
Win32 API Emulation on UNIX for Software DSM

Sven M. Paas, Thomas Bemmerl, Karsten Scholtyssik
Lehrstuhl für Betriebssysteme, RWTH Aachen
Kopernikusstr. 16, D-52056 Aachen, Germany
Email:contact@lfbs.rwth-aachen.de

WWW: http://www.lfbs.rwth-aachen.de/

Abstract. This paper presents a new Win32 emulation layer called nt2unix. It sup-
ports source code compatible Win32 console applications on UNIX. We focus on
the emulation of specific Win32 features used for system programming like excep-
tion handling, virtual memory management, NT thread synchronization and the
WinSock API. As a case study, we ported the all-software DSM system SVMlib -
consisting of about 15.000 lines of C++ code written natively for the Win32 API -
to Sun Solaris with absolutely no source code changes.

1 Introduction
While there exist numerous toolkits designed for porting software from UNIX to Windows NT
on source code level [14], little effort has be conducted to provide a toolkit to port Windows
NT applications, especially those using the Win32 API directly, to UNIX. With the emerging
importance of Windows NT [8], more and more applications are newly developed for the
Win32 API, so a migration path to support the various UNIX flavors even for low level appli-
cations is highly desirable. In this paper, we propose a library based approach to achieve source
code level compatibility for a specific subset of the Win32 API under the UNIX operating sys-
tem.

2 The nt2unix Emulation Layer
In this section, we introduce the functionality of nt2unix and its strategy to implement a rele-
vant subset of the Win32 API on Solaris [12], a popular UNIX System V implementation.
Since a complete implementation of the Win32 API under UNIX is not practicable, we had to
decide which features to support. As our focus lies on systems programming, we chose the fol-
lowing function groups to form a reasonable subset:

• NT Thread Management. This group includes functions for creating, destroying, suspend-
ing and resuming preemptive threads. It also includes functions to synchronize concurrent
threads and TLS (thread local storage) functions.

• Virtual Memory Management. This group includes the interface to the virtual memory
(VM) manager as well as functions for memory mapped I/O.

• Error Handling. Win32 supports user level handlers to catch special exceptions as well as
special error handling routines. These functions form another group to be supported.

• Networking. This group concerns networking, which includes the complete WinSock API.

Naturally, an emulation layer firstly has to support the basic data types found in the Win32

API. nt2unix supports most specific simple Win32 data types, like DWORD, BOOL, BYTE
and so on. The much more interesting problems arise from the implementation of certain func-
tions. Some specific problems we encountered are presented in the next sections.

2.1 NT Multithreading and Synchronization
In order to support NT multithreading, nt2unix must keep track of thread associated data nor-
mally the NT kernel stores. This data includes:

• The state of a thread (running, suspended or terminated);

• Thesuspend counter of a thread (a concept unknown in Solaris);

• The exit code of the thread.

nt2unix uses the STL typemap to store the above information for each thread. The entries in
the map are indexed by the NT handle of the thread. Accesses to this map a protected by a spe-
cial lock object:

typedef map<HANDLE, ThreadInfo, less<HANDLE> > ThreadInfoMap;
static ThreadInfoMap ThreadInfos;
static CriticalSection ThreadInfoLock;

Severe problems occur in order to support the Win32 functionsSuspendThread() andResu-
meThread(). At first glance, it seems obvious that these two functions can easily be emulated
by the Solaris functionsthr_suspend(3T) andthr_resume(3T). However, this is not the case,
since there is a lost signal problem to be avoided when a thread suspends.

To understand this, we have a deeper look at our implementation ofSuspendThread(). When
this function is called, the lock protecting the thread data is acquired. Afterwards, the suspend
counter of the thread is incremented, if possible. If the old suspend count is zero, two cases
may occur: the thread may suspend itself or another thread. If the first case is true, the lock is
released before actually callingthr_suspend() to avoid deadlock. In the second case, a lost
signal problem must be avoided, since under Solaris, resuming threads doesnot work in
advance, that is, resume actions are not queued if the target thread is not yet suspended at all.
Our solution to this problem is to let theResumeThread() implementation poll until the thread
which has to be resumed has indicated its new state by setting a special flag, threadHasBeen-
Resumed. So the code forSuspendThread() is like the following:

DWORDSuspendThread(HANDLE hThread) {

BOOL same = FALSE; // this flag indicates whether a thread suspends itself.

// If same == TRUE, we must avoid a „lost signal“ problem, see below.

ThreadInfoLock.enter();

ThreadInfoMap::iterator thisThreadInfo = ThreadInfos.find(hThread);

if (thisThreadInfo != ThreadInfos.end()) { // found it.

DWORD oldSuspendCount = (*thisThreadInfo).second.suspendCount;

if (oldSuspendCount < MAXIMUM_SUSPEND_COUNT)

(*thisThreadInfo).second.suspendCount++;

if (oldSuspendCount < 1) {

(*thisThreadInfo).second.state = THREAD_SUSPENDED;

if (same = (thr_self() == (thread_t)hThread)) {

// if the thread suspends itself, we must release the lock.

(*thisThreadInfo).second.threadHasBeenResumed = FALSE;

ThreadInfoLock.leave();

}

// DANGER!!! If at this point, another thread is scheduled in ResumeThread(), the

// resume „signal“ may get lost. To avoid this, ResumeThread() polls until the thread is

// really resumed, i.e. until threadHasBeenResumed == TRUE.

if (thr_suspend((thread_t)hThread)) {

perror(„thr_suspend()“); return 0xFFFFFFFF;

}

(*thisThreadInfo).second.threadHasBeenResumed = TRUE;

if (!same)

ThreadInfoLock.leave();

} else // thread is already sleeping

ThreadInfoLock.leave();

return oldSuspendCount;

}

// Thread not found.

ThreadInfoLock.leave();

return 0xFFFFFFFF;

}

The correspondingResumeThread() code is as follows:
DWORDResumeThread(HANDLE hThread) {

ThreadInfoLock.enter();
ThreadInfoMap::iterator thisThreadInfo = ThreadInfos.find(hThread);
if (thisThreadInfo != ThreadInfos.end()) { // found it.

DWORD oldSuspendCount = (*thisThreadInfo).second.suspendCount;
if (oldSuspendCount > 0) {

(*thisThreadInfo).second.suspendCount--;
if (oldSuspendCount < 2) {

// oldSuspendCount == 1 -> new value is 0 -> really resume thread
(*thisThreadInfo).second.state = THREAD_RUNNING;
do { // Loop until the target thread is really resumed.

if (thr_continue((thread_t)hThread)) {
ThreadInfoLock.leave();
return 0xFFFFFFFF;

}
// Give up the CPU so that the resumed thread has a chance to
// update the associated threadHasBeenResumed flag.
thr_yield();

} while (!(*thisThreadInfo).second.threadHasBeenResumed);
}

}
ThreadInfoLock.leave();
return oldSuspendCount;

} // thread not found.
ThreadInfoLock.leave();
return 0xFFFFFFFF;

}

2.2 Virtual Memory Management
Win32 supports an interface to the VM system, especially to protect and map virtual memory
pages. Like for threads, nt2unix has to keep track of data for each file mapping in the system.
nt2unix stores the following information for each mapping:

struct FileMapping {
LPVOID lpBaseAddress; // base address of mapping
DWORD dwNumberOfBytesToMap; // mapping size
HANDLE hFileMappingObject; // file handle
char FileName[MAX_PATH]; // file name
DWORD refcnt; // number of references to the mapping

};
static vector<FileMapping> FileMappings;

Using a STL-stylevector of mappings, NT mapping is easily achieved by using mmap():
WINBASEAPI LPVOID WINAPI MapViewOfFileEx (

HANDLE hFileMappingObject, DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh, DWORD dwFileOffsetLow,
DWORD dwNumberOfBytesToMap, LPVOID lpBaseAddress) {

int prot = 0, flags = 0; LPVOID ret;
if (dwFileOffsetHigh > 0)

DBG(„MapViewOfFileEx(): ignoring dwFileOffsetHigh“);
// Filter the protection bits and mapping flags ...
prot =dwDesiredAccess & FILE_MAP_ALL_ACCESS;
flags = dwDesiredAccess & FILE_MAP_COPY ? MAP_PRIVATE : MAP_SHARED;
if (lpBaseAddress)

flags |= MAP_FIXED;
// Search and update the mapping in the vector.
vector<FileMapping>::iterator i=FileMappings.begin();
while(i != FileMappings.end() &&

i->hFileMappingObject != hFileMappingObject)
i++;

if (i != FileMappings.end()) {
if (dwNumberOfBytesToMap)

i->dwNumberOfBytesToMap = dwNumberOfBytesToMap;
} else

return 0;
if ((ret = (LPVOID)mmap((caddr_t)lpBaseAddress,

(size_t)i->dwNumberOfBytesToMap, prot, flags,
(int)hFileMappingObject, (off_t)dwFileOffsetLow))
== (LPVOID)MAP_FAILED) {

return 0;
}
if (mprotect((caddr_t)ret, (size_t)i->dwNumberOfBytesToMap, prot) == -1)

perror(„mprotect()“);
return ret;

}

2.3 NT Exception Handling
Windows NT provides two means of delivering exceptions to user level processes:

• by embracing the code with a __try{} ... __except(){} block.

• by installing an exception handler callingSetUnhandledExceptionFilter().
The second method is supported by nt2unix. Exceptions are mapped to semantically more or
less equivalent UNIX-style signals, like denoted in the following table. Note that not all excep-

tion codes of Windows NT have meaningful counterparts in a UNIX environment.

2.4 Summary
The following table shows a summary of all functions implemented within nt2unix.

Type of exception NT Exception Code UNIX Signal

Access Violation EXCEPTION_ACCESS_VIOLATION SIGSEGV
Floating Point Exc. EXCEPTION_FLT_INVALID_OPERATION SIGFPE
Illegal Instruction EXCEPTION_ILLEGAL_INSTRUCTION SIGILL

Bus Error EXCEPTION_IN_PAGE_ERROR SIGBUS
Trace Trap EXCEPTION_SINGLE_STEP SIGTRAP

Win32 Functions emulated Emulation is based on

NT Multithreading CreateThread()
GetCurrentThread()

GetCurrentThreadId()
ExitThread()

TerminateThread()
GetExitCodeThread()

SuspendThread()
ResumeThread()

Sleep()

thr_create()
thr_self()
thr_self()
thr_exit()
thr_kill()

STL
thr_self(), thr_suspend()
thr_yield(), thr_resume()

thr_yield(), thr_suspend(), poll()
NT Thread

Synchronization
InitializeCriticalSection()
DeleteCriticalSection()
EnterCriticalSection()
LeaveCriticalSection()

mutex_init()
mutex_destroy()

mutex_lock()
mutex_unlock()

3 A Case Study: SVMlib

3.1 Overview
SVMlib [9, 13] (Shared Virtual Memory Library) is an all-software, page based, user level
shared virtual memory subsystem for clusters of Windows NT workstations. It is one of the

Thread Local Storage
(TLS)

TlsAlloc()
TlsGetValue()
TlsSetValue()

TlsFree()

thr_keycreate()
thr_getspecific()
thr_setspecific()

pthread_key_delete()
NT Object Handles CloseHandle()

DuplicateHandle()
WaitForSingleObject()

close()
dup(), dup2()

thr_join()
Process Functions GetCurrentProcess()

GetCurrentProcessId()
ExitProcess()

getpid()
getpid()
exit()

VM Management VirtualAlloc()
VirtualFree()

VirtualProtect()
VirtualLock()

VirtualUnlock()

mmap(), valloc(), mprotect()
mprotect(), free()

mprotect(), memcntl()
mlock()

munlock()
Memory Mapped I/O MapViewOfFile()

MapViewOfFileEx()
UnmapViewOfFile()
CreateFileMapping()

mmap()
mmap()

munmap()
STL

Error Handling WSAGetLastError()
GetLastError()
SetLastError()

WSASetLastError()

errno
errno
errno
errno

WinSock API WSAStartup()
WSACleanup()
closesocket()
ioctlsocket()

all BSD-style functions!

-
-

close()
ioctl()

socket(5) family
Exception Handling SetUnhandledExceptionFilter()

GetExceptionInformation()
UnhandledExceptionFilter()

sigaction()

Miscellaneous GetSystemInfo()
GetComputerName()

QueryPerformanceFrequency()
QueryPerformanceCounter()

sysinfo()
gethostname()

-
gettimeofday()

Win32 Functions emulated Emulation is based on

first [6] [10] SVM systems for this operating system. The source code of SVMlib consists of
about 15.000 lines of C++ code written natively for the Win32 API. The library has been
designed to benefit from several Windows NT features like preemptive multithreading and sup-
port for SMP machines. Unlike most software DSM systems, SVMlib itself is truly multi-
threaded. It also allows to create several preemptive user threads to speed up the computation
on SMP nodes in the cluster. Currently the library uses TCP/IP sockets for communication pur-
poses but it will also support efficient message passing using Dolphins implementation of SCI.

SVMlib provides a C/C++ API that allows the user to create and destroy regions of virtual
shared memory that can be accessed fully transparently. Also different synchronization primi-
tives like barriers and mutexes are part of the API. To keep track of accesses to the shared
regions, SVMlib handles page faults within the regions via structured exception handling pro-
vided by the C++ run time system of Windows NT.

At the current stage, two different memory consistency models are supported by three different
consistency protocols. The first consistency model offers the widely used though fairly ineffi-
cient sequential consistency [7] model. This model is supported by single writer as well as
multiple writer protocols. Secondly, the distributed lock basedscope consistency [5] is imple-
mented.

Our main goal in this project is to examine the impact of efficient distributed synchronization
protocols on the performance of a SVM system.

3.2 Design of SVMlib
When designing a SVM system, several design choices have to be made. When we started this
project our primary goal was to develop a highly flexible and extendable research instrument.
We therefore decided to build SVMlib as a set of independent modules where each can be
exchanged without influencing the other modules.

Another important choice was the platform to build SVMlib on. As Windows NT is a modern
operating system with some interesting features like true preemptive kernel threads, SMP sup-
port and a rich API we decided to use workstations running Windows NT as primary platform.
Figure 3.1 shows the overall design of SVMlib. On the top level four modules are used.

The first is thememory manager that handles the creation and destruction of shared memory
regions, catches page faults and implements the memory dependent part of the user interface.
The memory manager manages a set of regions where each region can use a different consis-
tency model and coherence protocol.

The second part is thelock manager that provides an interface that allows to create and destroy
primitives for distributed process synchronization - mutexes as well as global barriers and
semaphores.

For internode communication purposes thecommunicator is used. The user will never directly
use this module. It is for internal purposes only. The communicator provides a simple interface
containing a barrier, a broadcast algorithm and the possibility to send messages to each other
node. This module has been designed to be active itself. To take advantage of the SMP support
of Windows NT the communicator uses threads to handle incoming messages.

The last main module is theinterval manager that allows to implement weak consistency mod-
els like lazy release consistency or the currently used scope consistency. The user will never
have to access this module directly. It is used as a bridge between the memory and the lock
manager when weak consistency models are used. This is needed because both locks and
memory pages handle a part of the weak consistency model.

SVMlib provides several API personalities to the application programmer. First of all, a native
C and C++ API is provided. For compatibility to other SVM systems and existing shared mem-
ory implementations, other interfaces to shared memory programming are supported. Cur-
rently, these interfaces include theShared Memory Interface (SMI) [3], the macro interface of
Stanford Parallel Applications for Shared Memory (SPLASH) [15] and theCoherent Virtual
Machine (CVM) [11]. Other interfaces are planned to be supported in the future.

3.3 Performance Impact of the Emulation
Using nt2unix, we ported the source code of SVMlib to Sun Solaris 2.5.1 withabsolutely no
source code changes. This was very surprising, since, at first glance, a DSM implementation
naturally is very system dependent. To show the impact of the Win32 emulation, we give usual
metrics characterzing the performance of the library:

• Page Fault Detection Time. This value includes the mean time from the occurrence of a
processor page fault on a protected page to the entrance of the handling routine. That is,
this time includes all operating system overhead to deliver a page fault exception to user
code. Note that there seems to be no difference between the NT Server and NT Workstation

SuperSPARC,
50 MHz

Pentium,
133 MHz

Pentium Pro,
200 MHz

Windows NT 4.0
Server / Workstation

- 28 µs 19µs

Solaris 2.5.1 135µs 92µs 48µs

Windows NT Kernel Services

Win32 APIWinSock 2.0 API

SVMlib API [SMI, SPLASH, CVM...]

MemoryManager LockManager

Communicator

Page
Fault

Handling

IntervalManager

Figure 3.1:SVMlib components.

version with respect to exception handling. We compared these values with user level page
fault detection under Solaris 2.5.1 for Intel and SPARC, respectively. Under UNIX, the
memory exception handling mechanism of Windows NT is emulated by catching theSIG-
SEGV signal.

• Page Fault Time. This value includes the mean time to handle one page fault. This time
excludes the page fault detection time mentioned above. It includes the overhead due to the
coherence protocol and communication subsystem. In the current implementation, the
times measured are mainly influenced by the high TCP/IP latency. The measurements were
made using the FFT application of the set of CVM examples. This application implements
a Fast Fourier Transformation on a 64 x 64 x 16 array. The coherence protocol used is a

multiple reader / single writer protocol implementing sequential consistency. We compared
three configurations running FFT: (1)CVM on Solaris: the CVM system running on Solaris
2.5.1, Sun SS-20, Ethernet; (2)SVMlib on nt2unix: the Solaris version of SVMlib, running
on the same platform as (1), but with nt2unix emulation layer; (3)SVMlib on Win32: the
native Win32 version of SVMlib, running on Windows NT 4.0, Intel Pentium-133,
FastEthernet. Naturally, the Win32 time values mainly reflect the improved network per-
formance of FastEthernet.

4 Summary and Conclusion
In this paper, we introduced nt2unix, a library providing an important subset of the Win32 API
on UNIX based systems. The library makes it possible to port Win32 console applications to
UNIX with much less effort. As a case study, we ported a complex DSM system with no
source code changes at all from Windows NT to Solaris. We found that the performance
impact of the emulation is not too high. The complete source code of the nt2unix library is
available on request, please e-mail to contact@lfbs.rwth-aachen.de .

References

[1] Berrendorf, R.; Gerndt, M.; Mairandres, M.; Zeisset, S.:A Programming Environment for Shared
Virtual Memory on the Intel Paragon Supercomputer, ISUG Conference, Albuquerque, 1995

[2] Dolphin Interconnect Solutions:PCI-SCI Cluster Adapter Specification. Jan. 1996.

[3] Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T.:A Programming Interface for NUMA
Shared-Memory Clusters. Proc. High Perf. Comp. and Networking (HPCN), pp. 698-707, LNCS
1225, Springer, 1997.

#Nodes
Read / Write / Average

Fault Time [ms]
(CVM on Solaris)

Read / Write / Average
Fault Time [ms]

(SVMlib on nt2unix)

Read / Write / Average
Fault Time [ms]

(SVMlib on Win32)

2 11.3 / 0.8 / 4.4 4.5 / 1.3 / 2.2 3.4 / 1.1 / 1.8
3 12.0 / 0.8 / 5.8 4.6 / 1.8 / 2.7 3.4 / 1.4 / 2.3
4 16.7 / 0.9 / 7.1 4.9 / 1.8 / 3.1 4.0 / 1.5 / 2.4

[4] IEEE: ANSI/IEEE Std. 1596-1992, Scalable Coherent Interface (SCI). 1992.

[5] Iftode, L.; Singh, J. P.; Li, K.:Scope Consistency: A Bridge between Release Consistency and
Entry Consistency. In Proc. of the 8th ACM Annual Symp. on Parallel Algorithms and Architec-
tures (SPAA‘96), June 1996

[6] Itzkovitz, A., Schuster, A., Shalev, L.:Millipede: a User-Level NT-Based Distributed Shared
Memory System with Thread Migration and Dynamic Run-Time Optimization of Memory Refer-
ences, Proc. of the USENIX Windows NT Workshop, Seattle, 1997

[7] Lamport, L.:How to make a multiprocessor computer that correctly executes multiprocess pro-
grams, IEEE Transactions on Computers, C-28(9), pp. 690-691, September 1979

[8] Microsoft Windows NT homepage, URL:http://www.microsoft.com/ntserver/

[9] Paas, S. M.; Scholtyssik, K.:Efficient Distributed Synchronization within an all-software DSM
system for clustered PCs. 1st Workshop Cluster-Computing, TU Chemnitz-Zwickau, November
6-7, 1997

[10] Speight, E., Bennett, J. K.:Brazos: A Third Generation DSM System, Proc. of the USENIX Win-
dows NT Workshop, Seattle, 1997

[11] Thitikamol, K.; Keleher, P.:Multi-Threading and Remote Latency in Software DSMs. In: 17th
International Conference on Distributed Computing Systems, May 1997

[12] Sunsoft Solaris homepage, URL:http://www.sun.com/software/solaris/

[13] SVMlib Homepage, URL:http://www.lfbs.rwth-aachen.de/~sven/SVMlib/

[14] UNIX to NT resource center, URL:http://www.nentug.org/unix-to-nt/

[15] Woo, S. C.; Moriyoshi Ohara, M.; Torrie, E.; Singh, J. P., and Gupta, A.:The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In Proc. of the 22nd International
Symposium on Computer Architecture, pp. 24-36, Santa Margherita Ligure, Italy, June 1995

