
MPICH2 Installer’s Guide∗

Version 0.4

Mathematics and Computer Science Division

Argonne National Laboratory

William Gropp
Ewing Lusk

David Ashton
Darius Buntinas

Ralph Butler
Anthony Chan

Rob Ross
Rajeev Thakur
Brian Toonen

March 2, 2005

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

1

Contents

1 Introduction 1

2 Quick Start 1

2.1 Prerequisites . 1

2.2 From A Standing Start to Running an MPI Program 2

2.3 Common Non-Default Configuration Options 9

2.4 Shared Libraries . 9

2.5 What to Tell the Users . 9

3 Migrating from MPICH1 10

3.1 Configure Options . 10

4 Installing and Managing Process Managers 10

4.1 MPD . 10

4.1.1 Options for mpd . 11

4.1.2 Running MPD as Root 11

4.2 SMPD . 11

4.2.1 Configuration . 11

4.2.2 Usage and administration 12

4.3 Forker . 13

4.4 Other Process Managers . 13

5 Testing 13

5.1 Using the Intel Test Suite . 13

6 Benchmarking 14

i

7 MPE 15

8 Windows Version 15

8.1 Binary distribution . 15

8.2 Source distribution . 16

8.3 cygwin . 17

9 All Configure Options 17

A Troubleshooting the mpd’s 20

A.1 Getting Started with mpd . 20

A.2 mpdcheck . 22

A.3 mpdboot . 24

ii

1 INTRODUCTION 1

1 Introduction

This manual describes how to obtain and install MPICH2, the MPI-2 imple-
mentation from Argonne National Laboratory. (Of course, if you are reading
this, chances are good that you have already obtained it and found this doc-
ument, among others, in its doc subdirectory.) This Guide will explain how
to install MPICH so that you and others can use it to run MPI applications.
Some particular features are different if you have system administration
privileges (can become “root” on a Unix system), and these are explained
here. It is not necessary to have such privileges to build and install MPICH2.
In the event of problems, send mail to mpich2-maint@mcs.anl.gov. Once
MPICH2 is installed, details on how to run MPI jobs are covered in the
MPICH2 User’s Guide, found in this same doc subdirectory.

MPICH2 has many options. We will first go through a preferred, “stan-
dard” installation in a step-by-step fashion, and later describe alternative
possibilities. This Installer’s Guide is for MPICH2 Release 1.0. We are re-
serving the 1.0 designation for when every last feature of the MPI-2 Standard
is implemented, but most features are included. See the RELEASE NOTES file
in the top-level directory for details.

2 Quick Start

In this section we describe a “default” set of installation steps. It uses the
default set of configuration options, which builds the sock communication
device and the MPD process manager, for as many of languages C, C++,
Fortran-77, and Fortran-90 compilers as it can find, with compilers chosen
automatically from the user’s environment, without tracing and debugging
options. It uses the VPATH feature of make, so that the build process can
take place on a local disk for speed.

2.1 Prerequisites

For the default installation, you will need:

1. A copy of the distribution, mpich2.tar.gz.

2. A C compiler.

2 QUICK START 2

3. A fortran-77, Fortran-90, and/or C++ compiler if you wish to write
MPI programs in any of these languages.

4. Python 2.2 or later version, for building the default process manage-
ment system, MPD. PyXML and an XML parser like expat (in order
to use mpiexec with the MPD process manager). Most systems have
Python, PyXML, and expat pre-installed, but you can get them free
from www.python.org. Assume they are there unless the configure
step below complains.

5. Any one of a number of Unix operating systems, such as Linux. MPICH2
is most extensively tested on Linux; there remain some difficulties on
systems we do not currently have access to. Our configure script
attempts to adapt MPICH2 to new systems.

Configure will check for these prerequisites and try to work around defi-
ciencies if possible. (If you don’t have Fortran, you will still be able to use
MPICH2, just not with Fortran applications.)

This default installation procedure builds and installs MPICH2 ready
for C and Fortran (-77) programs, using the MPD process manager (and
it builds and installs MPD itself), without debugging options. Regardless
of where the source resides, the build takes place on a local file system,
where compilation is likely to be much faster than on a network-attached
file system, but the installation directory that is accessed by users can be
on a shared file system. For other options, see the appropriate sections later
in the document.

2.2 From A Standing Start to Running an MPI Program

Here are the steps from obtaining MPICH2 through running your own par-
allel program on multiple machines.

1. Unpack the tar file.

tar xfz mpich2.tar.gz

If your tar doesn’t accept the z option, use

gunzip -c mpich2.tar.gz | tar xf mpich2.tar

2 QUICK START 3

Let us assume that the directory where you do this is /home/you/libraries.
It will now contain a subdirectory named mpich2-1.0.

2. Choose an installation directory (the default is /usr/local/bin):

mkdir /home/you/mpich2-install

It will be most convenient if this directory is shared by all of the
machines where you intend to run processes. If not, you will have to
duplicate it on the other machines after installation. Actually, if you
leave out this step, the next step will create the directory for you.

3. Choose a build directory. Building will proceed much faster if your
build directory is on a file system local to the machine on which the
configuration and compilation steps are executed. It is preferable that
this also be separate from the source directory, so that it remains clean
and can be reused to build other copies on other machines.

mkdir /tmp/you/mpich2-1.0

4. Configure MPICH2, specifying the installation directory, and running
the configure script in the source directory:

cd /tmp/you/mpich2-1.0
/home/you/libraries/mpich2-1.0/configure \

-prefix=/home/you/mpich2-install |& tee configure.log

where the \ means that this is really one line. (On sh and its deriva-
tives, use 2>&1 | tee configure.log instead of |& tee configure.log).
Other configure options are described below. Check the configure.log
file to make sure everything went well. Problems should be self-
explanatory, but if not, sent configure.log to mpich2-maint@mcs.anl.gov.

5. Build MPICH2:

make |& tee make.log

This step should succeed if there were no problems with the preceding
step. Check make.log. If there were problems, send configure.log
and make.log to mpich2-maint@mcs.anl.gov.

6. Install the MPICH2 commands:

2 QUICK START 4

make install |& tee install.log

This step collects all required executables and scripts in the bin subdi-
rectory of the directory specified by the prefix argument to configure.

7. Add the bin subdirectory of the installation directory to your path:

setenv PATH /home/you/mpich2-install/bin:$PATH

for csh and tcsh, or

export PATH=/home/you/mpich2-install/bin:$PATH

for bash and sh. Check that everything is in order at this point by
doing

which mpd
which mpicc
which mpiexec
which mpirun

All should refer to the commands in the bin subdirectory of your
install directory. It is at this point that you will need to duplicate this
directory on your other machines if it is not in a shared file system
such as NFS.

8. MPICH2, unlike MPICH, uses an external process manager for scal-
able startup of large MPI jobs. The default process manager is called
MPD, which is a ring of daemons on the machines where you will run
your MPI programs. In the next few steps, you will get this ring up
and tested. More details on interacting with MPD can be found in
the README file in mpich2/src/pm/mpd, such as how to list run-
ning jobs, kill, suspend, or otherwise signal them, and how to use the
mpigdb debugger. The instructions given here should be enough to get
you started.

For security reasons, mpd looks in your home directory for a file named
.mpd.conf containing the line

secretword=<secretword>

2 QUICK START 5

where <secretword> is a string known only to yourself. It should not
be your normal Unix password. Make this file readable and writable
only by you:

cd $HOME
touch .mpd.conf
chmod 600 .mpd.conf

Then use an editor to place a line like:

secretword=mr45-j9z

into the file. (Of course use a different secret word than mr45-j9z.)

9. The first sanity check consists of bringing up a ring of one mpd on
the local machine, testing one mpd command, and bringing the ”ring”
down.

mpd &
mpdtrace
mpdallexit

The output of mpdtrace should be the hostname of the machine you
are running on. The mpdallexit causes the mpd daemon to exit.

10. The next sanity check is to run a non-MPI program using the daemon.

mpd &
mpiexec -n 1 /bin/hostname
mpdallexit

This should print the name of the machine you are running on. If not,
you should check the troubleshooting section below.

11. Now we will bring up a ring of mpd’s on a set of machines. Create a
file consisting of a list of machine names, one per line. Name this file
mpd.hosts. These hostnames will be used as targets for ssh or rsh,
so include full domain names if necessary. Check that you can reach
these machines with ssh or rsh without entering a password. You can
test by doing

ssh othermachine date

2 QUICK START 6

or

rsh othermachine date

If you cannot get this to work without entering a password, you will
need to configure ssh or rsh so that this can be done, or else use the
workaround for mpdboot in the next step.

12. Start the daemons on (some of) the hosts in the file mpd.hosts

mpdboot -n <number to start> -f mpd.hosts

The number to start can be less than 1 + number of hosts in the file,
but cannot be greater than 1 + the number of hosts in the file. One
mpd is always started on the machine where mpdboot is run, and is
counted in the number to start, whether or not it occurs in the file.

Check to see if all the hosts you listed in mpd.hosts are in the output
of

mpdtrace

if so move on to step 12.

There is a workaround if you cannot get mpdboot to work because of
difficulties with ssh or rsh setup. You can start the daemons ”by
hand” as follows:

mpd & # starts the local daemon
mpdtrace -l # makes the local daemon print its host

and port in the form <host>_<port>

Then log into each of the other machines, put the install/bin direc-
tory in your path, and do:

mpd -h <hostname> -p <port> &

where the hostname and port belong to the original mpd that you
started. From each machine, after starting the mpd, you can do

mpdtrace

2 QUICK START 7

to see which machines are in the ring so far. More details on mpdboot
and other options for starting the mpd’s are in mpich2-1.0/src/pm/mpd/README.

In case of persistent difficulties getting the ring of mpd’s up and run-
ning on the machines you want, please see Appendix A. There we
discuss the mpd’s in more detail, together with some programs for
testing the configuration of your systems to make sure that they allow
the mpd’s to run.

13. Test the ring you have just created:

mpdtrace

The output should consist of the hosts where MPD daemons are now
running. You can see how long it takes a message to circle this ring
with

mpdringtest

That was quick. You can see how long it takes a message to go around
many times by giving mpdringtest an argument:

mpdringtest 100
mpdringtest 1000

14. Test that the ring can run a multiprocess job:

mpdrun -n <number> hostname

The number of processes need not match the number of hosts in the
ring; if there are more, they will wrap around. You can see the effect
of this by getting rank labels on the stdout:

mpdrun -l -n 30 hostname

You probably didn’t have to give the full pathname of the hostname
command because it is in your path. If not, use the full pathname:

mpdrun -l -n 30 /bin/hostname

2 QUICK START 8

15. Now we will run an MPI job, using the mpiexec command as speci-
fied in the MPI-2 standard. There are some examples in the install
directory, which you have already put in your path, as well as in the
directory mpich2-1.0/examples. One of them is the classic cpi ex-
ample, which computes the value of π by numerical integration in
parallel.

mpiexec -n 5 cpi

As with mpdrun (which is used internally by mpiexec), the number of
processes need not match the number of hosts. The cpi example will
tell you which hosts it is running on. By default, the processes are
launched one after the other on the hosts in the mpd ring, so it is not
necessary to specify hosts when running a job with mpiexec.

There are many options for mpiexec, by which multiple executables
can be run, hosts can be specified (as long as they are in the mpd ring),
separate command-line arguments and environment variables can be
passed to different processes, and working directories and search paths
for executables can be specified. Do

mpiexec --help

for details. A typical example is:

mpiexec -n 1 master : -n 19 slave

or

mpiexec -n 1 -host mymachine master : -n 19 slave

to ensure that the process with rank 0 runs on your workstation.

The arguments between ’:’s in this syntax are called ”argument sets”,
since they apply to a set of processes. Change this to match new
global and local arguments described in User’s Guide. There
can be an extra argument set for arguments that apply to all the
processes, which must come first. For example, to get rank labels on
standard output, use

mpiexec -l : -n 3 cpi

2 QUICK START 9

This first ’:’ is optional, since mpiexec knows which are the global
arguments and knows they are first. So you can also use

mpiexec -l : -n 3 cpi

The mpirun command from the original MPICH is still available, al-
though it does not support as many options as mpiexec. You might
want to use it in the case where you do not have the XML parser
required for the use of mpiexec.

If you have completed all of the above steps, you have successfully in-
stalled MPICH2 and run an MPI example.

2.3 Common Non-Default Configuration Options

enable-g, enable-fast, devices, pms, etc.

Reference Section 9.

2.4 Shared Libraries

Shared libraries are currently only supported by gcc and tested under Linux.
To have shared libraries created when MPICH2 is built, specify the following
when MPICH2 is configured:

configure --enable-sharedlibs=gcc --disable-cxx

since currently shared libraries are incompatible with the C++ libraries. It
is currently also necessary to build the Fortran libraries, which is the default.
so just be sure not to configure with --disable-f77.

2.5 What to Tell the Users

Now that MPICH2 has been installed, the users have to be informed of how
to use it. Part of this is covered in the User’s Guide. Other things users
need to know are covered here. (E.g. whether they need to run their own
mpd rings or use a system-wide one run by root.)

3 MIGRATING FROM MPICH1 10

3 Migrating from MPICH1

MPICH2 is an all-new rewrite of MPICH1. Although the basic steps for
installation have remained the same (configure, make, make install), a
number of things have changed. In this section we attempt to point out
what you may be used to in MPICH1 that are now different in MPICH2.

3.1 Configure Options

The arguments to configure are different in MPICH1 and MPICH2; the
Installer’s Guide discusses configure. In particular, the newer configure
in MPICH2 does not support the -cc=<compiler-name> (or -fc, -c++, or
-f90) options. Instead, many of the items that could be specified in the
command line to configure in MPICH1 must now be set by defining an
environment variable. E.g., while MPICH1 allowed

./configure -cc=pgcc

MPICH2 requires

setenv CC pgcc

(or export CC=pgcc for ksh or CC=pgcc ; export CC for strict sh) before
./configure. Basically, every option to the MPICH-1 configure that does
not start with --enable or --with is not available as a configure option in
MPICH2. Instead, environment variables must be used. This is consistent
(and required) for use of version 2 GNU autoconf.

4 Installing and Managing Process Managers

4.1 MPD

In Section 2.2 you installed the mpd ring. Several commands can be used
to use, test, and manage this ring. You can find out about them by running
mpdhelp, whose output looks like this:

The following mpd commands are available. For usage of any specific one,

4 INSTALLING AND MANAGING PROCESS MANAGERS 11

invoke it with the single argument --help .

mpd start an mpd daemon
mpdtrace show all mpd’s in ring
mpdboot start a ring of daemons all at once
mpdringtest test how long it takes for a message to circle the ring
mpdallexit take down all daemons in ring
mpdcleanup repair local Unix socket if ring crashed badly
mpdrun start a parallel job
mpdlistjobs list processes of jobs (-a or --all: all jobs for all users)
mpdkilljob kill all processes of a single job
mpdsigjob deliver a specific signal to the application processes of a job

Each command can be invoked with the --help argument, which prints usage
information for the command without running it.

So for example, to see a complete list of the possible arguments for mpdboot,
you would run

mpdboot --help

4.1.1 Options for mpd

-ncpus is used when allowing MPD to pick the hosts: it tells MPD how
many processes should be started by each MPD in the ring as the
processes are started in round-robin fashion.

4.1.2 Running MPD as Root

How to run mpd as root for other people to use. Test whether all that is
necessary is for root to be the one who runs the install step.

4.2 SMPD

4.2.1 Configuration

You may add the following configure options, --with-pm=smpd --with-pmi=smpd,
to build and install the smpd process manager. The process manager, smpd,

4 INSTALLING AND MANAGING PROCESS MANAGERS 12

will be installed to the bin sub-directory of the installation directory of your
choice specified by the --prefix option.

smpd process managers run on each node as stand-alone daemons and
need to be running on all nodes that will participate in MPI jobs. smpd
process managers are not connected to each other and rely on a known port
to communicate with each other. Note: If you want multiple users to use
the same nodes they must each configure their smpds to use a unique port
per user.

smpd uses a configuration file to store settings. The default location is
~/.smpd. This file must not be readable by anyone other than the owner and
contains at least one required option - the access passphrase. This is stored
in the configuration file as phrase=<phrase>. Access to running smpds is
authenticated using this passphrase and it must not be your user password.

4.2.2 Usage and administration

Users will start the smpd daemons before launching mpi jobs. To get an
smpd running on a node, execute

smpd -s

Executing this for the first time will prompt the user to create a ~/.smpd
configuration file and passphrase if one does not already exist.

Then users can use mpiexec to launch MPI jobs.

All options to smpd:

smpd -s
Start the smpd service/daemon for the current user. You can add
-p <port> to specify the port to listen on. All smpds must use the
same port and if you don’t use the default then you will have to add -p
<port> to mpiexec or add the port=<port> to the .smpd configuration
file.

smpd -r
Start the smpd service/daemon in root/multi-user mode. This is not
yet implemented.

5 TESTING 13

smpd -shutdown [host]
Shutdown the smpd on the local host or specified host. Warning: this
will cause the smpd to exit and no mpiexec or smpd commands can
be issued to the host until smpd is started again.

4.3 Forker

4.4 Other Process Managers

5 Testing

Running basic tests in the examples directory, the MPICH2 tests, obtaining
and running the assorted test suites.

5.1 Using the Intel Test Suite

These instructions may be partly local to our test environment at Argonne.

How to run a select set of tests from the Intel test suite:

1) checkout the Intel test suite (cvs co IntelMPITEST)

2) create a testing directory separate from the IntelMPITEST source
directory

3) cd into that testing directory

4) make sure the process manager (e.g., mpd) is running

5) run "<ITS_SRC_DIR>/configure --with-mpich2=<MPICH2_INSTALL_DIR>", where
<ITS_SRC_DIR> is the path to the directory Intel test suite source (e.g.,
/home/toonen/Projects/MPI-Tests/IntelMPITEST) and <MPICH2_INSTALL_DIR> is
the directory containing your MPICH2 installation

6) mkdir Test; cd Test

7) find tests in <ITS_SRC_DIR>/{c,fortran} that you are interested in
running and place the test names in a file. For example:

6 BENCHMARKING 14

% (cd /home/toonen/Projects/MPI-Tests/IntelMPITEST/Test ; \
find {c,fortran} -name ’node.*’ -print | grep ’MPI_Test’
| sed -e ’s-/node\..*$--’) |& tee testlist

Test/c/nonblocking/functional/MPI_Test
Test/c/nonblocking/functional/MPI_Testall
Test/c/nonblocking/functional/MPI_Testany
Test/c/nonblocking/functional/MPI_Testsome
Test/c/persist_request/functional/MPI_Test_p
Test/c/persist_request/functional/MPI_Testall_p
Test/c/persist_request/functional/MPI_Testany_p
Test/c/persist_request/functional/MPI_Testsome_p
Test/c/probe_cancel/functional/MPI_Test_cancelled_false
Test/fortran/nonblocking/functional/MPI_Test
Test/fortran/nonblocking/functional/MPI_Testall
Test/fortran/nonblocking/functional/MPI_Testany
Test/fortran/nonblocking/functional/MPI_Testsome
Test/fortran/persist_request/functional/MPI_Test_p
Test/fortran/persist_request/functional/MPI_Testall_p
Test/fortran/persist_request/functional/MPI_Testany_p
Test/fortran/persist_request/functional/MPI_Testsome_p
Test/fortran/probe_cancel/functional/MPI_Test_cancelled_false
%

8) run the tests using ../bin/mtest:

% ../bin/mtest -testlist testlist -np 6 |& tee mtest.log
%

NOTE: some programs hang if less they are run with less than 6 processes.

9) examine the summary.xml file. look for ’<STATUS>fail</STATUS>’ to see if
any failures occurred. (search for ’>fail<’ works as well)

6 Benchmarking

netpipe, mpptest, others (SkaMPI).

7 MPE 15

7 MPE

This section describes what MPE is and its potentially separate installation.
It includes discussion of Java-related problems.

8 Windows Version

8.1 Binary distribution

The Windows binary distribution uses the Microsoft Installer. Download
and execute mpich2-1.x.xxx.msi to install the binary distribution. The de-
fault installation path is C:\Program Files\MPICH2. You must have admin-
istrator privileges to install mpich2.msi. The installer installs a Windows
service to launch MPICH applications and only administrators may install
services. This process manager is called smpd.exe. Access to the process
manager is passphrase protected. The installer asks for this passphrase. Do
not use your user password. The same passphrase must be installed on all
nodes that will participate in a single MPI job.

Under the installation directory are three sub-directories: include, bin,
and lib. The include and lib directories contain the header files and li-
braries necessary to compile MPI applications. The bin directory contains
the process manager, smpd.exe, and the the MPI job launcher, mpiexec.exe.
The dlls that implement MPICH2 are copied to the Windows system32 di-
rectory.

You can install MPICH in unattended mode by executing

msiexec /q /I mpich2-1.x.xxx.msi

The smpd process manager for Windows runs as a service that can launch
jobs for multiple users. It does not need to be started like the unix version
does. The service is automatically started when it is installed and when the
machine reboots. smpd for Windows has additional options:

smpd -start
Start the Windows smpd service.

smpd -stop
Stop the Windows smpd service.

8 WINDOWS VERSION 16

smpd -install
Install the smpd service.

smpd -remove
Remove the smpd service.

smpd -register spn
Register the Service Principal Name with the domain controller. This
command enables passwordless authentication using kerberos. It must
be run on each node individualy by a domain administrator.

8.2 Source distribution

In order to build MPICH2 from the source distribution under Windows, you
must have MS Developer Studio .NET 2003 or later, perl and optionally Intel
Fortran 8 or later.

• Download mpich2-1.x.tar.gz and unzip it.

• Bring up a Visual Studio Command prompt with the compiler envi-
ronment variables set.

• Run winconfigure.wsf. If you don’t have a Fortran compiler add the
“–remove-fortran” option to winconfigure to remove all the Fortran
projects and dependencies. Execute “winconfigure.wsf /?” to see all
available options.

• open mpich2\mpich2.sln

• build the ch3sockDebug mpich2 solution

• build the ch3sockDebug mpich2s project

• build the ch3sockRelease mpich2 solution

• build the ch3sockRelease mpich2s project

• build the Debug mpich2 solution

• build the Release mpich2 solution

• build the fortDebug mpich2 solution

9 ALL CONFIGURE OPTIONS 17

• build the fortRelease mpich2 solution

• build the gfortDebug mpich2 solution

• build the gfortRelease mpich2 solution

• build the sfortDebug mpich2 solution

• build the sfortRelease mpich2 solution

• build the channel of your choice. The options are shm, ssm, sshm,
ib, essm and mt. The shm channel is for small numbers of processes
that will run on a single machine using shared memory. The shm
channel should not be used for more than about 8 processes. The sshm
(scalable shared memory) is for use with more than 8 processes. The
ssm (sock shared memory) channel is for clusters of smp nodes. This
channel should not be used if you plan to over-subscribe the CPU’s.
If you plan on launching more processes than you have processors
you should use the default sock channel or the essm channel. The
ssm channel uses a polling progress engine that can perform poorly
when multiple processes compete for individual processors. The essm
channel is derived from the ssm channel with the addition of OS event
objects to avoid spinning in the progress engine. The mt channel is
the multi-threaded socket channel. The ib channel is for clusters with
Infiniband interconnects from Mellanox.

8.3 cygwin

MPICH2 can also be built under cygwin using the source distribution and
the unix commands described in previous sections. This will not build the
same libraries as described in this section. It will build a “unix” distribution
that runs under cygwin.

9 All Configure Options

Here is a list of all the configure options currently recognized by the top-level
configure. It is the MPICH-specific part of the output of

configure --help

9 ALL CONFIGURE OPTIONS 18

Not all of these options may be fully supported yet. Explain all of them . . .

--enable and --with options recognized:
--enable-cache - Turn on configure caching
--enable-echo - Turn on strong echoing. The default is enable=no.
--enable-strict - Turn on strict debugging with gcc
--enable-coverage - Turn on coverage analysis using gcc and gcov
--enable-error-checking=level - Control the amount of error checking.
level may be

no - no error checking
runtime - error checking controllable at runtime through environment

variables
all - error checking always enabled

--enable-error-messages=level - Control the amount of detail in error
messages. Level may be

all - Maximum amount of information
generic - Only generic messages (no information about the specific

instance)
class - One message per MPI error class
none - No messages

--enable-timing=level - Control the amount of timing information
collected by the MPICH implementation. level may be

none - Collect no data
all - Collect lots of data
runtime - Runtime control of data collected

The default is none.
--enable-threads=level - Control the level of thread support in the
MPICH implementation. The following levels are supported.

single - No threads (MPI_THREAD_SINGLE)
funneled - Only the main thread calls MPI (MPI_THREAD_FUNNELED)
serialized - User serializes calls to MPI (MPI_THREAD_SERIALIZED)
multiple[:impl] - Fully multi-threaded (MPI_THREAD_MULTIPLE)

The default is funneled. If enabled and no level is specified, the
level is set to multiple. If disabled, the level is set to single.
When the level is set to multiple, an implementation may also be
specified. The following implementations are supported.

global_mutex - a single global lock guards access to all MPI functions.
global_monitor - a single monitor guards access to all MPI functions.

The default implementation is global_mutex.
--enable-g=option - Control the level of debugging support in the MPICH

9 ALL CONFIGURE OPTIONS 19

implementation. option may be a list of common separated names including
none - No debugging
handle - Trace handle operations
dbg - Add compiler -g flags
meminit - Preinitialize memory associated structures and unions to

eliminate access warnings from programs like valgrind
all - All of the above choices

--enable-fast - pick the appropriate options for fast execution. This
turns off error checking and timing collection

--enable-f77 - Enable Fortran 77 bindings
--enable-f90 - Enable Fortran 90 bindings
--enable-cxx - Enable C++ bindings
--enable-romio - Enable ROMIO MPI I/O implementation
--enable-nmpi-as-mpi - Use MPI rather than PMPI routines for MPI routines,
such as the collectives, that may be implemented in terms of other MPI
routines

--with-device=name - Specify the communication device for MPICH.
--with-pmi=name - Specify the pmi interface for MPICH.
--with-pm=name - Specify the process manager for MPICH.

Multiple process managers may be specified as long as they all use
the same pmi interface by separating them with colons. The
mpiexec for the first named process manager will be installed.
Example: --with-pm=forker:mpd:remshell builds the three process
managers forker, mpd, and remshell; only the mpiexec from forker
is installed into the bin directory.

--with-thread-package=package - Thread package to use. Supported thread
packages include:

posix or pthreads - POSIX threads
solaris - Solaris threads (Solaris OS only)

The default package is posix.
--with-logging=name - Specify the logging library for MPICH.
--with-mpe - Build the MPE (MPI Parallel Environment) routines
--enable-weak-symbols - Use weak symbols to implement PMPI routines (default)
--with-htmldir=dir - Specify the directory for html documentation
--with-docdir=dir - Specify the directory for documentation
--with-cross=file - Specify the values of variables that configure cannot
determine in a cross-compilation environment
--with-flavor=name - Set the name to associate with this flavor of MPICH
--with-namepublisher=name - Choose the system that will support

MPI_PUBLISH_NAME and MPI_LOOKUP_NAME. Options

A TROUBLESHOOTING THE MPD’S 20

include
no (no service available)
pmiext (service using a pmi extension,

usually only within the same MPD ring)
file:directory
ldap:ldapservername

Only no and file have been implemented so far.
--enable-sharedlibs=kind - Enable shared libraries. kind may be

gcc - Standard gcc and GNU ld options for creating shared libraries
libtool - GNU libtool
none - same as --disable-sharedlibs

Only gcc is currently supported

--enable-dependencies - Generate dependencies for sourcefiles. This
requires that the Makefile.in files are also created
to support dependencies (see maint/updatefiles)

A Troubleshooting the mpd’s

A.1 Getting Started with mpd

mpd stands for multi-purpose daemon. We sometimes use the term mpd
to refer to the combination of mpd daemon and its helper programs that
collectively form a process management system for executing parallel jobs,
including mpich jobs. The mpd daemon must run on each host where you
wish to execute parallel programs. The mpd daemons form a ring to facil-
itate rapid startup. Therefore, each host must be configured in such a way
that the mpd’s can connect to each other and pass messages via sockets.
Sometimes this configuration can be a bit tricky to get right. In this sec-
tion, we will walk slowly through a series of steps that will help to ensure
success in running mpd’s on a large cluster.

1. Install mpich2, and thus mpd.

2. Make sure the mpich2 bin directory is in your path. Below, we will
refer to it as MPDDIR.

3. At a shell prompt ($ below), type:

A TROUBLESHOOTING THE MPD’S 21

$ mpd &

If the executable is not found, make sure that you have MPDDIR in your
path and that mpd is in that dir.
If you get something like:

configuration file /home/you/.mpd.conf not found
A file named .mpd.conf must be present in the users home
directory (/etc/mpd.conf if root) with read and write access
only for the user, and must contain at least a line with:
secretword=<secretword>

then create a file named .mpd.conf (note the leading dot) in your
home directory using an editor. That file must contain a line

secretword=<secretword>

where you replace <secretword> with some string you like. Then
make sure the file has mode 600 (chmod 600 .mpd.conf).

Then, try mpd again.

If mpd still fails to start, you may have a configuration problem that
mpdcheck will be able to help you with (see Section A.2).

To stop the mpd:

$ mpdallexit

4. Now, run mpdtrace:

$ mpdtrace -l

This should print something like:

yourhost_1234

where the 1234 is a port number that mpd is using to listen for con-
nections from other mpds.

5. Try to run a parallel (non-MPI) job:

$ mpiexec -n 2 hostname

We assume hostname is in your path.

6. Try to run a parallel mpi job:

$ mpiexec -n 2 /MPI_EXAMPLES_DIR/cpi

A TROUBLESHOOTING THE MPD’S 22

A.2 mpdcheck

mpdcheck is a program that tries to verify that your set of machines is
configured properly to support a ring of mpd’s. So, before trying to start a
whole set of mpd’s on a collection of machines with mpdboot, we have found
that it is typically a very good idea to run a few tests with mpdcheck that
help to ensure later success. If you are troubleshooting, it would be a good
idea to select two machines for which you are having problems connecting
into an mpd ring, and use the pair to do debugging with mpdcheck.

1. $ mpdcheck -h

This prints a fairly long help message but gives you some idea about
what mpdcheck might do for you and an explanation of some of the
runs we will do here.

2. $ mpdcheck

With no args, mpdcheck tries to determine if there seem to be con-
figuration problems with the current machine that would cause issues
when mpd’s on multiple hosts try to connect and communicate. The
goal here is to get no output. Output indicates potential problems.
If you find the messages too short/cryptic, you can use the -l option
(long messages) and get better info. You will probably want to run
this once on each of the pair of machines which you are debugging.

3. Create an mpd.hosts file using an editor. For now, just list the local
machine’s name on one line and the name of another machine in your
cluster on the next line. (Later, we will list all machines in the cluster.)
Now, try:

$ mpdcheck -f mpd.hosts

If this produces no error output, try:

$ mpdcheck -f mpd.hosts -ssh

These tests will try to verify that the localhost can discover the other
host, and with the -ssh option try to run some ssh tests between the
2 machines to make sure that those kinds of things work also.

A TROUBLESHOOTING THE MPD’S 23

4. If all above went fine above, you can probably skip this step. This
step was attempted automatically in the previous one. But, if there
were problems, you may find it useful to rerun by hand and keep the
output. On your two machines in the mpd.hosts file (call them m1
and m2), try the following:

Do this on m1 and read the output for host and port:

$ mpdcheck -s

Do this on m2:

$ mpdcheck -c host port

where you use the host and port printed by mpdcheck on m1.

5. Try running a pair of mpd’s on the two machines. First, on both
machines:

$ mpdallexit

just to make sure you have no old mpd’s running.

Run mpd on m1 and use the -e option to cause mpd to echo the port
it is using:

$ mpd -e &

Then, run mpd on m2 and cause it to enter the ring at m1:

$ mpd -h m1 -p the_echoed_port_at_m1 &
$ mpdtrace

The mpdtrace should show both mpds in the ring. If so, you should
be able to run a parallel job:

$ mpiexec -n 2 hostname

and see both hostnames printed.

6. $ mpdcheck -pc With the -pc arg, mpdcheck prints configuration
files and other info on the current machine. This output, along with
some of the previous ones mentioned, may be useful info to provide if
you are planning to request debugging help.

A TROUBLESHOOTING THE MPD’S 24

A.3 mpdboot

You are now ready to try to use mpdboot to start mpd’s on a set of ma-
chines. To keep it simple, try using just the two hosts listed in your existing
mpd.hosts file from above.

1. $ mpdallexit Next, boot a single mpd on the local machine.

$ mpdboot -n 1
$ mpdtrace -l

2. $ mpdallexit

$ mpdboot -n 2

See if mpd’s are running on both machines.

$ mpdtrace -l
$ mpiexec -n 2 hostname

If mpdboot works on the two machines, it will probably work on all
of them. But, there could be configuration problems on one machine, for
example. An easy way to check, is to gradually add them to mpd.hosts and
try an mpdboot with a -n arg that uses them all each time.

	Introduction
	Quick Start
	Prerequisites
	From A Standing Start to Running an MPI Program
	Common Non-Default Configuration Options
	Shared Libraries
	What to Tell the Users

	Migrating from MPICH1
	Configure Options

	Installing and Managing Process Managers
	MPD
	Options for mpd
	Running MPD as Root

	SMPD
	Configuration
	Usage and administration

	Forker
	Other Process Managers

	Testing
	Using the Intel Test Suite

	Benchmarking
	MPE
	Windows Version
	Binary distribution
	Source distribution
	cygwin

	All Configure Options
	Troubleshooting the mpd's
	Getting Started with mpd
	mpdcheck
	mpdboot

