lines are considered. Append the unit you want to measure
distances in; choose among arc degree, minute, and second, or meter [Default], feet, kilometer,
statute Miles, or nautical miles. Other aspects are similar to code d.

f: Full syntax is ffix.txt[/slop[c|i|p]]. Here, an ASCII file fix.txt is given which must contain records
whose first two columns hold the coordinates of points along the lines at which locations the
labels should be placed. Labels will only be placed if the coordinates match the line coordinates

1 or whatever planet we are dealing with.

243

GMT Documentation, Release 5.1.1

to within a distance of slop (append unit or we use PROJ_LENGTH_UNIT). The default slop is
zero, meaning only exact coordinate matches will do.

l: Full syntax is lline1[,line2[, ...]]. One or more straight line segments are specified separated by com-
mas, and labels will be placed at the intersections between these lines and our line segments. Each
line specification implies a start and stop point, each corresponding to a coordinate pair. These
pairs can be regular coordinate pairs (i.e., longitude/latitude separated by a slash), or they can be
two-character codes that refer to predetermined points relative to the map region. These codes are
taken from the pstext justification keys [L|C|R][B|M|T] so that the first character determines
the x-coordinate and the second determines the y-coordinate. In grdcontour, you can also use
the two codes Z+ and Z- as shorthands for the location of the grid’s global maximum and min-
imum, respectively. For example, the line LT/RB is a diagonal from the upper left to the lower
right map corner, while Z-/135W/15S is a line from the grid minimum to the point (135W, 15S).

L: Same as l except we will treat the lines given as great circle start/stop coordinates and fill in the
points between before looking for intersections.

n: Full syntax is nnumber[/minlength[c|i|p]]. Place number of labels along each line regardless of total
line length. The line is divided into number segments and the labels are placed at the centers of
these segments. Optionally, you may give a minlength distance to ensure that no labels are placed
closer than this distance to its neighbors.

N: Full syntax is Nnumber[/minlength[c|i|p]]. Similar to code n but here labels are placed at the ends of
each segment (for number >= 2). A special case arises for number = 1 when a single label will be
placed according to the sign of number: -1 places one label justified at the start of the line, while
+1 places one label justified at the end of the line.

x: Full syntax is xcross.d. Here, an ASCII file cross.d is a multi-segment file whose lines will intersect
our segment lines; labels will be placed at these intersections.

X: Same as x except we treat the lines given as great circle start/stop coordinates and fill in the points
between before looking for intersections.

Only one algorithm can be specified at any given time.

25.2 Label Attributes

Determining where to place labels is half the battle. The other half is to specify exactly what are the
attributes of the labels. It turns out that there are quite a few possible attributes that we may want
to control, hence understanding how to specify these attributes becomes important. In the contouring
programs, one or more attributes may be appended to the -A option using the format +code[args] for
each attribute, whereas for the line plotting programs these attributes are appended to the -Sq option
following a colon (:) that separates the label codes from the placement algorithm. Several of the attributes
do not apply to contours so we start off with listing those that apply universally. These codes are:

+a: Controls the angle of the label relative to the angle of the line. Append n for normal to the line, give
a fixed angle measured counter-clockwise relative to the horizontal. or append p for parallel to
the line [Default]. If using grdcontour the latter option you may further append u or d to get
annotations whose upper edge always face the next higher or lower contour line.

+c: Surrounding each label is an imaginary label “textbox” which defines a region in which no segment
lines should be visible. The initial box provides an exact fit to the enclosed text but clearance may
be extended in both the horizontal and vertical directions (relative to the label baseline) by the
given amounts. If these should be different amounts please separate them by a slash; otherwise

244 Chapter 25. N. Annotation of Contours and “Quoted Lines”

GMT Documentation, Release 5.1.1

the single value applies to both directions. Append the distance units of your choice (c|i|m|p), or
give % to indicate that the clearance should be this fixed percentage of the label font size in use.
The default is 15%.

+d: Debug mode. This is useful when testing contour placement as it will draw the normally invisible
helper lines and points in the label placement algorithms above.

+d: Delayed mode, to delay the plotting of the text as text clipping is set instead.

+f: Specifies the desired label font, including size or color. See pstext for font names or numbers.
The default font is given by FONT_ANNOT_PRIMARY.

+g: Selects opaque rather than the default transparent text boxes. You may optionally append the color
you want to fill the label boxes; the default is the same as PS_PAGE_COLOR.

+j: Selects the justification of the label relative to the placement points determined above. Normally this
is center/mid justified (CM in pstext justification parlance) and this is indeed the default setting.
Override by using this option and append another justification key code from [L|C|R][B|M|T].
Note for curved text (+v) only vertical justification will be affected.

+o: Request a rounded, rectangular label box shape; the default is rectangular. This is only manifested
if the box is filled or outlined, neither of which is implied by this option alone (see +g and +p).
As this option only applies to straight text, it is ignored if +v is given.

+p: Selects the drawing of the label box outline; append your preferred pen unless you want the default
GMT pen [0.25p,black].

+r: Do not place labels at points along the line whose local radius of curvature falls below the given
threshold value. Append the radius unit of your choice (c|i|p) [Default is 0].

+u: Append the chosen unit to the label. Normally a space will separate the label and the unit. If you
want to close this gap, append a unit that begins with a hyphen (-). If you are contouring with
grdcontour and you specify this option without appending a unit, the unit will be taken from
the z-unit attribute of the grid header.

+v: Place curved labels that follow the wiggles of the line segments. This is especially useful if the
labels are long relative to the length-scale of the wiggles. The default places labels on an invisible
straight line at the angle determined.

+w: The angle of the line at the point of straight label placement is calculated by a least-squares fit to
the width closest points. If not specified, width defaults to 10.

+=: Similar in most regards to +u but applies instead to a label prefix which you must append.

For contours, the label will be the value of the contour (possibly modified by +u or +=). However, for
quoted lines other options apply:

+l: Append a fixed label that will be placed at all label locations. If the label contains spaces you must
place it inside matching quotes.

+L: Append a code flag that will determine the label. Available codes are:

+Lh: Take the label from the current multi-segment header (hence it is assumed that the input
line segments are given in the multi-segment file format; if not we pick the single label from
the file’s header record). We first scan the header for an embedded -Llabel option; if none is
found we instead use the first word following the segment marker [>].

+Ld: Take the Cartesian plot distances along the line as the label; append c|i|p as the unit
[Default is PROJ_LENGTH_UNIT]. The label will be formatted according to the FOR-

MAT_FLOAT_OUT string, unless label placement was determined from map distances along

25.2. Label Attributes 245

GMT Documentation, Release 5.1.1

the segment lines, in which case we determine the appropriate format from the distance value
itself.

+LD: Calculate actual Earth surface distances and use the distance at the label placement point
as the label; append d|e|f|k|m|M|n|s to specify the unit [If not given we default to degrees,
unless label placement was determined from map distances along the segment lines, in which
case we use the same unit specified for that algorithm]. Requires a map projection to be used.

+Lf: Use all text after the 2nd column in the fixed label location file fix.txt as labels. This choice
obviously requires the fixed label location algorithm (code f) to be in effect.

+Ln: Use the running number of the current multi-segment as label.

+LN: Use a slash-separated combination of the current file number and the current multi-segment
number as label.

+Lx: As h but use the multi-segment headers in the cross.d file instead. This choice obviously
requires the crossing segments location algorithm (code x|X) to be in effect.

25.3 Examples of Contour Label Placement

We will demonstrate the use of these options with a few simple examples. First, we will contour a subset
of the global geoid data used in GMT Example 01; the region selected encompasses the world’s strongest
“geoid dipole”: the Indian Low and the New Guinea High.

25.3.1 Equidistant labels

Our first example uses the default placement algorithm. Because of the size of the map we request
contour labels every 1.5 inches along the lines:

As seen in Figure Contour label 1, the contours are placed rather arbitrary. The string of contours for
-40 to 60 align well but that is a fortuitous consequence of reaching the 1.5 inch distance from the start
at the bottom of the map.

L

H

−
1
0
0

−80

−60

−
6
0

−
4
0

−
2
0

0

2
0

4
0

6
0 60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚

Figure 25.1: Equidistant contour label placement with -Gd, the only algorithm available in previous
GMT versions.

25.3.2 Fixed number of labels

We now exercise the option for specifying exactly how many labels each contour line should have:

246 Chapter 25. N. Annotation of Contours and “Quoted Lines”

GMT Documentation, Release 5.1.1

By selecting only one label per contour and requiring that labels only be placed on contour lines whose
length exceed 1 inch, we achieve the effect shown in Figure Contour label 2.

L

H

−100

−80

−60

−40

−
4
0

−
2
0 0 2
0 4
0

60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚

Figure 25.2: Placing one label per contour that exceed 1 inch in length, centered on the segment with
-Gn.

25.3.3 Prescribed label placements

Here, we specify four points where we would like contour labels to be placed. Our points are not exactly
on the contour lines so we give a nonzero “slop” to be used in the distance calculations: The point on
the contour closest to our fixed points and within the given maximum distance will host the label.

The angle of the label is evaluated from the contour line geometry, and the final result is shown in Figure
Contour label 3. To aid in understanding the algorithm we chose to specify “debug” mode (+d) which
placed a small circle at each of the fixed points.

L

H

−80
−40

0

60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚

Figure 25.3: Four labels are positioned on the points along the contours that are closest to the locations
given in the file fix.txt in the -Gf option.

25.3.4 Label placement at simple line intersections

Often, it will suffice to place contours at the imaginary intersections between the contour lines and a
well-placed straight line segment. The -Gl or -GL algorithms work well in those cases:

The obvious choice in this example is to specify a great circle between the high and the low, thus placing
all labels between these extrema.

The thin debug line in Figure Contour label 4 shows the great circle and the intersections where labels
are plotted. Note that any number of such lines could be specified; here we are content with just one.

25.3. Examples of Contour Label Placement 247

GMT Documentation, Release 5.1.1

L

H

−
1
0
0

−
8
0

−
6
0

−
4
0

−
2
0

0
2
0 4
0

60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚

Figure 25.4: Labels are placed at the intersections between contours and the great circle specified in the
-GL option.

25.3.5 Label placement at general line intersections

If (1) the number of intersecting straight line segments needed to pick the desired label positions becomes
too large to be given conveniently on the command line, or (2) we have another data set or lines whose
intersections we wish to use, the general crossing algorithm makes more sense:

L

H

−
1
0
0−

8
0

−60

−40

−
4
0

−
2
0

0
20

40

40

60

60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚

Figure 25.5: Labels are placed at the intersections between contours and the multi-segment lines speci-
fied in the -GX option.

In this case, we have created three strands of lines whose intersections with the contours define the label
placements, presented in Figure Contour label 5.

25.4 Examples of Label Attributes

We will now demonstrate some of the ways to play with the label attributes. To do so we will use psxy
on a great-circle line connecting the geoid extrema, along which we have sampled the ETOPO5 relief
data set. The file thus contains lon, lat, dist, geoid, relief, with distances in km.

25.4.1 Label placement by along-track distances, 1

This example will change the orientation of labels from along-track to across-track, and surrounds the
labels with an opaque, outlined text box so that the label is more readable. We choose the place the labels
every 1000 km along the line and use that distance as the label. The labels are placed normal to the line:

248 Chapter 25. N. Annotation of Contours and “Quoted Lines”

GMT Documentation, Release 5.1.1

−

+

−
6
0−60

−40

−
4
0

−
2
0 0 20 40

60

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚ 1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

Figure 25.6: Labels attributes are controlled with the arguments to the -Sq option.

The composite illustration in Figure Contour label 6 shows the new effects. Note that the line connecting
the extrema does not end exactly at the ‘-‘ and ‘+’ symbols. This is because the placements of those
symbols are based on the mean coordinates of the contour and not the locations of the (local or global)
extrema.

25.4.2 Label placement by along-track distances, 2

A small variation on this theme is to place the labels parallel to the line, use spherical degrees for
placement, append the degree symbol as a unit for the labels, choose a rounded rectangular text box, and
inverse-video the label:

The output is presented as Figure Contour label 7.

−

+

−
6
0
 m−60 m

−40 m

−
4
0
 m

−
2
0
 m

0 m
20 m

40 m
60 m

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚
15°

30°
45°

60°

Figure 25.7: Another label attribute example.

25.4.3 Using a different data set for labels

In the next example we will use the bathymetry values along the transect as our label, with placement
determined by the distance along track. We choose to place labels every 1500 km. To do this we need to
pull out those records whose distances are multiples of 1500 km and create a “fixed points” file that can
be used to place labels and specify the labels. This is done with awk.

The output is presented as Figure Contour label 8.

25.4. Examples of Label Attributes 249

GMT Documentation, Release 5.1.1

−

+

−
6
0
 m−60 m

−40 m

−
4
0
 m

−
2
0
 m

0 m
20 m

40 m
60 m

60˚ 80˚ 100˚ 120˚ 140˚ 160˚

0˚ −
3
5
9
5
 m

−
2
8
3
6
 m

−
6
 m

−
9
 m

−
4
5
2
7
 m

2
5
7
4
 m

Figure 25.8: Labels based on another data set (here bathymetry) while the placement is based on dis-
tances.

25.5 Putting it all together

Finally, we will make a more complex composite illustration that uses several of the label placement and
label attribute settings discussed in the previous sections. We make a map showing the tsunami travel
times (in hours) from a hypothetical catastrophic landslide in the Canary Islands 2. We lay down a color
map based on the travel times and the shape of the seafloor, and travel time contours with curved labels
as well as a few quoted lines. The final script is

with the complete illustration presented as Figure Contour label 9.
1
 h

o
u
r

1 hour

2 hour

2
 h

o
u
r

3

h
o
u
r

3 hour

4
 h

o
u
r

5
 h

o
u
r

6
 h

o
u
r

7

h
o

u
r

8

h
o
u
r

Tsunami travel times from the Canaries

80˚W 60˚W 40˚W 20˚W 0˚

20˚N

40˚N
Distance Canaries to New York = 5329 km

1
0
0
0

2
0

0
0

3
0
0
0

4
0
0
0

5
0
0
0

New York

Paris

Canaries

Figure 25.9: Tsunami travel times from the Canary Islands to places in the Atlantic, in particular New
York. Should a catastrophic landslide occur it is possible that New York will experience a large tsunami
about 8 hours after the event.

2 Travel times were calculated using Geoware’s travel time calculator, ttt; see http://www.geoware-online.com/.

250 Chapter 25. N. Annotation of Contours and “Quoted Lines”

http://www.geoware-online.com/

CHAPTER 26

O. Special Operations

26.1 Running GMT in isolation mode

In Chapter General features it is described how GMT creates several (temporary) files to communicate
between the different commands that make up the script that finally creates a plot. Among those files
are:

gmt.conf This file covers about 100 different settings that influence the layout of your
plot, from font sizes to tick lengths and date formats (See Section GMT defaults).
Those settings can be altered by editing the file, or by running the gmtset command.
A problem may arise when those settings are changed half-way through the script: the
next time you run the script it will start with the modified settings and hence might alter
your scripts results. It is therefore often necessary to revert to the original gmt.conf
file. Isolation mode avoids that issue.

gmt.history This file is created to communicate the command line history from one
command to the next (Section Command line history) so that shorthands like -R or -J

can be used once it has been set in a previous GMT command. The existence of this
file makes if impossible to run two GMT scripts simultaneously in the same directory,
since those gmt.history files may clash (contain different histories) and adversely
affect the results of both scripts.

A cure to all these woes is the isolation mode introduced in GMT version 4.2.2. This mode allows you
to run a GMT script without leaving any traces other than the resulting PostScript or data files, and not
altering the gmt.conf or gmt.history files. Those files will be placed in a temporary directory
instead. And if properly set up, this temporary directory will only be used by a single script, even if
another GMT script is running simultaneously. This also provides the opportunity to create any other
temporary files that the script might create in the same directory.

The example below shows how isolation mode works.

The files gmt.conf and gmt.history are automatically created in the temporary directory
$GMT_TMPDIR. The script is also adjusted such that the temporary grid file lat.nc and colormap
lat.cpt are created in that directory as well. To make things even more easy, GMT now provides a set
of handy shell functions in gmt_shell_functions.sh: simply include that file in the script and
the creation and the removal of the temporary directory is reduced to a single command.

251

GMT Documentation, Release 5.1.1

−180˚

−180˚

−120˚

−120˚

−60˚

−60˚

0˚

0˚

60˚

60˚

120˚

120˚

180˚

180˚

−90˚ −90˚

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

90˚ 90˚

Figure 26.1: Example created in isolation mode

252 Chapter 26. O. Special Operations

CHAPTER 27

P. The GMT Vector Data Format for OGR Compatibility

27.1 Background

The National Institute for Water and Atmospheric Research (NIWA) in New Zealand has funded the
implementation of a GMT driver (read and write) for the OGR package. OGR is an Open Source toolkit
for accessing or reformatting vector (spatial) data stored in a variety of formats and is part of the. The
intention was to enable the easy rendering (using GMT) of spatial data held in non-GMT formats, and
the export of vector data (e.g., contours) created by GMT for use with other GIS and mapping packages.
While ogr2ogr has had the capability to write this new format since 2009, GMT 4 did not have the
capability to use the extra information.

GMT 5 now allows for more advanced vector data, including donut polygons (polygons with holes) and
aspatial attribute data. At the same time, the spatial data implementation will not disrupt older GMT 4
programs since all the new information are written via comments.

The identification of spatial feature types in GMT files generally follows the technical description,
(which is largely consistent with the OGC SFS specification). This specification provides for non-
topological point, line and polygon (area) features, as well as multipoint, multiline and multipolygon
features, and was written by Brent Wood based on input from Paul Wessel and others on the GMT list.

27.2 The OGR/GMT format

Several key properties of the OGR/GMT format is summarized below:

• All new data fields are stored as comment lines, i.e., in lines starting with a “#”. OGR/GMT files
are therefore compatible with GMT 4 binaries, which will simply ignore this new information.

• To be consistent with current practice in GMT, data fields are represented as whitespace-separated
strings within the comments, each identified by the “@” character as a prefix, followed by a single
character identifying the content of the field. To avoid confusion between words and strings, the
word (field) separator within strings will be the “|” (pipe or vertical bar) character.

• Standard UNIX “\” escaping is used, such as \n for newline in a string.

• All new data are stored before the spatial data (coordinates) in the file, so when any GMT 5
program is processing the coordinate data for a feature, it will already have parsed any non-spatial
information for each feature, which may impact on how the spatial data is treated (e.g., utilizing
the aspatial attribute data for a feature to control symbology).

253

http://www.niwa.co.nz/key-contacts/brent-wood/

GMT Documentation, Release 5.1.1

• The first comment line must specify the version of the OGR/GMT data format, to allow for future
changes or enhancements to be supported by future GMT programs. This document describes
v1.0.

• For consistency with other GIS formats (such as shapefiles) the OGR/GMT format explicitly
contains a field specifying whether the features are points, linestrings or polygons, or the “multi”
versions of these. (Other shapefile feature types will not be supported at this stage). At present,
GMT programs are informed of this via command line parameters. This will now be explicit in the
data file, but does not preclude command line switches setting symbologies for plotting polygons
as lines (perimeters) or with fills, as is currently the practice.

• Note that what is currently called a “multiline” (multi-segment) file in GMT parlance is generally
a set of “lines” in shapefile/OGR usage. A multiline in this context is a single feature comprising
multiple lines. For example, all the transects from a particular survey may be stored as lines, each
with it’s own attribute set, such as transect number, date/time, etc. They may also be stored as a
single multiline feature with one attribute set, such as trip ID. This difference is explicitly stored
in the data in OGR/shapefiles, but currently specified only on the command line in GMT. This
applies also to points and polygons. The GMT equivalent to {multipoint, multiline, multipolygon}
datatypes is multiple GMT files, each comprising a single {multipoint, multiline, multipolygon}
feature.

• The new GMT vector data files includes a header comment specifying the type of spatial features it
contains, as well as the description of the aspatial attribute data to be associated with each feature.
Unlike the shapefile format, which stores the spatial and aspatial attribute data in separate files,
the GMT format will store all data in a single file.

• All the features in a GMT file must be of the same type.

27.3 OGR/GMT Metadata

Several pieces of metadata information must be present in the header of the OGR/GMT file, followed
by both spatial and aspatial data. In this section we look at the metadata.

27.3.1 Format version

The comment header line will include a version identifier providing for possible different versions in
future. It is indicated by the @V sequence.

Code Argument Description

V GMT1.0 Data in this file is stored using v1.0 of the OGR/GMT data format

An OGR/GMT file must therefore begin with the line

@VGMT1.0

Parsing of the OGR/GMT format is only activated if the version code-sequence has been found.

27.3.2 Geometry types

The words and characters used to specify the geometry type (preceded by the
@G code sequence on the header comment line), are listed in Table geometries.

254 Chapter 27. P. The GMT Vector Data Format for OGR Compatibility

GMT Documentation, Release 5.1.1

Code Geometry Description

G POINT File with point features
(Each point will have it’s own attribute/header line preceding the
point coordinates)

G MULTIPOINT File with a single multipoint feature
(All the point features are a single multipoint, with the same
attribute/header
information)

G LINESTRING File with features comprising multiple single lines
(Effectively the current GMT multiline file, each line feature will have
it’s own
attribute and header data)

G MULTI-
LINESTRING

File with features comprising a multiline

(All the line features in the file are a single multiline feature, only one
attribute
and header which applies to all the lines)

G POLYGON File with one or more polygons
(Similar to a line file, except the features are closed polygons)

G MULTIPOLY-
GON

File with a single multipolygon

(Similar to a GMT multiline file, except the feature is a closed
multipolygon)

An example GMT polygon file header using this specification (in format 1.0) is

@VGMT1.0 @GPOLYGON

27.3.3 Domain and map projections

The new format will also support region and projection information. The region will be stored in GMT
-R format (i.e., -RW/E/S/N, where the W/E/S/N values represent the extent of features); the @R code
sequence marks the domain information. A sample region header is:

@R150/190/-45/-54

Projection information will be represented as four optional strings, prefixed by @J

(J being the GMT character for projection information. The @J code will be fol-
lowed by a character identifying the format, as shown in Table projectspec.

Code Projection Specification

@Je EPSG code for the projection
@Jg A string representing the projection parameters as used by GMT
@Jp A string comprising the Proj.4 parameters representing the projection parameters
@Jw A string comprising the OGR WKT (well known text) representation of the projection

parameters

Sample projection strings are:

@Je4326 @JgX @Jp"+proj=longlat +ellps=WGS84+datum=WGS84 +no_defs"

@Jw"GEOGCS[\"WGS84\",DATUM[\"WGS_1984\",SPHEROID\"WGS84\",6378137,\

298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],TOWGS84[0,0,0,0,0,0,0],

AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,\

AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.01745329251994328,\

AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]"

27.3. OGR/GMT Metadata 255

GMT Documentation, Release 5.1.1

Note that an OGR-generated file will not have a @Jg string, as OGR does not have any knowledge of
the GMT projection specification format. GMT supports at least one of the other formats to provide
interoperability with other Open Source related GIS software packages. One relatively simple approach,
(with some limitations), would be a lookup table matching EPSG codes to GMT strings.

27.3.4 Declaration of aspatial fields

The string describing the aspatial field names associated with the features is flagged by the @N prefix.

Code Argument Description

N word|word|word A “|” -separated string of names of the attribute field names

Any name containing a space must be quoted. The @N selection must be combined with a matching
string specifying the data type for each of the named fields, using the @T prefix.

Code Argument Description

T word|word|word A “|” -separated string of the attribute field data types

Available datatypes should largely follow the shapefile (DB3) specification, including string, integer,
double, datetime, and logical (boolean). In OGR/GMT vector files, they will be stored as appropriately
formatted text strings.

An example header record containing all these is

@VGMT1.0 @GPOLYGON @Nname|depth|id @Tstring|double|integer

27.4 OGR/GMT Data

All generic fields must be at the start of the file before any feature-specific content (feature attribute
data follow the metadata, as do the feature coordinates, separated by a comment line comprising “#
FEATURE_DATA”. Provided each string is formatted as specified, and occurs on a line prefixed with
“#” (i.e., is a comment), the format is free form, in that as many comment lines as desired may be
used, with one or more parameter strings in any order in any line. E.g., one parameter per line, or all
parameters on one line.

27.4.1 Embedding aspatial data

Following this header line is the data itself, both aspatial and spatial. For line and polygon (including
multiline and multipolygon) data, features are separated using a predefined character, by default “>”. For
point (and multipoint) data, no such separator is required. The comment line containing the aspatial data
for each feature will immediately precede the coordinate line(s). Thus in the case of lines and polygons,
it will immediately follow the “>” line. The data line will be a comment flag (“#”) followed by @D,
followed by a string of “|”-separated words comprising the data fields defined in the header record.

To allow for names and values containing spaces, such string items among the @N or @D specifiers
must be enclosed in double quotes. (Where double quotes or pipe characters are included in the string,
they must be escaped using “\”). Where any data values are null, they will be represented as no characters
between the field separator, (e.g., #@D|||). A Sample header and corresponding data line for points are

@VGMT1.0 @GPOINT @Nname|depth|id @Tstring|double|integer

@D"Point 1"|-34.5|1

while for a polygon it may look like

256 Chapter 27. P. The GMT Vector Data Format for OGR Compatibility

GMT Documentation, Release 5.1.1

@VGMT1.0 @GPOLYGON @Nname|depth|id @Tstring|double|integer

>

@D"Area 1"|-34.5|1

27.4.2 Polygon topologies

New to GMT is the concept of polygon holes. Most other formats do support this structure, so that
a polygon is specified as a sequence of point defining the perimeter, optionally followed by similar
coordinate sequences defining any holes (the “donut” polygon concept).

To implement this in a way which is compatible with previous GMT versions, each polygon feature
must be able to be identified as the outer perimeter, or an inner ring (hole). This is done using a @P or
@H on the data comment preceding the polygon coordinates. The @P specifies a new feature boundary
(perimeter), any following @H polygons are holes, and must be within the preceding @P polygon
(as described in the shapefile specification). Any @H polygons will NOT have any @D values, as the
aspatial attribute data pertain to the entire feature, the @H polygons are not new polygons, but are merely
a continuation of the definition of the same feature.

27.5 Examples

Sample point, line and polygon files are (the new data structures are in lines starting with “#” in strings
prefixed with “@”). Here is a typical point file:

@VGMT1.0 @GPOINT @Nname|depth|id

@Tstring|double|integer

@R178.43/178.5/-57.98/-34.5

@Je4326

@Jp"+proj=longlat +ellps=WGS84 +datum=WGS84+no_defs"

FEATURE_DATA

@D"point 1"|-34.5|1

178.5 -45.7

@D"Point 2"|-57.98|2

178.43 -46.8

...

Next is an example of a line file:

@VGMT1.0 @GLINESTRING @Nname|depth|id

@Tstring|double|integer

@R178.1/178.6/-48.7/-45.6

@Jp"+proj=longlat +ellps=WGS84 +datum=WGS84+no_defs"

FEATURE_DATA

> -W0.25p

@D"Line 1"|-50|1

178.5 -45.7

178.6 -48.2

178.4 -48.7

178.1 -45.6

> -W0.25p

@D"Line 2"|-57.98|$

178.43 -46.8

...

Finally we show an example of a polygon file:

@VGMT1.0 @GPOLYGON @N"Polygon name"|substrate|id @Tstring|string|integer

@R178.1/178.6/-48.7/-45.6

@Jj@Jp"+proj=longlat +ellps=WGS84 +datum=WGS84+no_defs"

FEATURE_DATA

> -Gblue -W0.25p

27.5. Examples 257

GMT Documentation, Release 5.1.1

@P

@D"Area 1"|finesand|1

178.1 -45.6

178.1 -48.2

178.5 -48.2

178.5 -45.6

178.1 -45.6

>

@H

First hole in the preceding perimeter, so is technically still

part of the same geometry, despite the preceding > character.

No attribute data is provided, as this is inherited.

178.2 -45.4

178.2 -46.5

178.4 -46.5

178.4 -45.4

178.2 -45.4

>

@P

...

258 Chapter 27. P. The GMT Vector Data Format for OGR Compatibility

	A Reminder
	Copyright and Caveat Emptor!
	Preface
	New Features in GMT 5
	New programs
	New common options
	Updated common options
	New default parameters
	General improvements
	Program-specific improvements
	Incompatibilities between GMT 5 and GMT 4

	Switching between different GMT versions
	Setup of gmtswitch
	Version selection with helper function

	Introduction
	References

	GMT Overview and Quick Reference
	GMT summary
	GMT quick reference

	General Features
	GMT units
	GMT defaults
	Command line arguments
	Standardized command line options
	Command line history
	Usage messages, syntax- and general error messages
	Standard input or file, header records
	Verbose operation
	Program output
	Input data formats
	Output data formats
	PostScript features
	Specifying pen attributes
	Specifying area fill attributes
	Specifying Fonts
	Stroke, Fill and Font Transparency
	Color palette tables
	The Drawing of Vectors
	Character escape sequences
	Grid file format specifications
	Modifiers for changing the grid coordinates
	Modifiers for COARDS-compliant netCDF files
	Modifiers to read and write grids and images via GDAL
	The NaN data value
	Directory parameters

	GMT Coordinate Transformations
	Cartesian transformations
	Linear projection with polar coordinates (-Jp -JP)

	GMT Map Projections
	Conic projections
	Azimuthal projections
	Cylindrical projections
	Miscellaneous projections

	Creating GMT Graphics
	The making of contour maps
	Image presentations
	Spectral estimation and xy-plots
	A 3-D perspective mesh plot
	A 3-D illuminated surface in black and white
	Plotting of histograms
	A simple location map
	A 3-D histogram
	Plotting time-series along tracks
	A geographical bar graph plot
	Making a 3-D RGB color cube
	Optimal triangulation of data
	Plotting of vector fields
	Gridding of data and trend surfaces
	Gridding, contouring, and masking of unconstrained areas
	Gridding of data, continued
	Images clipped by coastlines
	Volumes and Spatial Selections
	Color patterns on maps
	Custom plot symbols
	Time-series of RedHat stock price
	World-wide seismicity the last 7 days
	All great-circle paths lead to Rome
	Data selection based on geospatial criteria
	Global distribution of antipodes
	General vertical perspective projection
	Plotting Sandwell/Smith Mercator img grids
	Mixing UTM and geographic data sets
	Gridding spherical surface data using splines
	Trigonometric functions plotted in graph mode
	Using non-default fonts in PostScript
	Draping an image over topography
	Stacking automatically generated cross-profiles
	Using country polygons for plotting and shading
	Spherical triangulation and distance calculations
	Spherical gridding using Renka's algorithms
	Spectral coherence between gravity and bathymetry grids
	Histogram equalization of bathymetry grids
	Evaluation of spherical harmonics coefficients
	line simplification and area calculations

	Creating GMT Animations
	Animation of the sine function
	Examining DEMs using variable illumination
	Orbiting a static map
	Flying over topography

	A. GMT Supplemental Packages
	gshhg: GSHHG data extractor
	img: gridded altimetry extractor
	meca: seismology and geodesy symbols
	mgd77: MGD77 extractor and plotting tools
	misc: Miscellaneous tools
	potential: Geopotential tools
	segyprogs: plotting SEGY seismic data
	spotter: backtracking and hotspotting
	x2sys: track crossover error estimation

	B. GMT File Formats
	Table data
	Grid files
	Sun raster files

	C. Including GMT Graphics into your Documents
	Making GMT Encapsulated PostScript Files
	Converting GMT PostScript to PDF or raster images
	Examples
	Concluding remarks

	E. Predefined Bit and Hachure Patterns in GMT
	F. Chart of Octal Codes for Characters
	G. PostScript Fonts Used by GMT
	Using non-default fonts with GMT

	H. Color Space: The Final Frontier
	RGB color system
	HSV color system
	The color cube
	Color interpolation
	Artificial illumination
	Thinking in RGB or HSV
	CMYK color system

	I. Filtering of Data in GMT
	J. The GMT High-Resolution Coastline Data
	Selecting the right data
	Format required by GMT
	The long and winding road
	The Five Resolutions

	K. GMT on non-UNIX Platforms
	Introduction
	Cygwin and GMT
	MINGW|MSYS and GMT

	L. Of Colors and Color Legends
	Built-in color palette tables
	Labeled and non-equidistant color legends

	M. Custom Plot Symbols
	Background
	The macro language

	N. Annotation of Contours and ``Quoted Lines''
	Label Placement
	Label Attributes
	Examples of Contour Label Placement
	Examples of Label Attributes
	Putting it all together

	O. Special Operations
	Running GMT in isolation mode

	P. The GMT Vector Data Format for OGR Compatibility
	Background
	The OGR/GMT format
	OGR/GMT Metadata
	OGR/GMT Data
	Examples

