
LIBPC – DESIGN

Montreal Code Sprint

mpg
Flaxen Geo
15 March 2011

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 1

Contents

 libPC Goals

 Design

 Pipeline Architecture

 The Classes

 Open Issues

2 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

libPC Goals (1-3)

3

1. libPC is a library which provides APIs for reading,
writing, and processing point cloud data of various
formats. Additionally, some command line tools
are provided. As GDAL is to 2D pixels, libPC is to
multidimensional points.

2. From a market perspective, libPC is "version 2" of
libLAS. The actual code base will be different,
however, and the APIs will not be compatible.

3. The libPC implementation has high performance,
yet the API remains flexible. We recognize that
these two goals will conflict at times and will weigh
the tradeoffs pragmatically.

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

libPC Goals (4-6)

4

4. The architecture of a libPC-based workflow will be
a pipeline of connected stages, each stage being
either a data source (such as a file reader), a filter
(such as a point thinner), or data sink (such as a file
writer).

5. The libPC library will be in C++, but will also include
a C API and will have SWIG bindings for languages
like Python and C#. libPC will support multiple
platforms, specifically Windows, Linux, and Mac.

6. libPC is open source and is released under a BSD
license.

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Design

5 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Crop

filter

LAS

reader

LAS

writer

input

stream
output

stream

1. readPoints()

4. bytes

2. readPoints()

3. disk read

0. writePoints()

5. points 6. points

7. disk write
8. bytes

Pipeline Design Goals

 Aimed at:
 command line apps for data processing

 secondarily, viewing

 “Readers” and “Writers”
 Producers/Consumers, Sources/Sinks, …

 Composition of stages

 Pipeline is static
 Setup once at run time

 Then use (read from) repeatedly

6 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Key Classes (1)

7 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Key Classes (2)

8 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Groups of Classes

 Math
 Range, Vector, Bounds

 Schemata
 Dimension, DimensionLayout, Schema,

SchemaLayout, PointData

 Pipeline
 Header, Stage, Reader, Writer, Filter

 Other
 Utils, Signaller, exceptions, Color, Metadata,

SpatialReference

9 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Math Range<T>

 A minimum/maximum pair

 Features

 get/set min/max

 predicates: equality, overlaps, contains, …

 clip, grow, scale, …

10 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Math Vector<T>

 A vector of values, in the mathematical sense

 Features

 length fixed at ctor

 element accessors

 equality testing

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 11

Math Bounds<T>

 A list of Ranges

 such as an (x,y,z) bounding box

 Features:

 get/set min/max

 predicates: equality, empty, contains, overlaps, …

 grow, clip, ...

12 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata Dimension

 Strongly typed data field
 such as “X Position” or “GPS Time”

 Features:
 field name enum

 XPosition, GPSTime, ReturnNumber

 data type enum
 Int8, …, Uint64, …, double

 getNumBytes, isSigned, isNumeric, …

 supports “scale/offset” uint32/float concept

13 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata Schema

 A set of Dimensions

 conceptually like a database schema

 unordered; no associated physical layout

 Features:

 void addDimension(const Dimension&)

 const Dimension& getDimension(size_t index)

 size_t getDimensionIndex(Field field)

14 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata DimensionLayout

 Represents a Dimension, as physically stored

 conceptually, an array of raw bytes

 the schema is overlaid/union’d over that

 Features:

 getByteOffset() // starting byte in raw bytes array

 getPosition() // index into Dimensions array

15 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata SchemaLayout

 An ordered list of DimensionLayouts, to
represent the physical layout on disk

 Features

 getSchema

 getByteSize() // sum of all dimensions

 getDimensionLayout(size_t index)

16 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Header

 Basic data associated with all stages

 Number of points, bounds, …

 Features

 get/set Schema, NumPoints, Bounds, …

 get/set Metadata, SpatialReference

17 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Stage

 Stage is abstract base class for a pipeline unit
 for Readers, Writers, Filters

 Features:
 uint32_t read(PointData&)

 virtual void readBegin(uint32 numPointsToRead)

 virtual uint32 readBuffer(PointData&)

 virtual void readEnd(uint32 numPointsRead)

 seekToPoint(), getCurrentPosition(), bool atEnd()

 getHeader()

18 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

The read() protocol

 user calls Stage::read(PointData&)

 user supplies the PointData object

 this is not virtual, do not override

 read() does this for you:

 readBegin

 readBuffer()

 readEnd

 you override these in your derived classes

 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 19

Pipeline Reader

 Derives from Stage

 only difference is it supplies code to manage the
current point number for you

 Features

 adds m_currentPointNumber

20 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Filter

 Derives from Stage

 ctor takes a Stage& (the “previous” stage)

 only difference is it supplies default
implementations of read functions, etc.

 Features

 readBegin(): m_prevStage.readBegin()

…

21 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Writer

 Derived from Filter, designed for file-based
writers

 Features:

 write(size_t numPoints)

 protected writeBegin, writeBuffer, writeEnd

 get/set ChunkSize

22 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

The write() protocol

 User calls write(numPointsToWrite)
 not virtual

 writeBegin/Buffer/End are virtual
 Derived classes provide these

 write() does this:
 writeBegin()
 numChunks = numPoints / chunkSize
 for each chunk do

 PointData data(chunkSize)
 prevStage.readBuffer(data)
 writeBuffer()

 writeEnd()

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 23

Other Utils

 Provides a dumping ground for static helper
functions

 Features:

 random()

 compare_epsilon

 iostream helpers: open/create/close file

 file helpers: rename, getSize, delete

 read/writeField<T>(uint8*)

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 24

Other Signaller

 Provides callbacks for progress reporting and
requesting interrupts during long-running
pipeline operations

 class done, but not yet implemented anywhere

 Features

 virtual void setPercentComplete(double)

 virtual bool isInterruptRequested() const

25 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other exceptions

 Provides some libPC-named exceptions for
specific error situations

 Features

 libpc_error // base class

 invalid_point_data

 invalid_format

 configuration_error

 not_yet_implemented

26 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other Color

 Provides a simple holder for an R,G,B triplet

 Features

 get/set Red/Green/Blue

 interpolate(value, rangeMin, rangeMax)

 // provides a mapping into a color ramp

27 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other Metadata

 Provides a holder for an arbitrary array of
bytes

 class not yet implemented

28 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other SpatialReference

 Provides a holder for some sort of SRS
representation

 class not yet implemented

 will provide WKT, EPSG code, reprojection, etc.

 likely heavily dependent on LIBPC_HAVE_GDAL

29 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Concrete pipeline classes

 Things derived from Stage

 Readers/Writer (Drivers)
 LasReader, LasWriter

 LiblasReader, LiblasWriter

 OCI

 FauxReader, FauxWriter

 Filters
 CacheFilter, ColorFilter, DecimationFilter, CropFilter,

MosaicFilter

30 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issues

Some things are still open and need resolution

 like, this week

31 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Capabilities

 It would be a Good Thing if some readers could advertise
certain features
 I_Support_Spatial_Indexing
 I_Don’t_Like_Doing_Random_Seeks
 …?

 Knowing this information would help a pipeline-creator be
able to omit a filter, for example

 Questions
 What is the set of capabilities offered?
 Should they be exposed from Stage?
 How should they be expressed?

 Boost-style traits?

32 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue PointData Templating

 The Dimension class uses an enum for the
data type

 It is not Dimension<T>, because then there is no
base class to allow for std::vector<Dimension>

 plus, virtual function overhead?

 But PCL does templates, sayeth Hobu

 Task: give a 5-10 min talk on PCL

 how/why it is different from libPC

 what ideas can we adopt?

33 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Sequential or Random?

 Two worlds

 LAS (files) present a sequential list of points

 OCI (queries) present a spatially indexed set of
points

 But:

 Stage::read() is really a sequential/file model

 What can/should we do about this?

34 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Stage Class Hierarchy

 The naming of classes is a difficult matter

 It isn't just one of your holiday games

 Reader, Writer, Filter, Producer, Consumer,
Source, Sink, …

 What is a Writer?

 The Chipper ain’t one.

 Should it really be it’s own class?

35 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue IsValid?

 It seemed like a good idea at the time

 But doesn’t seem useful at all now.

 Just one more thing for developers to need to
remember to do

 The default action goes the wrong way

36 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Miscellany

 Get rid of header class? (fits into stage)

 Boost equivalents for Range, Vector, etc.?

 (where are we actually using these?)

 Bit fields in dimensions?

 Needed for direct mapping to disk only

37 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

