
MPICH Logging

Version 0.1

DRAFT of February 20, 2014

Mathematics and Computer Science Division

Argonne National Laboratory

David Ashton

February 20, 2014

1



1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH has already been installed. For instruc-
tions on how to install MPICH, see the MPICH Installer’s Guide, or the
README in the top-level MPICH directory. This manual will explain how
the internal logging macros are generated and how the user can generate log
files viewable in Jumpshot.

2 Configuring mpich to create log files

When users run configure they can specify logging options. There are three
configure options to control logging.

--enable-timing=<timing type>

Add this option to enable timing. The two options for timing type
are log and log detailed. The log option will log only the MPI
functions. The log detailed will log every function in mpich. This
option gives fine grained logging information and also creates large log
files. It must be used in conjunction with a timer-type that can log
very short intervals on the order of 100’s of nanoseconds.

--with-logging=<logger>

Specify the logging library to use. Currently the only logger option is
rlog.

--enable-timer-type=<timer type>

Specify the timer type. The options are

• gethrtime - Solaris timer (Solaris systems only)

• clock gettime - Posix timer (where available)

• gettimeofday - Most Unix systems

• linux86 cycle - Linux x86 cycle counter*

• linuxalpha cycle - Like linux86 cycle, but for Linux Alpha*

• gcc ia64 cycle - IA64 cycle counter*

* Note that CPU cycle counters count cycles, not elapsed time. Be-
cause processor frequencies are variable, especially with modern power-
aware hardware, these are not always reliable for timing and so should
only be used if you’re sure you know what you’re doing.



3 GENERATING LOG FILES 2

Here is an example:

mpich/configure

--enable-timing=log

--with-logging=rlog

--enable-timer-type=gettimeofday

...

3 Generating log files

Run your mpi application to create intermediate .irlog files.

mpicc myapp.c -o myapp

mpiexec -n 3 myapp

There will be .irlog files created for each process:

log0.irlog

log1.irlog

log2.irlog

4 RLOG tools

For performance reasons each process produces a local intermediate log
file that needs to be merged into a single rlog file. Use the rlog tools to
merge the .irlog files into an .rlog file. The rlog tools are found in
mpich build/src/util/logging/rlog. Currently they are not copied to
the install directory.

irlog2rlog

This tool combines the intermediate .irlog files into a single .rlog

file. The usage is: “irlog2rlog outname.rlog input0.irlog input1.irlog

...” A shortcut is provided: “irlog2rlog outname.rlog <num files>”.
Execute irlog2rlog without any parameters to see the usage options.

printrlog

This tool prints the contents of an .rlog file.



5 VIEWING LOG FILES 3

printirlog

This tool prints the contents of an .irlog file.

Continuing the example from the previous section:

irlog2rlog myapp.rlog 3

will convert log0.irlog, log1.irlog and log2.irlog to myapp.rlog.

5 Viewing log files

This section describes how to view a log file

.rlog files can be printed from a command shell using the printrlog

tool but the more interesting way to view the log files is from Jumpshot.
Jumpshot displays slog2 files and has a built in converter to convert .rlog
files to .slog2 files. Start Jumpshot and open your .rlog file. Jumpshot
will ask you if you want to convert the file and you say yes.

6 Logging state code generation

This section can be skipped by users. It describes the internal scripts used
to develop the logging macros.

This is how the maint/genstates script works:

1. autogen.sh creates genstates from genstates.in replacing @PERL@

with the appropriate path to perl and then runs genstates.

2. genstates finds all .i, .h and .c files in the mpich directory tree,
searches for STATE DECL in each file and builds a list of all the MPID STATEs.
It validates that the states start in a STATE DECL statement, followed
by a FUNC ENTER statement, and then at least one FUNC EXIT state-
ment. Errors are printed out if the code does not follow this format
except for macros. State declarations in macros are assumed to be
correct.



6 LOGGING STATE CODE GENERATION 4

3. genstates finds all the describe states.txt files anywhere in the
mpich tree. describe states.txt files are optional and are used to
set the output name of the state and its associated color.

4. The describe states.txt file format is this:

MPID_STATE_XXX <user string for the state> <optional rgb color>

Here is an example line:

MPID_STATE_MPI_SEND MPI_Send 0 0 255

If you don’t specify a state in a describe states.txt file then the
state user name will be automatically created by stripping off the
MPID STATE prefix and the color will be assigned a random value.

5. genstates ouputs mpich/src/include/mpiallstates.h with this enum
in it:

enum MPID_TIMER_STATE

{

MPID_STATE_XXX,

...

};

6. genstates outputs mpich/src/util/logging/describe states.c with
the MPIR Describe timer states() function in it. Currently, only
the rlog version of MPIR Describe timer states() is generated.


	Introduction
	Configuring mpich to create log files
	Generating log files
	RLOG tools
	Viewing log files
	Logging state code generation

