
User’s Guide for Quantum ESPRESSO
(version 4.3)

Contents

1 Introduction 3
1.1 What can Quantum ESPRESSO do . 5
1.2 People . 6
1.3 Contacts . 9

1.3.1 Guidelines for posting to the mailing list 9
1.4 Terms of use . 10

2 Installation 10
2.1 Download . 10
2.2 Prerequisites . 11
2.3 configure . 12

2.3.1 Manual configuration . 14
2.4 Libraries . 14

2.4.1 If optimized libraries are not found . 15
2.5 Compilation . 16
2.6 Running examples . 19
2.7 Installation tricks and problems . 20

2.7.1 All architectures . 20
2.7.2 Cray XT machines . 21
2.7.3 IBM AIX . 21
2.7.4 IBM BlueGene . 21
2.7.5 Linux PC . 21
2.7.6 Linux PC clusters with MPI . 24
2.7.7 Intel Mac OS X . 25
2.7.8 SGI, Alpha . 26

1

3 Parallelism 27
3.1 Understanding Parallelism . 27
3.2 Running on parallel machines . 27
3.3 Parallelization levels . 28

3.3.1 Understanding parallel I/O . 30
3.4 Tricks and problems . 31

4 Using Quantum ESPRESSO 33
4.1 Input data . 33
4.2 Data files . 34
4.3 Format of arrays containing charge density, potential, etc. 34
4.4 Pseudopotential files . 35

5 Using PWscf 35
5.1 Electronic structure calculations . 36
5.2 Optimization and dynamics . 37
5.3 Direct interface with CASINO . 38

6 NEB calculations 40

7 Phonon calculations 42
7.1 Single-q calculation . 42
7.2 Calculation of interatomic force constants in real space 43
7.3 Calculation of electron-phonon interaction coefficients 43
7.4 Distributed Phonon calculations . 44

8 Post-processing 44
8.1 Plotting selected quantities . 44
8.2 Band structure, Fermi surface . 45
8.3 Projection over atomic states, DOS . 45
8.4 Wannier functions . 45
8.5 Other tools . 46

9 Using CP 46
9.1 Reaching the electronic ground state . 48
9.2 Relax the system . 48
9.3 CP dynamics . 50
9.4 Advanced usage . 52

9.4.1 Self-interaction Correction . 52
9.4.2 ensemble-DFT . 53
9.4.3 Free-energy surface calculations . 55
9.4.4 Treatment of USPPs . 55

10 Performances 56
10.1 Execution time . 56
10.2 Memory requirements . 57
10.3 File space requirements . 58
10.4 Parallelization issues . 58

2

11 Troubleshooting 59
11.1 pw.x problems . 59
11.2 Compilation problems with PLUMED . 66
11.3 Compilation problems with YAMBO . 67
11.4 PostProc . 67
11.5 ph.x errors . 68

12 Frequently Asked Questions (FAQ) 69
12.1 General . 69
12.2 Installation . 69
12.3 Pseudopotentials . 70
12.4 Input data . 71
12.5 Parallel execution . 72
12.6 Frequent errors during execution . 72
12.7 Self Consistency . 73
12.8 Phonons . 75

1 Introduction

This guide covers the installation and usage of Quantum ESPRESSO (opEn-Source Package
for Research in Electronic Structure, Simulation, and Optimization), version 4.3.

The Quantum ESPRESSO distribution contains the following core packages for the cal-
culation of electronic-structure properties within Density-Functional Theory (DFT), using a
Plane-Wave (PW) basis set and pseudopotentials (PP):

• PWscf (Plane-Wave Self-Consistent Field).

• CP (Car-Parrinello).

It also includes the following more specialized packages:

• NEB: energy barriers and reaction pathways through the Nudged Elastic Band method.

• PHonon: phonons with Density-Functional Perturbation Theory.

• PostProc: various utilities for data postprocessing.

• PWcond: ballistic conductance (http://people.sissa.it/~smogunov/PWCOND/pwcond.html).

• GIPAW (Gauge-Independent Projector Augmented Waves): EPR g-tensor and NMR chem-
ical shifts (http://www.gipaw.net).

• XSPECTRA: K-edge X-ray adsorption spectra.

• vdW: (experimental) dynamic polarizability.

• GWW: (experimental) GW calculation using Wannier functions (http://gww.qe-forge.org/).

• TD-DFPT: calculations of spectra using Time-Dependent Density-Functional Perturbation
Theory (see TDDFPT/README for a list of reference papers).

3

The following auxiliary codes are included as well:

• PWgui: a Graphical User Interface, producing input data files for PWscf.

• atomic: a program for atomic calculations and generation of pseudopotentials.

• QHA: utilities for the calculation of projected density of states (PDOS) and of the free
energy in the Quasi-Harmonic Approximation (to be used in conjunction with PHonon).

• PlotPhon: phonon dispersion plotting utility (to be used in conjunction with PHonon).

A copy of required external libraries are included:

• iotk: an Input-Output ToolKit.

• BLAS and LAPACK

Finally, several additional packages that exploit data produced by Quantum ESPRESSO or
patch some Quantum ESPRESSO routines can be installed as plug-ins:

• Wannier90: maximally localized Wannier functions (http://www.wannier.org/), writ-
ten by A. Mostofi, J. Yates, Y.-S Lee.

• WanT: quantum transport properties with Wannier functions
(http://www.wannier-transport.org), originally written by A. Ferretti, A Calzolari
and M. Buongiorno Nardelli.

• YAMBO: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-
Salpeter equation (http://www.yambo-code.org), originally written by A. Marini.

• PLUMED: calculation of free-energy surface through metadynamics
M. Bonomi et al, Comp. Phys. Comm. 180, 1961 (2009)
(http://merlino.mi.infm.it/~plumed/PLUMED).

This guide documents PWscf, NEB, CP, PHonon, PostProc. The remaining packages have sepa-
rate documentation.

The Quantum ESPRESSO codes work on many different types of Unix machines, in-
cluding parallel machines using both OpenMP and MPI (Message Passing Interface). Running
Quantum ESPRESSO on Mac OS X and MS-Windows is also possible: see section 2.2.

Further documentation, beyond what is provided in this guide, can be found in:

• the pw forum mailing list (pw forum@pwscf.org). You can subscribe to this list, browse
and search its archives (links in http://www.quantum-espresso.org/contacts.php).
See section 1.3, “Contacts”, for more info.

• the Doc/ directory of the Quantum ESPRESSO distribution, containing a detailed
description of input data for most codes in files INPUT *.txt and INPUT *.html, plus
and a few additional pdf documents

• the Quantum ESPRESSO web site:
http://www.quantum-espresso.org;

4

• the Quantum ESPRESSO Wiki:
http://www.quantum-espresso.org/wiki/index.php/Main Page.

People who want to contribute to Quantum ESPRESSO should read the Developer Manual:
Doc/developer man.pdf.

This guide does not explain the basic Unix concepts (shell, execution path, directories etc.)
and utilities needed to run Quantum ESPRESSO; it does not explain either solid state
physics and its computational methods. If you want to learn the latter, you should read a
good textbook, such as e.g. the book by Richard Martin: Electronic Structure: Basic Theory
and Practical Methods, Cambridge University Press (2004). See also the “Learn” section in the
Quantum ESPRESSO web site; the “Reference Papers” section in the Wiki.

All trademarks mentioned in this guide belong to their respective owners.

1.1 What can Quantum ESPRESSO do

PWscf can currently perform the following kinds of calculations:

• ground-state energy and one-electron (Kohn-Sham) orbitals;

• atomic forces, stresses, and structural optimization;

• molecular dynamics on the ground-state Born-Oppenheimer surface, also with variable
cell;

• macroscopic polarization and finite electric fields via the modern theory of polarization
(Berry Phases).

• the modern theory of polarization (Berry Phases).

• free-energy surface calculation at fixed cell through meta-dynamics, if patched with
PLUMED.

All of the above works for both insulators and metals, in any crystal structure, for many
exchange-correlation (XC) functionals (including spin polarization, DFT+U, nonlocal VdW
functionas, hybrid functionals), for norm-conserving (Hamann-Schluter-Chiang) PPs (NCPPs)
in separable form or Ultrasoft (Vanderbilt) PPs (USPPs) or Projector Augmented Waves (PAW)
method. Non-collinear magnetism and spin-orbit interactions are also implemented. An imple-
mentation of finite electric fields with a sawtooth potential in a supercell is also available.

NEB calculates reaction pathways and energy barriers using the Nudged Elastic Band (NEB)
and Fourier String Method Dynamics (SMD) methods. Note that these calculations are no
longer performed by the pw.x executable of PWscf. Also note that NEB with Car-Parrinello
Molecular Dynamics is currently not implemented.

PHonon can perform the following types of calculations:

• phonon frequencies and eigenvectors at a generic wave vector, using Density-Functional
Perturbation Theory;

• effective charges and dielectric tensors;

• electron-phonon interaction coefficients for metals;

5

• interatomic force constants in real space;

• third-order anharmonic phonon lifetimes;

• Infrared and Raman (nonresonant) cross section.

PHonon can be used whenever PWscf can be used, with the exceptions of DFT+U, nonlocal
VdW and hybrid functionals. USPP and PAW are not implemented for higher-order response
calculations. See the header of file PH/phonon.f90 for a complete and updated list of what
PHonon can and cannot do. Calculations, in the Quasi-Harmonic approximations, of the vibra-
tional free energy can be performed using the QHA package.

PostProc can perform the following types of calculations:

• Scanning Tunneling Microscopy (STM) images;

• plots of Electron Localization Functions (ELF);

• Density of States (DOS) and Projected DOS (PDOS);

• Löwdin charges;

• planar and spherical averages;

plus interfacing with a number of graphical utilities and with external codes.
CP can perform Car-Parrinello molecular dynamics, including variable-cell dynamics, and

free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED.

1.2 People

In the following, the cited affiliation is either the current one or the one where the last known
contribution was done.

The maintenance and further development of the Quantum ESPRESSO distribution is
promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the coor-
dination of Paolo Giannozzi (Univ.Udine, Italy) and Layla Martin-Samos (Democritos) with
the strong support of the CINECA National Supercomputing Center in Bologna under the
responsibility of Carlo Cavazzoni.

The PWscf package (which included PHonon and PostProc in earlier releases) was origi-
nally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo
Giannozzi, and many others. We quote in particular:

• Matteo Cococcioni (Univ. Minnesota) for DFT+U implementation;

• David Vanderbilt’s group at Rutgers for Berry’s phase calculations;

• Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Trieste) for noncolinear
magnetism;

• Andrea Dal Corso for spin-orbit interactions;

• Carlo Sbraccia (Princeton) for NEB, Strings method, for improvements to structural
optimization and to many other parts;

6

• Paolo Umari (Democritos) for finite electric fields;

• Renata Wentzcovitch and collaborators (Univ. Minnesota) for variable-cell molecular
dynamics;

• Lorenzo Paulatto (Univ.Paris VI) for PAW implementation, built upon previous work by
Guido Fratesi (Univ.Milano Bicocca) and Riccardo Mazzarello (ETHZ-USI Lugano);

• Ismaila Dabo (INRIA, Palaiseau) for electrostatics with free boundary conditions;

• Norbert Nemec and Mike Towler (U.Cambridge) for interface with CASINO.

For PHonon, we mention in particular:

• Michele Lazzeri (Univ.Paris VI) for the 2n+1 code and Raman cross section calculation
with 2nd-order response;

• Andrea Dal Corso for USPP, noncollinear, spin-orbit extensions to PHonon.

For PostProc, we mention:

• Andrea Benassi (SISSA) for the epsilon utility;

• Dmitry Korotin (Inst. Met. Phys. Ekaterinburg) for the wannier ham utility.

The CP package is based on the original code written by Roberto Car and Michele Parrinello.
CP was developed by Alfredo Pasquarello (IRRMA, Lausanne), Kari Laasonen (Oulu), Andrea
Trave, Roberto Car (Princeton), Nicola Marzari (Univ. Oxford), Paolo Giannozzi, and others.
FPMD, later merged with CP, was developed by Carlo Cavazzoni, Gerardo Ballabio (CINECA),
Sandro Scandolo (ICTP), Guido Chiarotti (SISSA), Paolo Focher, and others. We quote in
particular:

• Manu Sharma (Princeton) and Yudong Wu (Princeton) for maximally localized Wannier
functions and dynamics with Wannier functions;

• Paolo Umari (Democritos) for finite electric fields and conjugate gradients;

• Paolo Umari and Ismaila Dabo for ensemble-DFT;

• Xiaofei Wang (Princeton) for META-GGA;

• The Autopilot feature was implemented by Targacept, Inc.

Other packages in Quantum ESPRESSO:

• PWcond was written by Alexander Smogunov (SISSA) and Andrea Dal Corso. For an
introduction, see http://people.sissa.it/~smogunov/PWCOND/pwcond.html

• GIPAW (http://www.gipaw.net) was written by Davide Ceresoli (MIT), Ari Seitsonen
(Univ.Zurich), Uwe Gerstmann, Francesco Mauri (Univ. Paris VI).

• PWgui was written by Anton Kokalj (IJS Ljubljana) and is based on his GUIB concept
(http://www-k3.ijs.si/kokalj/guib/).

7

• atomic was written by Andrea Dal Corso and it is the result of many additions to the
original code by Paolo Giannozzi and others. Lorenzo Paulatto wrote the PAW extension.

• iotk (http://www.s3.infm.it/iotk) was written by Giovanni Bussi (SISSA) .

• XSPECTRA was written by Matteo Calandra (Univ. Paris VI) and collaborators.

• VdW was contributed by Huy-Viet Nguyen (SISSA).

• GWW was written by Paolo Umari and Geoffrey Stenuit (Democritos).

• QHA amd PlotPhon were contributed by Eyvaz Isaev (Moscow Steel and Alloy Inst. and
Linkoping and Uppsala Univ.).

• TD-DFPT written by Stefano Baroni (SISSA), Ralph Gebauer (ICTP), Baris Malcioglu,
Dario Rocca, Brent Walker.

Other relevant contributions to Quantum ESPRESSO:

• Brian Kolb and Timo Thonhauser (Wake Forest University) implemented the vdW-DF
and vdW-DF2 functionals, with support from Riccardo Sabatini and Stefano de Gironcoli
(SISSA and DEMOCRITOS);

• Andrea Ferretti (MIT) contributed the qexml and sumpdos utility, helped with file formats
and with various problems;

• Hannu-Pekka Komsa (CSEA/Lausanne) contributed the HSE functional;

• Dispersions interaction in the framework of DFT-D were contributed by Daniel Forrer
(Padua Univ.) and Michele Pavone (Naples Univ. Federico II);

• Filippo Spiga (Univ. Milano Bicocca) contributed the mixed MPI-OpenMP paralleliza-
tion;

• The initial BlueGene porting was done by Costas Bekas and Alessandro Curioni (IBM
Zurich);

• Gerardo Ballabio wrote the first configure for Quantum ESPRESSO

• Audrius Alkauskas (IRRMA), Uli Aschauer (Princeton), Simon Binnie (Univ. College
London), Guido Fratesi, Axel Kohlmeyer (UPenn), Konstantin Kudin (Princeton), Sergey
Lisenkov (Univ.Arkansas), Nicolas Mounet (MIT), William Parker (Ohio State Univ),
Guido Roma (CEA), Gabriele Sclauzero (SISSA), Sylvie Stucki (IRRMA), Pascal Thibaudeau
(CEA), Vittorio Zecca, Federico Zipoli (Princeton) answered questions on the mailing list,
found bugs, helped in porting to new architectures, wrote some code.

An alphabetical list of further contributors includes: Dario Alfè, Alain Allouche, Francesco
Antoniella, Francesca Baletto, Mauro Boero, Nicola Bonini, Claudia Bungaro, Paolo Cazzato,
Gabriele Cipriani, Jiayu Dai, Cesar Da Silva, Alberto Debernardi, Gernot Deinzer, Yves Ferro,
Martin Hilgeman, Yosuke Kanai, Nicolas Lacorne, Stephane Lefranc, Kurt Maeder, Andrea
Marini, Pasquale Pavone, Mickael Profeta, Kurt Stokbro, Paul Tangney, Antonio Tilocca, Jaro
Tobik, Malgorzata Wierzbowska, Silviu Zilberman, and let us apologize to everybody we have
forgotten.

This guide was mostly written by Paolo Giannozzi. Gerardo Ballabio and Carlo Cavazzoni
wrote the section on CP. Mike Towler wrote the PWscf to CASINO subsection.

8

1.3 Contacts

The web site for Quantum ESPRESSO is http://www.quantum-espresso.org/. Releases
and patches can be downloaded from this site or following the links contained in it. The main
entry point for developers is the QE-forge web site: http://www.qe-forge.org/.

The recommended place where to ask questions about installation and usage of Quantum
ESPRESSO, and to report bugs, is the pw forum mailing list: pw forum@pwscf.org. Here
you can receive news about Quantum ESPRESSO and obtain help from the developers and
from knowledgeable users. Please read the guidelines for posting, section 1.3.1!

You have to be subscribed in order to post to the pw forum list. NOTA BENE: only
messages that appear to come from the registered user’s e-mail address, in its exact form, will
be accepted. Messages ”waiting for moderator approval” are automatically deleted with no
further processing (sorry, too much spam). In case of trouble, carefully check that your return
e-mail is the correct one (i.e. the one you used to subscribe).

Since pw forum averages ∼ 10 message a day, an alternative low-traffic mailing list,
pw users@pwscf.org, is provided for those interested only in Quantum ESPRESSO-related
news, such as e.g. announcements of new versions, tutorials, etc.. You can subscribe (but not
post) to this list from the Quantum ESPRESSO web site (“Contacts” section).

If you need to contact the developers for specific questions about coding, proposals, offers
of help, etc., send a message to the developers’ mailing list: user q-e-developers, address
qe-forge.org.

1.3.1 Guidelines for posting to the mailing list

Life for subscribers of pw forum will be easier if everybody complies with the following guide-
lines:

• Before posting, please: browse or search the archives – links are available in the ”Contacts”
page of the Quantum ESPRESSO web site:
http://www.quantum-espresso.org/contacts.php. Most questions are asked over and
over again. Also: make an attempt to search the available documentation, notably the
FAQs and the User Guide. The answer to most questions is already there.

• Sign your post with your name and affiliation.

• Choose a meaningful subject. Do not use ”reply” to start a new thread: it will confuse
the ordering of messages into threads that most mailers can do. In particular, do not use
”reply” to a Digest!!!

• Be short: no need to send 128 copies of the same error message just because you this is
what came out of your 128-processor run. No need to send the entire compilation log for
a single error appearing at the end.

• Avoid excessive or irrelevant quoting of previous messages. Your message must be imme-
diately visible and easily readable, not hidden into a sea of quoted text.

• Remember that even experts cannot guess where a problem lies in the absence of sufficient
information.

• Remember that the mailing list is a voluntary endeavour: nobody is entitled to an answer,
even less to an immediate answer.

9

• Finally, please note that the mailing list is not a replacement for your own work, nor is
it a replacement for your thesis director’s work.

1.4 Terms of use

Quantum ESPRESSO is free software, released under the GNU General Public License.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the
distribution).

We shall greatly appreciate if scientific work done using this code will contain an explicit
acknowledgment and the following reference:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de
Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.
Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smo-
gunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009),
http://arxiv.org/abs/0906.2569

Note the form Quantum ESPRESSO for textual citations of the code. Pseudopotentials
should be cited as (for instance)

[] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.

2 Installation

2.1 Download

Presently, Quantum ESPRESSO is only distributed in source form; some precompiled exe-
cutables (binary files) are provided only for PWgui. Stable releases of the Quantum ESPRESSO
source package (current version is 4.3) can be downloaded from this URL:
http://www.quantum-espresso.org/download.php.

Uncompress and unpack the core distribution using the command:

tar zxvf espresso-X.Y.Z.tar.gz

(a hyphen before ”zxvf” is optional) where X.Y.Z stands for the version number. If your version
of tar doesn’t recognize the ”z” flag:

gunzip -c espresso-X.Y.Z.tar.gz | tar xvf -

A directory espresso-X.Y.Z/ will be created. Given the size of the complete distribution, you
may need to download more packages and to unpack them following the same procedure (they
will unpack into the same directory).

Plug-ins such as YAMBO or PLUMED should instead be downloaded into subdirectory archive

but NOT UNPACKED OR UNCOMPRESSED: command make will take care of this during
installation.

Occasionally, patches for the current version, fixing some errors and bugs, may be distributed
as a ”diff” file. In order to install a patch (for instance):

10

cd espresso-X.Y.Z/

patch -p1 < /path/to/the/diff/file/patch-file.diff

If more than one patch is present, they should be applied in the correct order.
Daily snapshots of the development version can be downloaded from the developers’ site

qe-forge.org: follow the link ”Quantum ESPRESSO”, then ”SCM”. Beware: the develop-
ment version is, well, under development: use at your own risk! The bravest may access the
development version via anonymous CVS (Concurrent Version System): see the Developer
Manual (Doc/developer man.pdf), section ”Using CVS”.

The Quantum ESPRESSO distribution contains several directories. Some of them are
common to all packages:

Modules/ source files for modules that are common to all programs
include/ files *.h included by fortran and C source files
clib/ external libraries written in C
flib/ external libraries written in Fortran
extlibs/ archive of external libraries LAPACK, BLAS and iotk
install/ installation scripts and utilities
pseudo/ pseudopotential files used by examples
upftools/ converters to unified pseudopotential format (UPF)
examples/ sample input and output files
Doc/ general documentation
archive/ contains plug-ins in .tar.gz form

while others are specific to a single package:
PW/ PWscf: source files for scf calculations (pw.x)
pwtools/ PWscf: source files for miscellaneous analysis programs
tests/ PWscf: automated tests
NEB/ PWneb: source files for NEB calculations (neb.x)
PP/ PostProc: source files for post-processing of pw.x data file
PH/ PHonon: source files for phonon calculations (ph.x) and analysis
Gamma/ PHonon: source files for Gamma-only phonon calculation (phcg.x)
D3/ PHonon: source files for third-order derivative calculations (d3.x)
PWCOND/ PWcond: source files for conductance calculations (pwcond.x)
vdW/ VdW: source files for molecular polarizability calculation at finite frequency
CPV/ CP: source files for Car-Parrinello code (cp.x)
atomic/ atomic: source files for the pseudopotential generation package (ld1.x)
atomic doc/ Documentation, tests and examples for atomic
GUI/ PWGui: Graphical User Interface

2.2 Prerequisites

To install Quantum ESPRESSO from source, you need first of all a minimal Unix envi-
ronment: basically, a command shell (e.g., bash or tcsh) and the utilities make, awk, sed.
MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows)
installed: see http://www.cygwin.com/. Note that the scripts contained in the distribution
assume that the local language is set to the standard, i.e. ”C”; other settings may break them.
Use export LC ALL=C (sh/bash) or setenv LC ALL C (csh/tcsh) to prevent any problem when
running scripts (including installation scripts).

11

Second, you need C and Fortran-95 compilers. For parallel execution, you will also need
MPI libraries and a “parallel” (i.e. MPI-aware) compiler. For massively parallel machines, or
for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required.

Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran-
95 compiler with MPI and OpenMP libraries bundled with the software. Workstations or
“commodity” machines, using PC hardware, may or may not have the needed software. If
not, you need either to buy a commercial product (e.g Portland) or to install an open-source
compiler like gfortran or g95. Note that several commercial compilers are available free of
charge under some license for academic or personal usage (e.g. Intel, Sun).

2.3 configure

To install the Quantum ESPRESSO source package, run the configure script. This is ac-
tually a wrapper to the true configure, located in the install/ subdirectory. configure will
(try to) detect compilers and libraries available on your machine, and set up things accordingly.
Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and AMD CPUs)
and PC clusters, SGI Altix, IBM SP machines, NEC SX, Cray XT machines, Mac OS X,
MS-Windows PCs. It may work with some assistance also on other architectures (see below).

Instructions for the impatient:

cd espresso-X.Y.Z/

./configure

make all

Symlinks to executable programs will be placed in the bin/ subdirectory. Note that both C
and Fortran compilers must be in your execution path, as specified in the PATH environment
variable.

Additional instructions for special machines:
./configure ARCH=crayxt4r for CRAY XT machines
./configure ARCH=necsx for NEC SX machines
./configure ARCH=ppc64-mn PowerPC Linux + xlf (Marenostrum)
./configure ARCH=ppc64-bg IBM BG/P (BlueGene)
configure Generates the following files:
install/make.sys compilation rules and flags (used by Makefile)
install/configure.msg a report of the configuration run (not needed for compilation)
install/config.log detailed log of the configuration run (may be needed for debugging)
include/fft defs.h defines fortran variable for C pointer (used only by FFTW)
include/c defs.h defines C to fortran calling convention

and a few more definitions used by C files
NOTA BENE: unlike previous versions, configure no longer runs the makedeps.sh shell script
that updates dependencies. If you modify the sources, run ./install/makedeps.sh or type
make depend to update files make.depend in the various subdirectories.

You should always be able to compile the Quantum ESPRESSO suite of programs without
having to edit any of the generated files. However you may have to tune configure by specifying
appropriate environment variables and/or command-line options. Usually the tricky part is to
get external libraries recognized and used: see Sec.2.4 for details and hints.

Environment variables may be set in any of these ways:

12

export VARIABLE=value; ./configure # sh, bash, ksh

setenv VARIABLE value; ./configure # csh, tcsh

./configure VARIABLE=value # any shell

Some environment variables that are relevant to configure are:
ARCH label identifying the machine type (see below)
F90, F77, CC names of Fortran 95, Fortran 77, and C compilers
MPIF90 name of parallel Fortran 95 compiler (using MPI)
CPP source file preprocessor (defaults to $CC -E)
LD linker (defaults to $MPIF90)
(C,F,F90,CPP,LD)FLAGS compilation/preprocessor/loader flags
LIBDIRS extra directories where to search for libraries

For example, the following command line:

./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \

CC=gcc CFLAGS=-O3 LDFLAGS=-static

instructs configureto use mpf90 as Fortran 95 compiler with flags -O2 -assume byterecl,
gcc as C compiler with flags -O3, and to link with flag -static. Note that the value of
FFLAGS must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names
with the leading path included. F90=f90xyz is ok, F90=/path/to/f90xyz is not. Do not use
environmental variables with configure unless they are needed! try configure with no options
as a first step.

If your machine type is unknown to configure, you may use the ARCH variable to suggest
an architecture among supported ones. Some large parallel machines using a front-end (e.g.
Cray XT) will actually need it, or else configure will correctly recognize the front-end but not
the specialized compilation environment of those machines. In some cases, cross-compilation
requires to specify the target machine with the --host option. This feature has not been ex-
tensively tested, but we had at least one successful report (compilation for NEC SX6 on a PC).
Currently supported architectures are:
ia32 Intel 32-bit machines (x86) running Linux
ia64 Intel 64-bit (Itanium) running Linux
x86 64 Intel and AMD 64-bit running Linux - see note below
aix IBM AIX machines
solaris PC’s running SUN-Solaris
sparc Sun SPARC machines
crayxt4 Cray XT4/5 machines
macppc Apple PowerPC machines running Mac OS X
mac686 Apple Intel machines running Mac OS X
cygwin MS-Windows PCs with Cygwin
necsx NEC SX-6 and SX-8 machines
ppc64 Linux PowerPC machines, 64 bits
ppc64-mn as above, with IBM xlf compiler
ppc64-bg IBM BlueGene

Note: x86 64 replaces amd64 since v.4.1. Cray Unicos machines, SGI machines with MIPS
architecture, HP-Compaq Alphas are no longer supported since v.4.3. Finally, configure rec-
ognizes the following command-line options:

13

--enable-parallel compile for parallel execution if possible (default: yes)
--enable-openmp compile for openmp execution if possible (default: no)
--enable-shared use shared libraries if available (default: yes)
--disable-wrappers disable C to fortran wrapper check (default: enabled)
--enable-signals enable signal trapping (default: disabled)

and the following optional packages:
--with-internal-blas compile with internal BLAS (default: no)
--with-internal-lapack compile with internal LAPACK (default: no)
--with-scalapack use ScaLAPACK if available (default: yes)
--enable-exx compile enabling the use of hybrid functionals (exact-exchange)

If you want to modify the configure script (advanced users only!), see the Developer Manual.

2.3.1 Manual configuration

If configure stops before the end, and you don’t find a way to fix it, you have to write working
make.sys, include/fft defs.h and include/c defs.h files. For the latter two files, follow
the explanations in include/defs.h.README.

If configure has run till the end, you should need only to edit make.sys. A few templates
(each for a different machine type) are provided in the install/ directory: they have names of
the form Make.system, where system is a string identifying the architecture and compiler. The
template used by configure is also found there as make.sys.in and contains explanations of
the meaning of the various variables. The difficult part will be to locate libraries. Note that you
will need to select appropriate preprocessing flags in conjunction with the desired or available
libraries (e.g. you need to add -D FFTW) to DFLAGS if you want to link internal FFTW). For a
correct choice of preprocessing flags, refer to the documentation in include/defs.h.README.

NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a
previous (successful or failed) compilation, you must run make clean before recompiling, unless
you know exactly which routines are affected by the changed settings and how to force their
recompilation.

2.4 Libraries

Quantum ESPRESSO makes use of the following external libraries:

• BLAS (http://www.netlib.org/blas/) and

• LAPACK (http://www.netlib.org/lapack/) for linear algebra

• FFTW (http://www.fftw.org/) for Fast Fourier Transforms

A copy of the needed routines is provided with the distribution. However, when available,
optimized vendor-specific libraries should be used: this often yields huge performance gains.

BLAS and LAPACK Quantum ESPRESSO can use the following architecture-specific
replacements for BLAS and LAPACK:

MKL for Intel Linux PCs
ACML for AMD Linux PCs

14

ESSL for IBM machines
SCSL for SGI Altix
SUNperf for Sun

If none of these is available, we suggest that you use the optimized ATLAS library: see
http://math-atlas.sourceforge.net/. Note that ATLAS is not a complete replacement for
LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code.
Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement.

Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige
Goto. They can be freely downloaded, but not redistributed. See the ”GotoBLAS2” item at
http://www.tacc.utexas.edu/tacc-projects/.

FFT Quantum ESPRESSO has an internal copy of an old FFTW version, and it can use
the following vendor-specific FFT libraries:

IBM ESSL
SGI SCSL
SUN sunperf
NEC ASL
AMD ACML

configure will first search for vendor-specific FFT libraries; if none is found, it will search for
an external FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW.

If you have recent versions (v.10 or later) of MKL installed, you may use the FFTW3
interface provided with MKL. This can be directly linked in MKL distributed with v.12 of the
Intel compiler. In earlier versions, only sources are distributed: you have to compile them and
ta modify file make.sys accordingly (MKL must be linked after the FFTW-MKL interface).

MPI libraries MPI libraries are usually needed for parallel execution (unless you are happy
with OpenMP multicore parallelization). In well-configured machines, configure should find
the appropriate parallel compiler for you, and this should find the appropriate libraries. Since
often this doesn’t happen, especially on PC clusters, see Sec.2.7.6.

Other libraries Quantum ESPRESSO can use the MASS vector math library from IBM,
if available (only on AIX).

2.4.1 If optimized libraries are not found

The configure script attempts to find optimized libraries, but may fail if they have been in-
stalled in non-standard places. You should examine the final value of BLAS LIBS, LAPACK LIBS,

FFT LIBS, MPI LIBS (if needed), MASS LIBS (IBM only), either in the output of configure or
in the generated make.sys, to check whether it found all the libraries that you intend to use.

If some library was not found, you can specify a list of directories to search in the envi-
ronment variable LIBDIRS, and rerun configure; directories in the list must be separated by
spaces. For example:

./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"

15

If this still fails, you may set some or all of the * LIBS variables manually and retry. For
example:

./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"

Beware that in this case, configure will blindly accept the specified value, and won’t do any
extra search.

2.5 Compilation

There are a few adjustable parameters in Modules/parameters.f90. The present values will
work for most cases. All other variables are dynamically allocated: you do not need to recompile
your code for a different system.

At your option, you may compile the complete Quantum ESPRESSO suite of programs
(with make all), or only some specific programs.

make with no arguments yields a list of valid compilation targets. Here is a list:

• make pw produces PW/pw.x
pw.x calculates electronic structure, structural optimization, molecular dynamics.

• make neb produces the following codes in NEB/ for NEB calculations:

– neb.x: calculates reaction barriers and pathways using NEB.

– path int.x: used by utility path int.sh that generates, starting from a path (a set
of images), a new one with a different number of images. The initial and final points
of the new path can differ from those in the original one.

• make ph produces the following codes in PH/ for phonon calculations:

– ph.x : Calculates phonon frequencies and displacement patterns, dielectric tensors,
effective charges (uses data produced by pw.x).

– dynmat.x: applies various kinds of Acoustic Sum Rule (ASR), calculates LO-TO
splitting at q = 0 in insulators, IR and Raman cross sections (if the coefficients have
been properly calculated), from the dynamical matrix produced by ph.x

– q2r.x: calculates Interatomic Force Constants (IFC) in real space from dynamical
matrices produced by ph.x on a regular q-grid

– matdyn.x: produces phonon frequencies at a generic wave vector using the IFC file
calculated by q2r.x; may also calculate phonon DOS, the electron-phonon coefficient
λ, the function α2F (ω)

– lambda.x: also calculates λ and α2F (ω), plus Tc for superconductivity using the
McMillan formula

• make d3 produces D3/d3.x: calculates anharmonic phonon lifetimes (third-order deriva-
tives of the energy), using data produced by pw.x and ph.x (USPP and PAW not sup-
ported).

• make gamma produces Gamma/phcg.x: a version of ph.x that calculates phonons at q = 0
using conjugate-gradient minimization of the density functional expanded to second-order.
Only the Γ (k = 0) point is used for Brillouin zone integration. It is faster and takes less
memory than ph.x, but does not support USPP and PAW.

16

• make pp produces several codes for data postprocessing, in PP/ (see list below).

• make tools produces several utility programs in pwtools/ (see list below).

• make pwcond produces PWCOND/pwcond.x for ballistic conductance calculations.

• make pwall produces all of the above.

• make ld1 produces code atomic/ld1.x for pseudopotential generation (see specific doc-
umentation in atomic doc/).

• make upf produces utilities for pseudopotential conversion in directory upftools/.

• make cp produces the Car-Parrinello code CPV/cp.x and the postprocessing code CPV/cppp.x.

• make all produces all of the above.

• make plumed uncompress and move/rename PLUMED , patches PW, CPV and clib routines
and compiles PW and CPV.

• make w90 uncompress and move/rename wannier90, copy an apropriates make.sys and
produces W90/wannier90.x.

• make want uncompress and move/rename want, run want’s configure and produces all
want executables in WANT/bin

• make yambo uncompress and move/rename yambo, run yambo’s configure and produces
all yambo executables in YAMBO/bin.

For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where X.Y.Z stands for the
version number of the GUI (should be the same as the general version number). If you are
using the CVS sources, see the GUI/README file instead.

The codes for data postprocessing in PP/ are:

• pp.x extracts the specified data from files produced by pw.x, prepares data for plotting
by writing them into formats that can be read by several plotting programs.

• bands.x extracts and reorders eigenvalues from files produced by pw.x for band structure
plotting

• projwfc.x calculates projections of wavefunction over atomic orbitals, performs Löwdin
population analysis and calculates projected density of states. These can be summed
using auxiliary code sumpdos.x.

• plotrho.x produces PostScript 2-d contour plots

• plotband.x reads the output of bands.x, produces PostScript plots of the band structure

• average.x calculates planar averages of quantities produced by pp.x (potentials, charge,
magnetization densities,...)

• dos.x calculates electronic Density of States (DOS)

• epsilon.x calculates RPA frequency-dependent complex dielectric function

17

• pw2wannier.x: interface with Wannier90 package

• wannier ham.x: generate a model Hamiltonian in Wannier functions basis

• pmw.x generates Poor Man’s Wannier functions, to be used in DFT+U calculations

Note about Bader’s analysis: on http://theory.cm.utexas.edu/bader/ one can find a soft-
ware that performs Bader’s analysis starting from charge on a regular grid. The required
”cube” format can be produced by Quantum ESPRESSO using pp.x (info by G. Lapenna
who has successfully used this technique, but adds: “Problems occur with polar X-H bonds
or in all cases where the zero-flux of density comes too close to atoms described with pseudo-
potentials”). This code should perform decomposition into Voronoi polyhedra as well, in place
of obsolete code voronoy.x (removed from distribution since v.4.2).

The utility programs in pwtools/ are:

• dist.x calculates distances and angles between atoms in a cell, taking into account
periodicity

• ev.x fits energy-vs-volume data to an equation of state

• kpoints.x produces lists of k-points

• pwi2xsf.sh, pwo2xsf.sh process respectively input and output files (not data files!) for
pw.x and produce an XSF-formatted file suitable for plotting with XCrySDen, a powerful
crystalline and molecular structure visualization program (http://www.xcrysden.org/).
BEWARE: the pwi2xsf.sh shell script requires the pwi2xsf.x executables to be located
somewhere in your PATH.

• band plot.x: undocumented and possibly obsolete

• bs.awk, mv.awk are scripts that process the output of pw.x (not data files!). Usage:

awk -f bs.awk < my-pw-file > myfile.bs

awk -f mv.awk < my-pw-file > myfile.mv

The files so produced are suitable for use with xbs, a very simple X-windows utility to
display molecules, available at:
http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml

• kvecs FS.x, bands FS.x: utilities for Fermi Surface plotting using XCrySDen

Other utilities VdW/ contains the sources for the calculation of the finite (imaginary) fre-
quency molecular polarizability using the approximated Thomas-Fermi + von Weizäcker scheme,
contributed by H.-V. Nguyen (Sissa and Hanoi University). Compile with make vdw, executa-
bles in VdW/vdw.x, no documentation yet, but an example in examples/example34.

18

2.6 Running examples

As a final check that compilation was successful, you may want to run some or all of the
examples. You should first of all ensure that you have downloaded and correctly unpacked the
package containing examples (since v.4.1 in a separate package):

tar -zxvf /path/to/package/espresso-X.Y.Z-examples.tar.gz

will unpack several subdirectories into espresso-X.Y.Z/. There are two different types of
examples:

• automated tests (in directories tests/ and cptests/). Quick and exhaustive, but not
meant to be realistic, implemented only for pw.x and cp.x.

• examples (in directory examples/). Cover many more programs and features of the
Quantum ESPRESSO distribution, but they require manual inspection of the results.

Let us first consider the tests. Automated tests for pw.x are in directory tests/. File
tests/README contains a list of what is tested. To run tests, follow the directions in the header
if file check pw.x.j, edit variables PARA PREFIX, PARA POSTFIX if needed (see below).
Same for cp.x, this time in directory cptests/.

Let us now consider examples. A list of examples and of what each example does is contained
in examples/README. For details, see the README file in each example’s directory. If you find
that any relevant feature isn’t being tested, please contact us (or even better, write and send
us a new example yourself !).

To run the examples, you should follow this procedure:

1. Go to the examples/ directory and edit the environment variables file, setting the
following variables as needed:

BIN DIR: directory where executables reside
PSEUDO DIR: directory where pseudopotential files reside
TMP DIR: directory to be used as temporary storage area

The default values of BIN DIR and PSEUDO DIR should be fine, unless you have in-
stalled things in nonstandard places. TMP DIR must be a directory where you have read
and write access to, with enough available space to host the temporary files produced by
the example runs, and possibly offering high I/O performance (i.e., don’t use an NFS-
mounted directory). NOTA BENE: do not use a directory containing other data, the
examples wil clean it!

2. If you have compiled the parallel version of Quantum ESPRESSO (this is the default
if parallel libraries are detected), you will usually have to specify a driver program (such
as mpirun or mpiexec) and the number of processors: see Sec.3.2 for details. In order
to do that, edit again the environment variables file and set the PARA PREFIX and
PARA POSTFIX variables as needed. Parallel executables will be run by a command
like this:

$PARA_PREFIX pw.x $PARA_POSTFIX < file.in > file.out

For example, if the command line is like this (as for an IBM SP):

19

poe pw.x -procs 4 < file.in > file.out

you should set PARA PREFIX=”poe”, PARA POSTFIX=”-procs 4”. Furthermore, if
your machine does not support interactive use, you must run the commands specified
below through the batch queuing system installed on that machine. Ask your system
administrator for instructions.

3. To run a single example, go to the corresponding directory (e.g. example/example01)
and execute:

./run_example

This will create a subdirectory results, containing the input and output files generated by
the calculation. Some examples take only a few seconds to run, while others may require
several minutes depending on your system. To run all the examples in one go, execute:

./run_all_examples

from the examples directory. On a single-processor machine, this typically takes a few
hours. The make clean script cleans the examples tree, by removing all the results sub-
directories. However, if additional subdirectories have been created, they aren’t deleted.

4. In each example’s directory, the reference/ subdirectory contains verified output files,
that you can check your results against. They were generated on a Linux PC using the
Intel compiler. On different architectures the precise numbers could be slightly different,
in particular if different FFT dimensions are automatically selected. For this reason, a
plain diff of your results against the reference data doesn’t work, or at least, it requires
human inspection of the results.

2.7 Installation tricks and problems

2.7.1 All architectures

Working Fortran-95 and C compilers are needed in order to compile Quantum ESPRESSO.
Most “Fortran-90” compilers actually implement the Fortran-95 standard, but older versions
may not be Fortran-95 compliant. Moreover, C and Fortran compilers must be in your PATH.
If configure says that you have no working compiler, well, you have no working compiler, at
least not in your PATH, and not among those recognized by configure.

If you get Compiler Internal Error’ or similar messages: your compiler version is buggy.
Try to lower the optimization level, or to remove optimization just for the routine that has
problems. If it doesn’t work, or if you experience weird problems at run time, try to install
patches for your version of the compiler (most vendors release at least a few patches for free),
or to upgrade to a more recent compiler version.

If you get error messages at the loading phase that look like file XYZ.o: unknown / not
recognized/ invalid / wrong file type / file format / module version, one of the following things
have happened:

1. you have leftover object files from a compilation with another compiler: run make clean

and recompile.

20

2. make did not stop at the first compilation error (it may happen in some software con-
figurations). Remove the file *.o that triggers the error message, recompile, look for a
compilation error.

If many symbols are missing in the loading phase: you did not specify the location of all needed
libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the needed order.
If only symbols from clib/ are missing, verify that you have the correct C-to-Fortran bindings,
defined in include/c defs.h. Note that Quantum ESPRESSO is self-contained (with the
exception of MPI libraries for parallel compilation): if system libraries are missing, the problem
is in your compiler/library combination or in their usage, not in Quantum ESPRESSO.

If you get mysterious errors in the provided tests and examples: your compiler, or your
mathematical libraries, or MPI libraries, or a combination thereof, is very likely buggy. Al-
though the presence of subtle bugs in Quantum ESPRESSO that are not revealed during
the testing phase can never be ruled out, it is very unlikely that this happens on the provided
tests and examples.

2.7.2 Cray XT machines

Use ./configure ARCH=crayxt4 or else configurewill not recognize the Cray-specific software
environment. Older Cray machines: T3D, T3E, X1, are no longer supported.

2.7.3 IBM AIX

On IBM machines with ESSL libraries installed, there is a potential conflict between a few
LAPACK routines that are also part of ESSL, but with a different calling sequence. The
appearance of run-time errors like ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD
AN ILLEGAL VALUE is a signal that you are calling the bad routine. If you have defined
-D ESSL you should load ESSL before LAPACK: see variable LAPACK LIBS in make.sys.

2.7.4 IBM BlueGene

The current configure is tested and works only on the machine at Jülich. For other sites, you
should try something like

./configure ARCH=ppc64-bg BLAS_LIBS=... LAPACK_LIBS=... \

SCALAPACK_DIR=... BLACS_DIR=..."

where the various * LIBS and * DIR ”suggest” where the various libraries are located.

2.7.5 Linux PC

Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emu-
lation and in 64-bit mode. 64-bit executables can address a much larger memory space than
32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit
machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it will
not give you any advantage and you may run into trouble.

Currently the following compilers are supported by configure: Intel (ifort), Portland
(pgf90), g95, gfortran, Pathscale (pathf95), Sun Studio (sunf95), AMD Open64 (openf95).
The ordering approximately reflects the quality of support. Both Intel MKL and AMD acml

21

mathematical libraries are supported. Some combinations of compilers and of libraries may
however require manual editing of make.sys.

It is usually convenient to create semi-statically linked executables (with only libc, libm,
libpthread dynamically linked). If you want to produce a binary that runs on different machines,
compile it on the oldest machine you have (i.e. the one with the oldest version of the operating
system).

If you get errors like IPO Error: unresolved : svml cos2 at the linking stage, your compiler
is optimized to use the SSE version of sine, cosine etc. contained in the SVML library. Append
-lsvml to the list of libraries in your make.sys file (info by Axel Kohlmeyer, oct.2007).

Linux PCs with Portland compiler (pgf90) Quantum ESPRESSO does not work
reliably, or not at all, with many old versions (< 6.1) of the Portland Group compiler (pgf90).
Use the latest version of each release of the compiler, with patches if available (see the Portland
Group web site, http://www.pgroup.com/).

Linux PCs with Pathscale compiler Version 2.99 of the Pathscale EKO compiler (web site
http://www.pathscale.com/) works and is recognized by configure, but the preprocessing
command, pathcc -E, causes a mysterious error in compilation of iotk and should be replaced
by

/lib/cpp -P --traditional

The MVAPICH parallel environment with Pathscale compilers also works. (info by Paolo
Giannozzi, July 2008)

Linux PCs with gfortran gfortran v.4.1.2 and later are supported. Earlier gfortran versions
used to produce nonfunctional phonon executables (segmentation faults and the like), but more
recent versions should be fine.

If you experience problems in reading files produced by previous versions of Quantum
ESPRESSO: “gfortran used 64-bit record markers to allow writing of records larger than 2
GB. Before with 32-bit record markers only records <2GB could be written. However, this
caused problems with older files and inter-compiler operability. This was solved in GCC 4.2
by using 32-bit record markers but such that one can still store >2GB records (following the
implementation of Intel). Thus this issue should be gone. See 4.2 release notes (item “Fortran”)
at http://gcc.gnu.org/gcc-4.2/changes.html.” (Info by Tobias Burnus, March 2010).

“Using gfortran v.4.4 (after May 27, 2009) and 4.5 (after May 5, 2009) can produce wrong
results, unless the environment variable GFORTRAN UNBUFFERED ALL=1 is set. Newer
4.4/4.5 versions (later than April 2010) should be OK. See
http://gcc.gnu.org/bugzilla/show bug.cgi?id=43551.” (Info by Tobias Burnus, March
2010).

Linux PCs with g95 g95 v.0.91 and later versions (http://www.g95.org) work. The exe-
cutables thet produce are however slower (let us say 20% or so) that those produced by gfortran,
which in turn are slower (by another 20% or so) than those produced by ifort.

22

Linux PCs with Sun Studio compiler “The Sun Studio compiler, sunf95, is free (web
site: http://developers.sun.com/sunstudio/ and comes with a set of algebra libraries that
can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does
not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent
version has a terrible bug that totally miscompiles the iotk input/output library (you’ll have
to compile it with reduced optimization).” (info by Lorenzo Paulatto, March 2010).

Linux PCs with AMD Open64 suite The AMD Open64 compiler suite, openf95 (web site:
http://developer.amd.com/cpu/open64/pages/default.aspx) can be freely downloaded from
the AMD site. It is recognized by configure but little tested. It sort of works but it fails to
pass several tests. (info by Paolo Giannozzi, March 2010).

Linux PCs with Intel compiler (ifort) The Intel compiler, ifort, is available for free for
personal usage (http://software.intel.com/) It seem to produce the faster executables, at
least on Intel CPUs, but not all versions work as expected. ifort versions < 9.1 are not recom-
mended, due to the presence of subtle and insidious bugs. In case of trouble, update your version
with the most recent patches, available via Intel Premier support (registration free of charge for
Linux): http://software.intel.com/en-us/articles/intel-software-developer-support.
Since each major release of ifort differs a lot from the previous one, compiled objects from dif-
ferent releases may be incompatible and should not be mixed.

If configure doesn’t find the compiler, or if you get Error loading shared libraries at run
time, you may have forgotten to execute the script that sets up the correct PATH and library
path. Unless your system manager has done this for you, you should execute the appropriate
script – located in the directory containing the compiler executable – in your initialization files.
Consult the documentation provided by Intel.

The warning: feupdateenv is not implemented and will always fail, showing up in recent
versions, can be safely ignored. Warnings on ”bad preprocessing option” when compiling iotk
should also be ignored.

ifort v.12: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data
files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening
files in iotk/src/iotk files.f90 (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems
to work and to produce faster executables than previous versions on 64-bit CPUs (info by P.
Giannozzi, March 2011).

ifort v.11: Segmentation faults were reported for the combination ifort 11.0.081, MKL
10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025
(Carlo Nervi, Oct. 2009).

ifort v.10: On 64-bit AMD CPUs, at least some versions of ifort 10.1 miscompile subroutine
write rho xml in Module/xml io base.f90 with -O2 optimization. Using -O1 instead solves
the problem (info by Carlo Cavazzoni, March 2008).

”The intel compiler version 10.1.008 miscompiles a lot of codes (I have proof for CP2K and
CPMD) and needs to be updated in any case” (info by Axel Kohlmeyer, May 2008).

ifort v.9: The latest (July 2006) 32-bit version of ifort 9.1 works. Earlier versions yielded
Compiler Internal Error.

Linux PCs with MKL libraries On Intel CPUs it is very convenient to use Intel MKL
libraries. They can be also used for AMD CPU, selecting the appropriate machine-optimized

23

libraries, and also together with non-Intel compilers. Note however that recent versions of MKL
(10.2 and following) do not perform well on AMD machines.

configure should recognize properly installed MKL libraries. By default the non-threaded
version of MKL is linked, unless option configure --with-openmp is specified. In case of
trouble, refer to the following web page to find the correct way to link MKL:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/.

MKL contains optimized FFT routines and a FFTW interface, to be separately compiled.
For 64-bit Intel Core2 processors, they are slightly faster than FFTW (MKL v.10, FFTW v.3
fortran interface, reported by P. Giannozzi, November 2008).

For parallel (MPI) execution on multiprocessor (SMP) machines, set the environmental
variable OMP NUM THREADS to 1 unless you know what you are doing. See Sec.3 for more
info on this and on the difference between MPI and OpenMP parallelization.

Linux PCs with ACML libraries For AMD CPUs, especially recent ones, you may
find convenient to link AMD acml libraries (can be freely downloaded from AMD web site).
configure should recognize properly installed acml libraries, together with the compilers most
frequently used on AMD systems: pgf90, pathscale, openf95, sunf95.

2.7.6 Linux PC clusters with MPI

PC clusters running some version of MPI are a very popular computational platform nowadays.
Quantum ESPRESSO is known to work with at least two of the major MPI implementations
(MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. configure
should automatically recognize a properly installed parallel environment and prepare for parallel
compilation. Unfortunately this not always happens. In fact:

• configure tries to locate a parallel compiler in a logical place with a logical name, but
if it has a strange names or it is located in a strange location, you will have to instruct
configure to find it. Note that in many PC clusters (Beowulf), there is no parallel
Fortran-95 compiler in default installations: you have to configure an appropriate script,
such as mpif90.

• configure tries to locate libraries (both mathematical and parallel libraries) in the usual
places with usual names, but if they have strange names or strange locations, you will
have to rename/move them, or to instruct configure to find them. If MPI libraries are
not found, parallel compilation is disabled.

• configure tests that the compiler and the libraries are compatible (i.e. the compiler may
link the libraries without conflicts and without missing symbols). If they aren’t and the
compilation fail, configure will revert to serial compilation.

Apart from such problems, Quantum ESPRESSO compiles and works on all non-buggy,
properly configured hardware and software combinations. You may have to recompile MPI
libraries: not all MPI installations contain support for the fortran-90 compiler of your choice
(or for any fortran-90 compiler at all!). Useful step-by-step instructions for MPI compilation
can be found in the following post by Javier Antonio Montoya:
http://www.democritos.it/pipermail/pw forum/2008April/008818.htm.

If Quantum ESPRESSO does not work for some reason on a PC cluster, try first if
it works in serial execution. A frequent problem with parallel execution is that Quantum

24

ESPRESSO does not read from standard input, due to the configuration of MPI libraries: see
Sec.3.2.

If you are dissatisfied with the performances in parallel execution, see Sec.3 and in particular
Sec.10.4. See also the following post from Axel Kohlmeyer:
http://www.democritos.it/pipermail/pw forum/2008-April/008796.html

2.7.7 Intel Mac OS X

Newer Mac OS-X machines (10.4 and later) with Intel CPUs are supported by configure, with
gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries. Parallel compilation with
OpenMPI also works.

Intel Mac OS X with ifort ”Uninstall darwin ports, fink and developer tools. The presence
of all of those at the same time generates many spooky events in the compilation procedure. I
installed just the developer tools from apple, the intel fortran compiler and everything went on
great” (Info by Riccardo Sabatini, Nov. 2007)

Intel Mac OS X 10.4 with g95 and gfortran An updated version of Developer Tools
(XCode 2.4.1 or 2.5), that can be downloaded from Apple, may be needed. Some tests fails
with mysterious errors, that disappear if fortran BLAS are linked instead of system Atlas
libraries. Use:

BLAS_LIBS_SWITCH = internal

BLAS_LIBS = /path/to/espresso/BLAS/blas.a -latlas

(Info by Paolo Giannozzi, jan.2008, updated April 2010)

Detailed installation instructions for Mac OS X 10.6 (Instructions for 10.6.3 by Osman
Baris Malcioglu, tested as of May 2010)

Summary for the hasty:
GNU: Install macports compilers, Install MPI environment, Configure Quantum ESPRESSO

using

./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95

Intel: Use Version ¿11.1.088 Use 32 bit compilers Install MPI environment, install macports
provided cpp (optional) Configure Quantum ESPRESSO using

./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3

Compilation with GNU compilers:
The following instructions use macports version of gnu compilers due to some issues in

mixing gnu supplied fortran compilers with apple modified gnu compiler collection. For more
information regarding macports please refer to: http://www.macports.org/

First install necessary compilers from macports

port install gcc43

port install g95

25

The apple supplied MPI environment has to be overridden since there is a new set of compilers
now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide
fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration
line is:

./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95

of course, installation directory should be set accordingly if a multiple compiler environment is
desired. The default installation directory of OpenMPI overwrites apple supplied MPI perma-
nently!
Next step is Quantum ESPRESSO itself. Sadly, the Apple supplied optimized BLAS/LAPACK
libraries tend to misbehave under different tests, and it is much safer to use internal libraries.
The minimum recommended configuration line is (presuming the environment is set correctly):

./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack

Compilation with Intel compilers: Newer versions of Intel compiler (¿11.1.067) support Mac
OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained using
11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088 the 64
bit binary misbehave under some tests. Any attempt to compile 64 bit binary using ¡11.1.088
will result in very strange compilation errors.

Like the previous section, I would recommend installing macports compiler suite.
First, make sure that you are using the 32 bit version of the compilers, i.e.

. /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32

. /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32

will set the environment for 32 bit compilation in my case.
Then, the MPI environment has to be set up for Intel compilers similar to previous section.
The recommended configuration line for Quantum ESPRESSO is:

./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3

MKL libraries will be detected automatically if they are in their default locations. Otherwise,
mklvars32 has to be sourced before the configuration script.

Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is
recommended. Open source and free GUIs such as ”WaterRoof” and ”NoobProof” are available
that may help you in the process.

2.7.8 SGI, Alpha

SGI Mips machines (e.g. Origin) and HP-Compaq Alpha machines are no longer supported
since v.4.2.

26

3 Parallelism

3.1 Understanding Parallelism

Two different parallelization paradigms are currently implemented in Quantum ESPRESSO:

1. Message-Passing (MPI). A copy of the executable runs on each CPU; each copy lives in a
different world, with its own private set of data, and communicates with other executables
only via calls to MPI libraries. MPI parallelization requires compilation for parallel
execution, linking with MPI libraries, execution using a launcher program (depending
upon the specific machine). The number of CPUs used is specified at run-time either as
an option to the launcher or by the batch queue system.

2. OpenMP. A single executable spawn subprocesses (threads) that perform in parallel spe-
cific tasks. OpenMP can be implemented via compiler directives (explicit OpenMP) or
via multithreading libraries (library OpenMP). Explicit OpenMP require compilation for
OpenMP execution; library OpenMP requires only linking to a multithreading version of
mathematical libraries, e.g.: ESSLSMP, ACML MP, MKL (the latter is natively multi-
threading). The number of threads is specified at run-time in the environment variable
OMP NUM THREADS.

MPI is the well-established, general-purpose parallelization. In Quantum ESPRESSO
several parallelization levels, specified at run-time via command-line options to the executable,
are implemented with MPI. This is your first choice for execution on a parallel machine.

Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness
relies upon the quality of the multithreading libraries and the availability of multithreading
FFTs. If you are using MKL,1 you may want to select FFTW3 (set CPPFLAGS=-D FFTW3...

in make.sys) and to link with the MKL interface to FFTW3. You will get a decent speedup
(∼ 25%) on two cores.

Explicit OpenMP is a very recent addition, still at an experimental stage, devised to increase
scalability on large multicore parallel machines. Explicit OpenMP is devised to be run together
with MPI and also together with multithreaded libraries. BEWARE: you have to be VERY
careful to prevent conflicts between the various kinds of parallelization. If you don’t know
how to run MPI processes and OpenMP threads in a controlled manner, forget about mixed
OpenMP-MPI parallelization.

3.2 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically one has to specify:

1. a launcher program (not always needed), such as poe, mpirun, mpiexec, with the appro-
priate options (if any);

2. the number of processors, typically as an option to the launcher program, but in some
cases to be specified after the name of the program to be executed;

3. the program to be executed, with the proper path if needed: for instance, pw.x, or ./pw.x,
or $HOME/bin/pw.x, or whatever applies;

1Beware: MKL v.10.2.2 has a buggy dsyev yielding wrong results with more than one thread; fixed in
v.10.2.4

27

4. other Quantum ESPRESSO-specific parallelization options, to be read and interpreted
by the running code:

• the number of “images” used by NEB or phonon calculations;

• the number of “pools” into which processors are to be grouped (pw.x only);

• the number of “task groups” into which processors are to be grouped;

• the number of processors performing iterative diagonalization (for pw.x) or orthonor-
malization (for cp.x).

Items 1) and 2) are machine- and installation-dependent, and may be different for interactive
and batch execution. Note that large parallel machines are often configured so as to disallow
interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your
specific configuration (shell, execution path, etc). Item 4) is optional but may be important:
see the following section for the meaning of the various options.

For illustration, here is how to run pw.x on 16 processors partitioned into 8 pools (2 pro-
cessors each), for several typical cases.

IBM SP machines, batch:

pw.x -npool 8 < input

This should also work interactively, with environment variables NPROC set to 16, MP HOSTFILE
set to the file containing a list of processors.

IBM SP machines, interactive, using poe:

poe pw.x -procs 16 -npool 8 < input

PC clusters using mpiexec:

mpiexec -n 16 pw.x -npool 8 < input

SGI Altix and PC clusters using mpirun:

mpirun -np 16 pw.x -npool 8 < input

IBM BlueGene using mpirun:

mpirun -np 16 -exe /path/to/executable/pw.x -args "-npool 8" \

-in /path/to/input -cwd /path/to/work/directory

If you want to run in parallel the examples distributed with Quantum ESPRESSO (see
Sec.2.6), set PARA PREFIX to everything before the executable (pw.x in the above examples),
PARA POSTFIX to what follows it until the first redirection sign (<,>, |, ..), if any. For
execution using OpenMP on N threads, set PARA PREFIX to env OMP NUM THREADS=N.

3.3 Parallelization levels

Data structures are distributed across processors. Processors are organized in a hierarchy of
groups, which are identified by different MPI communicators level. The groups hierarchy is as
follow:

28

/ pools _ task groups

world _ images

\ linear-algebra groups

world: is the group of all processors (MPI COMM WORLD).
images: Processors can then be divided into different ”images”, corresponding to a point

in configuration space (i.e. to a different set of atomic positions) for NEB calculations; to one
(or more than one) ”irrep” or wave-vector in phonon calculations.

pools: When k-point sampling is used, each image group can be subpartitioned into ”pools”,
and k-points can distributed to pools. Within each pool, reciprocal space basis set (PWs) and
real-space grids are distributed across processors. This is usually referred to as ”PW paralleliza-
tion”. All linear-algebra operations on array of PW / real-space grids are automatically and
effectively parallelized. 3D FFT is used to transform electronic wave functions from reciprocal
to real space and vice versa. The 3D FFT is parallelized by distributing planes of the 3D grid
in real space to processors (in reciprocal space, it is columns of G-vectors that are distributed
to processors).

task groups: In order to allow good parallelization of the 3D FFT when the number of
processors exceeds the number of FFT planes, data can be redistributed to ”task groups” so
that each group can process several wavefunctions at the same time.

linear-algebra group: A further level of parallelization, independent on PW or k-point
parallelization, is the parallelization of subspace diagonalization (pw.x) or iterative orthonor-
malization (cp.x). Both operations required the diagonalization of arrays whose dimension is
the number of Kohn-Sham states (or a small multiple). All such arrays are distributed block-like
across the “linear-algebra group”, a subgroup of the pool of processors, organized in a square
2D grid. As a consequence the number of processors in the linear-algebra group is given by n2,
where n is an integer; n2 must be smaller than the number of processors of a single pool. The
diagonalization is then performed in parallel using standard linear algebra operations. (This
diagonalization is used by, but should not be confused with, the iterative Davidson algorithm).
One can choose to compile ScaLAPACK if available, internal built-in algorithms otherwise.

Communications: Images and pools are loosely coupled and processors communicate
between different images and pools only once in a while, whereas processors within each pool
are tightly coupled and communications are significant. This means that Gigabit ethernet
(typical for cheap PC clusters) is ok up to 4-8 processors per pool, but fast communication
hardware (e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool.

Choosing parameters: To control the number of processors in each group, command line
switches: -nimage, -npools, -ntg, northo (for cp.x) or -ndiag (for pw.x) are used. As an
example consider the following command line:

mpirun -np 4096 ./pw.x -nimage 8 -npool 2 -ntg 8 -ndiag 144 -input my.input

This executes PWscf on 4096 processors, to simulate a system with 8 images, each of which
is distributed across 512 processors. k-points are distributed across 2 pools of 256 processors
each, 3D FFT is performed using 8 task groups (64 processors each, so the 3D real-space grid
is cut into 64 slices), and the diagonalization of the subspace Hamiltonian is distributed to a
square grid of 144 processors (12x12).

Default values are: -nimage 1 -npool 1 -ntg 1 ; ndiag is set to 1 if ScaLAPACK is not
compiled, it is set to the square integer smaller than or equal to half the number of processors
of each pool.

29

Massively parallel calculations For very large jobs (i.e. O(1000) atoms or so) or for very
long jobs to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use
in an effective way both the ”task group” and the ”linear-algebra” parallelization. Without a
judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU
requirements. In particular, the linear-algebra parallelization is used in the diagonalization of
matrices in the subspace of Kohn-Sham states (whose dimension is as a strict minumum equal
to the number of occupied states). These are stored as block-distributed matrices (distributed
across processors) and diagonalized using custom-tailored diagonalization algorithms that work
on block-distributed matrices.

Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding bet-
ter speed-up than the default algorithms for large (> 1000) matrices, when using a large number
of processors (> 512). If you want to test ScaLAPACK, use configure --with-scalapack.
This will add -D SCALAPACK to DFLAGS in make.sys and set LAPACK LIBS to something
like:

LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack

The repeated -lblacs is not an error, it is needed! If configure does not recognize ScaLA-
PACK, inquire with your system manager on the correct way to link them.

A further possibility to expand scalability, especially on machines like IBM BlueGene, is
to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore
node, with OpenMP parallelization inside a same node. This option is activated by configure

--with-openmp, which adds preprocessing flag -D OPENMP and one of the following compiler
options:

ifort: -openmp
xlf: -qsmp=omp
PGI: -mp
ftn: -mp=nonuma

OpenMP parallelization is currently implemented and tested for the following combinations of
FFTs and libraries:

internal FFTW copy: -D FFTW

ESSL: -D ESSL or -D LINUX ESSL, link with -lesslsmp

ACML: -D ACML, link with -lacml mp.

Currently, ESSL (when available) are faster than internal FFTW, which in turn are faster than
ACML.

3.3.1 Understanding parallel I/O

In parallel execution, each processor has its own slice of wavefunctions, to be written to tem-
porary files during the calculation. The way wavefunctions are written by pw.x is governed by
variable wf collect, in namelist &CONTROL If wf collect=.true., the final wavefunctions
are collected into a single directory, written by a single processor, whose format is independent
on the number of processors. If wf collect=.false. (default) each processor writes its own
slice of the final wavefunctions to disk in the internal format used by PWscf.

The former case requires more disk I/O and disk space, but produces portable data files;
the latter case requires less I/O and disk space, but the data so produced can be read only by

30

a job running on the same number of processors and pools, and if all files are on a file system
that is visible to all processors (i.e., you cannot use local scratch directories: there is presently
no way to ensure that the distribution of processes on processors will follow the same pattern
for different jobs).

cp.x instead always collects the final wavefunctions into a single directory. Files written
by pw.x can be read by cp.x only if wf collect=.true. (and if produced for k = 0 case).
The directory for data is specified in input variables outdir and prefix (the former can be
specified as well in environment variable ESPRESSO TMPDIR): outdir/prefix.save. A copy
of pseudopotential files is also written there. If some processor cannot access the data directory,
the pseudopotential files are read instead from the pseudopotential directory specified in input
data. Unpredictable results may follow if those files are not the same as those in the data
directory!

IMPORTANT: Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally
the scratch directory outdir should be a modern Parallel File System. If you do not have any,
you can use local scratch disks (i.e. each node is physically connected to a disk and writes to
it) but you may run into trouble anyway if you need to access your files that are scattered in
an unpredictable way across disks residing on different nodes.

You can use input variable disk io=’minimal’, or even ’none’, if you run into trouble (or
into angry system managers) with excessive I/O with pw.x. The code will store wavefunctions
into RAM during the calculation. Note however that this will increase your memory usage and
may limit or prevent restarting from interrupted runs.

Cray XT3 On the cray xt3 there is a special hack to keep files in memory instead of writing
them without changes to the code. You have to do a: module load iobuf before compiling and
then add liobuf at link time. If you run a job you set the environment variable IOBUF PARAMS
to proper numbers and you can gain a lot. Here is one example:

env IOBUF_PARAMS=’*.wfc*:noflush:count=1:size=15M:verbose,\

*.dat:count=2:size=50M:lazyflush:lazyclose:verbose,\

.UPF.xml:count=8:size=8M:verbose’ pbsyod =\

\~{}/pwscf/pwscfcvs/bin/pw.x npool 4 in si64pw2x2x2.inp > & \

si64pw2x2x232moreiobuf.out &

This will ignore all flushes on the *wfc* (scratch files) using a single i/o buffer large enough
to contain the whole file (∼ 12 Mb here). this way they are actually never(!) written to disk.
The *.dat files are part of the restart, so needed, but you can be ’lazy’ since they are writeonly.
.xml files have a lot of accesses (due to iotk), but with a few rather small buffers, this can be
handled as well. You have to pay attention not to make the buffers too large, if the code needs
a lot of memory, too and in this example there is a lot of room for improvement. After you have
tuned those parameters, you can remove the ’verboses’ and enjoy the fast execution. Apart
from the i/o issues the cray xt3 is a really nice and fast machine. (Info by Axel Kohlmeyer,
maybe obsolete)

3.4 Tricks and problems

Trouble with input files Some implementations of the MPI library have problems with
input redirection in parallel. This typically shows up under the form of mysterious errors when

31

reading data. If this happens, use the option -in (or -inp or -input), followed by the input
file name. Example:

pw.x -in inputfile npool 4 > outputfile

Of course the input file must be accessible by the processor that must read it (only one processor
reads the input file and subsequently broadcasts its contents to all other processors).

Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even
the -in/inp/input mechanism that is present in all Quantum ESPRESSO codes. In this
case, use the -i option of mpirun.lsf to provide an input file.

Trouble with MKL and MPI parallelization If you notice very bad parallel performances
with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by the
latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default on
multicore machines. You must set the environmental variable OMP NUM THREADS to 1 to
disable it. Note that if for some reason the correct setting of variable OMP NUM THREADS
does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov.
2008) suggests to use the -x option to mpirun to propagate OMP NUM THREADS to all
processors. Axel Kohlmeyer suggests the following (April 2008): ”(I’ve) found that Intel is now
turning on multithreading without any warning and that is for example why their FFT seems
faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the
multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also
if you use the ’numactl’ tool on linux to bind a job to a specific cpu core, MKL will still try
to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to
either link with

-lmkl intel lp64 -lmkl sequential -lmkl core (on 64-bit: x86 64, ia64)
-lmkl intel -lmkl sequential -lmkl core (on 32-bit, i.e. ia32)

or edit the libmkl ’platform’.a file. I’m using now a file libmkl10.a with:

GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)

It works like a charm”. UPDATE: Since v.4.2, configure links by default MKL without
multithreaded support.

Trouble with compilers and MPI libraries Many users of Quantum ESPRESSO, in
particular those working on PC clusters, have to rely on themselves (or on less-than-adequate
system managers) for the correct configuration of software for parallel execution. Mysteri-
ous and irreproducible crashes in parallel execution are sometimes due to bugs in Quantum
ESPRESSO, but more often than not are a consequence of buggy compilers or of buggy or
miscompiled MPI libraries. Very useful step-by-step instructions to compile and install MPI
libraries can be found in the following post by Javier Antonio Montoya:
http://www.democritos.it/pipermail/pw forum/2008-April/008818.htm.

On a Xeon quadriprocessor cluster, erratic crashes in parallel execution have been reported,
apparently correlated with ifort 10.1 (info by Nathalie Vast and Jelena Sjakste, May 2008).

32

4 Using Quantum ESPRESSO

Input files for PWscf codes may be either written by hand or produced via the PWgui graph-
ical interface by Anton Kokalj, included in the Quantum ESPRESSO distribution. See
PWgui-x.y.z/INSTALL (where x.y.z is the version number) for more info on PWgui, or GUI/README
if you are using CVS sources.

You may take the examples distributed with Quantum ESPRESSO as templates for
writing your own input files: see Sec.2.6. In the following, whenever we mention ”Example N”,
we refer to those. Input files are those in the results/ subdirectories, with names ending with
.in (they will appear after you have run the examples).

4.1 Input data

Input data for the basic codes of the Quantum ESPRESSO distribution, pw.x and .̧x, is
organized as several namelists, followed by other fields introduced by keywords. The namelists
are

&CONTROL: general variables controlling the run
&SYSTEM: structural information on the system under investigation
&ELECTRONS: electronic variables: self-consistency, smearing
&IONS (optional): ionic variables: relaxation, dynamics
&CELL (optional): variable-cell dynamics
&EE (optional): for density counter charge electrostatic corrections

Optional namelist may be omitted if the calculation to be performed does not require them.
This depends on the value of variable calculation in namelist &CONTROL. Most variables
in namelists have default values. Only the following variables in &SYSTEM must always be
specified:

ibrav (integer) Bravais-lattice index
celldm (real, dimension 6) crystallographic constants
nat (integer) number of atoms in the unit cell
ntyp (integer) number of types of atoms in the unit cell
ecutwfc (real) kinetic energy cutoff (Ry) for wavefunctions.

For metallic systems, you have to specify how metallicity is treated in variable occupations.
If you choose occupations=’smearing’, you have to specify the smearing width degauss and
optionally the smearing type smearing. Spin-polarized systems must be treated as metallic
system, except the special case of a single k-point, for which occupation numbers can be fixed
(occupations=’from input’ and card OCCUPATIONS).

Explanations for the meaning of variables ibrav and celldm, as well as on alternative ways
to input structural data, are in files Doc/INPUT PW.* (for pw.x) and Doc/INPUT CP.* (for cp.x).
These files are the reference for input data and describe a large number of other variables as
well. Almopst all variables have default values, which may or may not fit your needs.

After the namelists, you have several fields (“cards”) introduced by keywords with self-
explanatory names:

ATOMIC SPECIES
ATOMIC POSITIONS
K POINTS
CELL PARAMETERS (optional)

33

OCCUPATIONS (optional)

The keywords may be followed on the same line by an option. Unknown fields (including some
that are specific to CP) are ignored by PWscf(and vice versa, CP ignores PWscf-specific fields).
See the files mentioned above for details on the available “cards”.

Note about k points: The k-point grid can be either automatically generated or manually
provided as a list of k-points and a weight in the Irreducible Brillouin Zone only of the Bravais
lattice of the crystal. The code will generate (unless instructed not to do so: see variable nosym)
all required k-point and weights if the symmetry of the system is lower than the symmetry of
the Bravais lattice. The automatic generation of k-points follows the convention of Monkhorst
and Pack.

4.2 Data files

The output data files are written in the directory specified by variable outdir, with names
specified by variable prefix (a string that is prepended to all file names, whose default value is:
prefix=’pwscf’). The iotk toolkit is used to write the file in a XML format, whose definition
can be found in the Developer Manual. In order to use the data directory on a different machine,
you need to convert the binary files to formatted and back, using the bin/iotk script.

The execution stops if you create a file prefix.EXIT in the working directory. NOTA
BENE: this is the directory where the program is executed, NOT the directory outdir defined
in input, where files are written. Note that with some versions of MPI, the working directory is
the directory where the pw.x executable is! The advantage of this procedure is that all files are
properly closed, whereas just killing the process may leave data and output files in unusable
state.

4.3 Format of arrays containing charge density, potential, etc.

The index of arrays used to store functions defined on 3D meshes is actually a shorthand for
three indices, following the FORTRAN convention (”leftmost index runs faster”). An example
will explain this better. Suppose you have a 3D array psi(nr1x,nr2x,nr3x). FORTRAN
compilers store this array sequentially in the computer RAM in the following way:

psi(1, 1, 1)

psi(2, 1, 1)

...

psi(nr1x, 1, 1)

psi(1, 2, 1)

psi(2, 2, 1)

...

psi(nr1x, 2, 1)

...

...

psi(nr1x,nr2x, 1)

...

psi(nr1x,nr2x,nr3x)

etc

34

Let ind be the position of the (i,j,k) element in the above list: the following relation

ind = i + (j - 1) * nr1x + (k - 1) * nr2x * nr1x

holds. This should clarify the relation between 1D and 3D indexing. In real space, the (i,j,k)
point of the FFT grid with dimensions nr1 (≤nr1x), nr2 (≤nr2x), , nr3 (≤nr3x), is

rijk =
i− 1

nr1
τ1 +

j − 1

nr2
τ2 +

k − 1

nr3
τ3

where the τi are the basis vectors of the Bravais lattice. The latter are stored row-wise in the
at array: τ1 = at(:, 1), τ2 = at(:, 2), τ3 = at(:, 3).

The distinction between the dimensions of the FFT grid, (nr1,nr2,nr3) and the physical
dimensions of the array, (nr1x,nr2x,nr3x) is done only because it is computationally conve-
nient in some cases that the two sets are not the same. In particular, it is often convenient to
have nrx1=nr1+1 to reduce memory conflicts.

4.4 Pseudopotential files

Pseudopotential files for tests and examples are found in the pseudo/ subdirectory. A much
larger set of PP’s can be found under the ”pseudo” link of the web site. Quantum ESPRESSO
uses a unified pseudopotential format (UPF) for all types of pseudopotentials, but still accepts
a number of older formats. If you do not find what you need, you may

• Convert pseudopootentials written in a different format, using the converters listed in
upftools/UPF (compile with make upf).

• Generate it, using atomic. See the documentation in atomic doc/ and in particular the
library of input files in pseudo library/.

• Generate it, using other packages:

– David Vanderbilt’s code (UltraSoft and Norm-Conserving)

– OPIUM (Norm-Conserving)

– The Fritz Haber code (Norm-Conserving)

The first two codes produce pseudopotentials in one of the supported formats; the third,
in a format that can be converted to UPF.

Remember: always test the pseudopotentials on simple test systems before proceeding to serious
calculations.

Note that the type of XC used in the calculation is read from pseudopotential files. As a rule,
you should use only pseudopotentials that have been generated using the same XC that you are
using in your simulation. You can override this restriction by setting input variable input dft.
The list of allowed XC functionals and of their acronyms can be found in Modules/funct.f90.

More documentation on pseudopotentials and on the UPF format can be found in the wiki.

5 Using PWscf

Code pw.x performs various kinds of electronic and ionic structure calculations. We may
distinguish the following typical cases of usage for pw.x: 2

35

5.1 Electronic structure calculations

Single-point (fixed-ion) SCF calculation Set calculation=’scf’ (this is actually the
default). Namelists &IONS and &CELL will be ignored. See Example 01.

Band structure calculation First perform a SCF calculation as above; then do a non-SCF
calculation with the desired k-point grid and number nbnd of bands. Use calculation=’bands’
if you are interested in calculating only the Kohn-Sham states for the given set of k-points (e.g.
along symmetry lines: see for instance http://www.cryst.ehu.es/cryst/get kvec.html).
Specify instead calculation=’nscf’ if you are interested in further processing of the results
of non-SCF calculations (for instance, in DOS calculations). In the latter case, you should specio
a uniform grid of points. For DOS calculations you should choose occupations=’tetrahedra’,
together with an automatically generated uniform k-point grid (card K POINTS with option
“automatic”). Specify nosym=.true. to avoid generation of additional k-points in low symme-
try cases. Variables prefix and outdir, which determine the names of input or output files,
should be the same in the two runs. See Examples 01, 05, 08,

NOTA BENE: until v.4.0, atomic positions for a non scf calculations were read from input,
while the scf potential was read from the data file of the scf calculation. Since v.4.1, both atomic
positions and the scf potential are read from the data file so that consistency is guaranteed.

Noncollinear magnetization, spin-orbit interactions The following input variables are
relevant for noncollinear and spin-orbit calculations:

noncolin

lspinorb

starting magnetization (one for each type of atoms)

To make a spin-orbit calculation noncolin must be true. If starting magnetization is set
to zero (or not given) the code makes a spin-orbit calculation without spin magnetization (it
assumes that time reversal symmetry holds and it does not calculate the magnetization). The
states are still two-component spinors but the total magnetization is zero.

If starting magnetization is different from zero, it makes a non collinear spin polarized
calculation with spin-orbit interaction. The final spin magnetization might be zero or different
from zero depending on the system.

Furthermore to make a spin-orbit calculation you must use fully relativistic pseudopoten-
tials at least for the atoms in which you think that spin-orbit interaction is large. If all the
pseudopotentials are scalar relativistic the calculation becomes equivalent to a noncolinear cal-
culation without spin orbit. (Andrea Dal Corso, 2007-07-27) See Example 13 for non-collinear
magnetism, Example 22 for spin-orbit interactions.

DFT+U DFT+U (formerly known as LDA+U) calculation can be performed within a sim-
plified rotationally invariant form of the U Hubbard correction. See Example 25 and references
quoted therein.

Dispersion Interactions (DFT-D) For DFT-D (DFT + semiempirical dispersion inter-
actions), see the description of input variables london*, sample files tests/vdw.*, and the
comments in source file Modules/mm dispersion.f90.

36

Hartree-Fock and Hybrid functionals Calculations in the Hartree-Fock approximation,
or using hybrid XC functionals that include some Hartree-Fock exchange, currently require that
-DEXX is added to the preprocessing options DFLAGS in file make.sys before compilation (if you
change this after the first compilation, make clean, recompile). Documentation on usage can
be found in subdirectory examples/EXX example/.

The algorithm is quite standard: see for instance Chawla and Voth, JCP bf 108, 4697
(1998); Sorouri, Foulkes and Hine, JCP 124, 064105 (2006); Spencer and Alavi, PRB 77,
193110 (2008). Basically, one generates auxiliary densities ρ−q = φ∗k+q ∗ ψk in real space and
transforms them to reciprocal space using FFT; the Poisson equation is solved and the resulting
potential is transformed back to real space using FFT, then multiplied by φk+q and the results
are accumulated. The only tricky point is the treatment of the q → 0 limit, which is described
in the Appendix A.5 of the Quantum ESPRESSO paper mentioned in the Introduction (note
the reference to the Gygi and Baldereschi paper). See also J. Comp. Chem. 29, 2098 (2008);
JACS 129, 10402 (2007) for examples of applications.

Dispersion interaction with non-local functional (vdwDF) See example examples/example vwdDF/

and references quoted in file README therein.

Polarization via Berry Phase See Example 10, file example10/README, and the documen-
tation in the header of PW/bp c phase.f90.

Finite electric fields There are two different implementations of macroscopic electric fields
in pw.x: via an external sawtooth potential (input variable tefield=.true.) and via the
modern theory of polarizability (lelfield=.true.). The former is useful for surfaces, especially
in conjunction with dipolar corrections (dipfield=.true.): see examples/dipole example for
an example of application. Electric fields via modern theory of polarization are documented
in example 31. The exact meaning of the related variables, for both cases, is explained in the
general input documentation.

5.2 Optimization and dynamics

Structural optimization For fixed-cell optimization, specify calculation=’relax’ and
add namelist &IONS. All options for a single SCF calculation apply, plus a few others. You may
follow a structural optimization with a non-SCF band-structure calculation (since v.4.1, you
do not need any longer to update the atomic positions in the input file for non scf calculation).
See Example 03.

Molecular Dynamics Specify calculation=’md’, the time step dt, and possibly the num-
ber of MD stops nstep. Use variable ion dynamics in namelist &IONS for a fine-grained
control of the kind of dynamics. Other options for setting the initial temperature and for
thermalization using velocity rescaling are available. Remember: this is MD on the electronic
ground state, not Car-Parrinello MD. See Example 04.

Free-energy surface calculations Once Pw is patched with PLUMED plug-in, it becomes
possible to turn-on most of the PLUMED functionalities running PWscf as: ./pw.x -plumed

37

plus the other usual PWscf arguments. The PLUMED input file has to be located in the
specified outdir with the fixed name plumed.dat.

Variable-cell molecular dynamics ”A common mistake many new users make is to set the
time step dt improperly to the same order of magnitude as for CP algorithm, or not setting dt

at all. This will produce a “not evolving dynamics”. Good values for the original RMW (RM
Wentzcovitch) dynamics are dt = 50 ÷ 70. The choice of the cell mass is a delicate matter.
An off-optimal mass will make convergence slower. Too small masses, as well as too long time
steps, can make the algorithm unstable. A good cell mass will make the oscillation times for
internal degrees of freedom comparable to cell degrees of freedom in non-damped Variable-Cell
MD. Test calculations are advisable before extensive calculation. I have tested the damping
algorithm that I have developed and it has worked well so far. It allows for a much longer
time step (dt=100 ÷ 150) than the RMW one and is much more stable with very small cell
masses, which is useful when the cell shape, not the internal degrees of freedom, is far out of
equilibrium. It also converges in a smaller number of steps than RMW.” (Info from Cesar Da
Silva: the new damping algorithm is the default since v. 3.1).

See also examples/VCSexample.

5.3 Direct interface with CASINO

PWscf now supports the Cambridge quantum Monte Carlo program CASINO directly. For more
information on the CASINO code see http://www.tcm.phy.cam.ac.uk/~mdt26/casino.html.
CASINO may take the output of PWSCF and ’improve it’ giving considerably more accurate total
energies and other quantities than DFT is capable of.

PWscf users wishing to learn how to use CASINO may like to attend one of the annual
CASINO summer schools in Mike Towler’s ”Apuan Alps Centre for Physics” in Tuscany, Italy.
More information can be found at http://www.vallico.net/tti/tti.html

Practicalities The interface between PWscf and CASINO is provided through a file with a
standard format containing geometry, basis set, and orbital coefficients, which PWscf will pro-
duce on demand. For SCF calculations, the name of this file may be pwfn.data, bwfn.data or
bwfn.data.b1 depending on user requests (see below). If the files are produced from an MD
run, the files have a suffix .0001, .0002, .0003 etc. corresponding to the sequence of timesteps.

CASINO support is implemented by three routines in the PW directory of the espresso distri-
bution:

• pw2casino.f90 : the main routine

• pw2casino write.f90 : writes the CASINO xwfn.data file in various formats

• pw2blip.f90 : does the plane-wave to blip conversion, if requested

Relevant behaviour of PWscf may be modified through an optional auxiliary input file, named
pw2casino.dat (see below).

Note that in versions prior to 4.3, this functionality was provided through separate post-
processing utilities available in the PP directory: these are no longer supported. For QMC-MD
runs, PWSCF etc previously needed to be ’patched’ using the patch script PP/pw2casino-
MDloop.sh - this is no longer necessary.

38

How to generate xwfn.data files with PWscf Use the ’-pw2casino’ option when invoking
pw.x, e.g.:

pw.x -pw2casino < input_file > output_file

The xfwn.data file will then be generated automatically.
PWscf is capable of doing the plane wave to blip conversion directly (the ’blip’ utility

provided in the CASINO distribution is not required) and so by default, PWscf produces the
’binary blip wave function’ file bwfn.data.b1

Various options may be modified by providing a file pw2casino.dat in outdir with the
following format:

&inputpp

blip_convert=.true.

blip_binary=.true.

blip_single_prec=.false.

blip_multiplicity=1.d0

n_points_for_test=0

/

Some or all of the 5 keywords may be provided, in any order. The default values are as given
above (and these are used if the pw2casino.dat file is not present.

The meanings of the keywords are as follows:

blip convert : reexpand the converged plane-wave orbitals in localized blip functions prior to
writing the CASINO wave function file. This is almost always done, since wave functions
expanded in blips are considerably more efficient in quantum Monte Carlo calculations. If
blip convert=.false. a pwfn.data file is produced (orbitals expanded in plane waves);
if blip convert=.true., either a bwfn.data file or a bwfn.data.b1 file is produced,
depending on the value of blip binary (see below).

blip binary : if true, and if blip convert is also true, write the blip wave function as an un-
formatted binary bwfn.data.b1 file. This is much smaller than the formatted bwfn.data

file, but is not generally portable across all machines.

blip single prec : if .false. the orbital coefficients in bwfn.data(.b1) are written out in
double precision; if the user runs into hardware limits blip single prec can be set to
.true. in which case the coefficients are written in single precision, reducing the memory
and disk requirements at the cost of a small amount of accuracy..

blip multiplicity : the quality of the blip expansion (i.e., the fineness of the blip grid) can be
improved by increasing the grid multiplicity parameter given by this keyword. Increasing
the grid multiplicity results in a greater number of blip coefficients and therefore larger
memory requirements and file size, but the CPU time should be unchanged. For very
accurate work, one may want to experiment with grid multiplicity larger that 1.0. Note,
however, that it might be more efficient to keep the grid multiplicity to 1.0 and increase
the plane wave cutoff instead.

n points for test : if this is set to a positive integer greater than zero, PWscf will sample the
wave function, the Laplacian and the gradient at a large number of random points in the

39

simulation cell and compute the overlap of the blip orbitals with the original plane-wave
orbitals:

α =
< BW |PW >√

< BW |BW >< PW |PW >

The closer α is to 1, the better the blip representation. By increasing blip multiplicity,
or by increasing the plane-wave cutoff, one ought to be able to make α as close to 1 as
desired. The number of random points used is given by n points for test.

Finally, note that DFT trial wave functions produced by PWSCF must be generated using
the same pseudopotential as in the subsequent QMC calculation. This requires the use of tools
to switch between the different file formats used by the two codes.

CASINO uses the ‘CASINO tabulated format’, PWSCF officially supports the UPFv2 format
(though it will read other ‘deprecated’ formats). This can be done through the ‘casino2upf’
and ‘upf2casino’ tools included in the upftools directory (see the upftools/README file for
instructions). An alternative converter ‘casinogon’ is included in the CASINO distribution which
produces the deprecated GON format but which can be useful when using non-standard grids.

6 NEB calculations

Reminder: NEB calculations are no longer performed by pw.x. In order to perform a NEB
calculation, you should compile NEB/neb.x (command make neb).

There are two ways for running a calculation with neb.x:
1) specifying a file to parse with the neb.x -inp or neb.x -input command line option.
2) or specifying the number of input positions neb.x -input images.

neb.x does not read from standard input at the moment.

For case 1) a file containing KEYWORDS has to be written (see below). These KEY-
WORDS tells the parser which part of the file regards neb specifics and which part regards the
energy/force engine (at the moment only PW). After the parsing different files are generated:
neb.dat, with neb specific variables and a set of pw *.in PWscf input files like ,one for each
input position. All options for a single SCF calculation apply.

The general structure of the file to be parsed is:

BEGIN

BEGIN_PATH_INPUT

~... neb specific namelists and cards

END_PATH_INPUT

BEGIN_ENGINE_INPUT

BEGIN_ENGINE_INPUT

~...pw specific namelists and cards

BEGIN_POSITIONS

FIRST_IMAGE

~...pw ATOMIC_POSITIONS card

40

INTERMEDIATE_IMAGE

~...pw ATOMIC_POSITIONS card

LAST_IMAGE

~...pw ATOMIC_POSITIONS card

END_POSITIONS

~... other pw specific cards

END_ENGINE_INPUT

END

For case 2) neb.dat and all pw *.in should be already present.

A detailed description of all neb specific input variables is contained in files Doc/INPUT NEB.*.
See Example 17.

A NEB calculation will produce a number of files in the current directory (i.e. in the
directory were the code is run) containing additional information on the minimum-energy path.
The files are organized as following (where prefix is specified in the input file):

prefix.dat is a three-column file containig the position of each image on the reaction coor-
dinate (arb. units), its energy in eV relative to the energy of the first image and the
residual error for the image in eV/a0.

prefix.int contains an interpolation of the path energy profile that pass exactly through each
image; it is computed using both the image energies and their derivatives

prefix.path information used by Quantum ESPRESSO to restart a path calculation, its
format depends on the input details and is undocumented

prefix.axsf atomic positions of all path images in the XCrySDen animation format: to visu-
alize it, use xcrysden --axsf prefix.axsf

prefix.xyz atomic positions of all path images in the generic xyz format, used by many
quantum-chemistry softwares

prefix.crd path information in the input format used by pw.x, suitable for a manual restart
of the calculation

”NEB calculation are a bit tricky in general and require extreme care to be setup correctly.
NEB also takes easily hundreds of iteration to converge, of course depending on the number of
atoms and of images. Here is some free advice:

1. Don’t use Climbing Image (CI) from the beginning. It makes convergence slower, espe-
cially if the special image changes during the convergence process (this may happen if
CI scheme=’auto’ and if it does it may mess up everything). Converge your calcula-
tion, then restart from the last configuration with CI option enabled (note that this will
increase the barrier).

2. Carefully choose the initial path. Remember that Quantum ESPRESSO assumes con-
tinuity between the first and the last image at the initial condition. In other words,
periodic images are NOT used; you may have to manually translate an atom by one or

41

more unit cell base vectors in order to have a meaningful initial path. You can visualize
NEB input files with XCrySDen as animations, take some time to check if any atoms
overlap or get very close in the initial path (you will have to add intermediate images, in
this case).

3. Try to start the NEB process with most atomic positions fixed, in order to converge the
more ”problematic” ones, before leaving all atoms move.

4. Especially for larger systems, you can start NEB with lower accuracy (less k-points, lower
cutoff) and then increase it when it has converged to refine your calculation.

5. Use the Broyden algorithm instead of the default one: it is a bit more fragile, but it
removes the problem of ”oscillations” in the calculated activation energies. If these oscil-
lations persist, and you cannot afford more images, focus to a smaller problem, decompose
it into pieces.

6. A gross estimate of the required number of iterations is (number of images) * (number of
atoms) * 3. Atoms that do not move should not be counted. It may take half that many
iterations, or twice as many, but more or less that’s the order of magnitude, unless one
starts from a very good or very bad initial guess.

(Courtesy of Lorenzo Paulatto)

7 Phonon calculations

Phonon calculation is presently a two-step process. First, you have to find the ground-
state atomic and electronic configuration; Second, you can calculate phonons using Density-
Functional Perturbation Theory. Further processing to calculate Interatomic Force Constants,
to add macroscopic electric field and impose Acoustic Sum Rules at q=0 may be needed. In
the following, we will indicate by q the phonon wavevectors, while k will indicate Bloch vectors
used for summing over the Brillouin Zone.

Since version 4.0 it is possible to safely stop execution of ph.x code using the same mecha-
nism of the pw.x code, i.e. by creating a file prefix.EXIT in the working directory. Execution
can be resumed by setting recover=.true. in the subsequent input data.

7.1 Single-q calculation

The phonon code ph.x calculates normal modes at a given q-vector, starting from data files
produced by pw.x with a simple SCF calculation. NOTE: the alternative procedure in which a
band-structure calculation with calculation=’phonon was performed as an intermediate step
is no longer implemented since version 4.1. It is also no longer needed to specify lnscf=.true.

for q 6= 0.
The output data file appear in the directory specified by variables outdir, with names

specified by variable prefix. After the output file(s) has been produced (do not remove any of
the files, unless you know which are used and which are not), you can run ph.x.

The first input line of ph.x is a job identifier. At the second line the namelist &INPUTPH
starts. The meaning of the variables in the namelist (most of them having a default value) is
described in file Doc/INPUT PH.*. Variables outdir and prefix must be the same as in the

42

input data of pw.x. Presently you must also specify amass(i) (a real variable): the atomic
mass of atomic type i.

After the namelist you must specify the q-vector of the phonon mode. This must be the
same q-vector given in the input of pw.x.

Notice that the dynamical matrix calculated by ph.x at q = 0 does not contain the non-
analytic term occurring in polar materials, i.e. there is no LO-TO splitting in insulators.
Moreover no Acoustic Sum Rule (ASR) is applied. In order to have the complete dynamical
matrix at q = 0 including the non-analytic terms, you need to calculate effective charges by
specifying option epsil=.true. to ph.x. This is however not possible (because not physical!)
for metals (i.e. any system subject to a broadening).

At q = 0, use program dynmat.x to calculate the correct LO-TO splitting, IR cross sections,
and to impose various forms of ASR. If ph.x was instructed to calculate Raman coefficients,
dynmat.x will also calculate Raman cross sections for a typical experimental setup. Input
documentation in the header of PH/dynmat.f90.

A sample phonon calculation is performed in Example 02.

7.2 Calculation of interatomic force constants in real space

First, dynamical matrices are calculated and saved for a suitable uniform grid of q-vectors
(only those in the Irreducible Brillouin Zone of the crystal are needed). Although this can be
done one q-vector at the time, a simpler procedure is to specify variable ldisp=.true. and to
set variables nq1, nq2, nq3 to some suitable Monkhorst-Pack grid, that will be automatically
generated, centered at q = 0. Do not forget to specify epsil=.true. in the input data of ph.x
if you want the correct TO-LO splitting in polar materials.

Second, code q2r.x reads the dynamical matrices produced in the preceding step and
Fourier-transform them, writing a file of Interatomic Force Constants in real space, up to a
distance that depends on the size of the grid of q-vectors. Input documentation in the header
of PH/q2r.f90.

Program matdyn.x may be used to produce phonon modes and frequencies at any q us-
ing the Interatomic Force Constants file as input. Input documentation in the header of
PH/matdyn.f90.

For more details, see Example 06.

7.3 Calculation of electron-phonon interaction coefficients

The calculation of electron-phonon coefficients in metals is made difficult by the slow conver-
gence of the sum at the Fermi energy. It is convenient to use a coarse k-point grid to calculate
phonons on a suitable wavevector grid; a dense k-point grid to calculate the sum at the Fermi
energy. The calculation proceeds in this way:

1. a scf calculation for the dense k-point grid (or a scf calculation followed by a non-scf
one on the dense k-point grid); specify option la2f=.true. to pw.x in order to save a
file with the eigenvalues on the dense k-point grid. The latter MUST contain all k and
k+q grid points used in the subsequent electron-phonon calculation. All grids MUST be
unshifted, i.e. include k = 0.

2. a normal scf + phonon dispersion calculation on the coarse k-point grid, specifying op-
tion elph=.true.. and the file name where the self-consistent first-order variation of

43

the potential is to be stored: variable fildvscf). The electron-phonon coefficients are
calculated using several values of Gaussian broadening (see PH/elphon.f90) because this
quickly shows whether results are converged or not with respect to the k-point grid and
Gaussian broadening.

3. Finally, you can use matdyn.x and lambda.x (input documentation in the header of
PH/lambda.f90) to get the α2F (ω) function, the electron-phonon coefficient λ, and an
estimate of the critical temperature Tc.

For more details, see Example 07.

7.4 Distributed Phonon calculations

A complete phonon dispersion calculation can be quite long and expensive, but it can be split
into a number of semi-independent calculations, using options start q, last q, start irr,
last irr. An example on how to distribute the calculations and collect the results can be
found in examples/GRID example. Reference:
Calculation of Phonon Dispersions on the GRID using Quantum ESPRESSO, R. di Meo, A.
Dal Corso, P. Giannozzi, and S. Cozzini, in Chemistry and Material Science Applications on
Grid Infrastructures, editors: S. Cozzini, A. Laganà, ICTP Lecture Notes Series, Vol. 24,
pp.165-183 (2009).

8 Post-processing

There are a number of auxiliary codes performing postprocessing tasks such as plotting, aver-
aging, and so on, on the various quantities calculated by pw.x. Such quantities are saved by
pw.x into the output data file(s). Postprocessing codes are in the PP/ directory. All codes for
which input documentation is not explicitly mentioned have documentation in the header of
the fortran sources.

8.1 Plotting selected quantities

The main postprocessing code pp.x reads data file(s), extracts or calculates the selected quan-
tity, writes it into a format that is suitable for plotting.

Quantities that can be read or calculated are:

charge density
spin polarization
various potentials
local density of states at EF

local density of electronic entropy
STM images
selected squared wavefunction
ELF (electron localization function)
planar averages
integrated local density of states

44

Various types of plotting (along a line, on a plane, three-dimensional, polar) and output formats
(including the popular cube format) can be specified. The output files can be directly read by
the free plotting system Gnuplot (1D or 2D plots), or by code plotrho.x that comes with
PostProc (2D plots), or by advanced plotting software XCrySDen and gOpenMol (3D plots).

See file Doc/INPUT PP.* for a detailed description of the input for code pp.x. See Example
05 for an example of a charge density plot, Example 16 for an example of STM image simulation.

8.2 Band structure, Fermi surface

The code bands.x reads data file(s), extracts eigenvalues, regroups them into bands (the algo-
rithm used to order bands and to resolve crossings may not work in all circumstances, though).
The output is written to a file in a simple format that can be directly read by plotting program
plotband.x. Unpredictable plots may results if k-points are not in sequence along lines. See
Example 05 directory for a simple band plot.

The code bands.x performs as well a symmetry analysis of the band structure: see Example
01.

The calculation of Fermi surface can be performed using kvecs FS.x and bands FS.x. The
resulting file in .xsf format can be read and plotted using XCrySDen. See Example 08 for an
example of Fermi surface visualization (Ni, including the spin-polarized case).

8.3 Projection over atomic states, DOS

The code projwfc.x calculates projections of wavefunctions over atomic orbitals. The atomic
wavefunctions are those contained in the pseudopotential file(s). The Löwdin population anal-
ysis (similar to Mulliken analysis) is presently implemented. The projected DOS (or PDOS:
the DOS projected onto atomic orbitals) can also be calculated and written to file(s). More
details on the input data are found in file Doc/INPUT PROJWFC.*. The ordering of the various
angular momentum components (defined in routine flib/ylmr2.f90) is as follows: P0,0(t),
P1,0(t), P1,1(t)cosφ, P1,1(t)sinφ, P2,0(t), P2,1(t)cosφ, P2,1(t)sinφ, P2,2(t)cos2φ, P2,2(t)sin2φ and
so on, where Pl,m=Legendre Polynomials, t = cosθ = z/r, φ = atan(y/x).

The total electronic DOS is instead calculated by code dos.x. See Example 08 for total and
projected electronic DOS calculations.

8.4 Wannier functions

There are several Wannier-related utilities in PostProc:

1. The ”Poor Man Wannier” code pmw.x, to be used in conjunction with DFT+U calcula-
tions (see Example 25)

2. The interface with Wannier90 code, pw2wannier.x: see the documentation in W90/ (you
have to install the Wannier90 plug-in)

3. The wannier ham.x code generates a model Hamiltonian in Wannier functions basis: see
examples/WannierHam example/.

45

8.5 Other tools

Code sumpdos.x can be used to sum selected PDOS, produced by projwfc.x, by specifiying
the names of files containing the desired PDOS. Type sumpdos.x -h or look into the source
code for more details.

Code epsilon.x calculates RPA frequency-dependent complex dielectric function. Docu-
mentation is in Doc/eps man.tex.

The code path int.x is intended to be used in the framework of NEB calculations. It is
a tool to generate a new path (what is actually generated is the restart file) starting from an
old one through interpolation (cubic splines). The new path can be discretized with a different
number of images (this is its main purpose), images are equispaced and the interpolation can
be also performed on a subsection of the old path. The input file needed by path int.x can
be easily set up with the help of the self-explanatory path int.sh shell script.

9 Using CP

This section is intended to explain how to perform basic Car-Parrinello (CP) simulations using
the CP package.

It is important to understand that a CP simulation is a sequence of different runs, some of
them used to ”prepare” the initial state of the system, and other performed to collect statistics,
or to modify the state of the system itself, i.e. modify the temperature or the pressure.

To prepare and run a CP simulation you should first of all define the system:

atomic positions
system cell
pseudopotentials
cut-offs
number of electrons and bands (optional)
FFT grids (optional)

An example of input file (Benzene Molecule):

&control

title = ’Benzene Molecule’,

calculation = ’cp’,

restart_mode = ’from_scratch’,

ndr = 51,

ndw = 51,

nstep = 100,

iprint = 10,

isave = 100,

tstress = .TRUE.,

tprnfor = .TRUE.,

dt = 5.0d0,

etot_conv_thr = 1.d-9,

ekin_conv_thr = 1.d-4,

prefix = ’c6h6’,

pseudo_dir=’/scratch/benzene/’,

46

outdir=’/scratch/benzene/Out/’

/

&system

ibrav = 14,

celldm(1) = 16.0,

celldm(2) = 1.0,

celldm(3) = 0.5,

celldm(4) = 0.0,

celldm(5) = 0.0,

celldm(6) = 0.0,

nat = 12,

ntyp = 2,

nbnd = 15,

ecutwfc = 40.0,

nr1b= 10, nr2b = 10, nr3b = 10,

input_dft = ’BLYP’

/

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’sd’

/

&ions

ion_dynamics = ’none’

/

&cell

cell_dynamics = ’none’,

press = 0.0d0,

/

ATOMIC_SPECIES

C 12.0d0 c_blyp_gia.pp

H 1.00d0 h.ps

ATOMIC_POSITIONS (bohr)

C 2.6 0.0 0.0

C 1.3 -1.3 0.0

C -1.3 -1.3 0.0

C -2.6 0.0 0.0

C -1.3 1.3 0.0

C 1.3 1.3 0.0

H 4.4 0.0 0.0

H 2.2 -2.2 0.0

H -2.2 -2.2 0.0

H -4.4 0.0 0.0

H -2.2 2.2 0.0

H 2.2 2.2 0.0

You can find the description of the input variables in file Doc/INPUT CP.*.

47

9.1 Reaching the electronic ground state

The first run, when starting from scratch, is always an electronic minimization, with fixed ions
and cell, to bring the electronic system on the ground state (GS) relative to the starting atomic
configuration. This step is conceptually very similar to self-consistency in a pw.x run.

Sometimes a single run is not enough to reach the GS. In this case, you need to re-run
the electronic minimization stage. Use the input of the first run, changing restart mode =

’from scratch’ to restart mode = ’restart’.
NOTA BENE: Unless you are already experienced with the system you are studying or

with the internals of the code, you will usually need to tune some input parameters, like emass,
dt, and cut-offs. For this purpose, a few trial runs could be useful: you can perform short
minimizations (say, 10 steps) changing and adjusting these parameters to fit your needs. You
can specify the degree of convergence with these two thresholds:

etot conv thr: total energy difference between two consecutive steps
ekin conv thr: value of the fictitious kinetic energy of the electrons.

Usually we consider the system on the GS when ekin conv thr < 10−5. You could check
the value of the fictitious kinetic energy on the standard output (column EKINC).

Different strategies are available to minimize electrons, but the most used ones are:

• steepest descent: electron dynamics = ’sd’

• damped dynamics: electron dynamics = ’damp’, electron damping = a number typ-
ically ranging from 0.1 and 0.5

See the input description to compute the optimal damping factor.

9.2 Relax the system

Once your system is in the GS, depending on how you have prepared the starting atomic
configuration:

1. if you have set the atomic positions ”by hand” and/or from a classical code, check the
forces on atoms, and if they are large (∼ 0.1÷ 1.0 atomic units), you should perform an
ionic minimization, otherwise the system could break up during the dynamics.

2. if you have taken the positions from a previous run or a previous ab-initio simulation,
check the forces, and if they are too small (∼ 10−4 atomic units), this means that atoms
are already in equilibrium positions and, even if left free, they will not move. Then you
need to randomize positions a little bit (see below).

Let us consider case 1). There are different strategies to relax the system, but the most
used are again steepest-descent or damped-dynamics for ions and electrons. You could also
mix electronic and ionic minimization scheme freely, i.e. ions in steepest-descent and electron
in with damped-dynamics or vice versa.

(a) suppose we want to perform steepest-descent for ions. Then we should specify the follow-
ing section for ions:

48

&ions

ion_dynamics = ’sd’

/

Change also the ionic masses to accelerate the minimization:

ATOMIC_SPECIES

C 2.0d0 c_blyp_gia.pp

H 2.00d0 h.ps

while leaving other input parameters unchanged. Note that if the forces are really high
(> 1.0 atomic units), you should always use steepest descent for the first (∼ 100 relaxation
steps.

(b) As the system approaches the equilibrium positions, the steepest descent scheme slows
down, so is better to switch to damped dynamics:

&ions

ion_dynamics = ’damp’,

ion_damping = 0.2,

ion_velocities = ’zero’

/

A value of ion damping around 0.05 is good for many systems. It is also better to specify
to restart with zero ionic and electronic velocities, since we have changed the masses.

Change further the ionic masses to accelerate the minimization:

ATOMIC_SPECIES

C 0.1d0 c_blyp_gia.pp

H 0.1d0 h.ps

(c) when the system is really close to the equilibrium, the damped dynamics slow down too,
especially because, since we are moving electron and ions together, the ionic forces are
not properly correct, then it is often better to perform a ionic step every N electronic
steps, or to move ions only when electron are in their GS (within the chosen threshold).

This can be specified by adding, in the ionic section, the ion nstepe parameter, then the
&IONS namelist become as follows:

&ions

ion_dynamics = ’damp’,

ion_damping = 0.2,

ion_velocities = ’zero’,

ion_nstepe = 10

/

Then we specify in the &CONTROL namelist:

49

etot_conv_thr = 1.d-6,

ekin_conv_thr = 1.d-5,

forc_conv_thr = 1.d-3

As a result, the code checks every 10 electronic steps whether the electronic system satisfies
the two thresholds etot conv thr, ekin conv thr: if it does, the ions are advanced by
one step. The process thus continues until the forces become smaller than forc conv thr.

Note that to fully relax the system you need many runs, and different strategies, that
you should mix and change in order to speed-up the convergence. The process is not
automatic, but is strongly based on experience, and trial and error.

Remember also that the convergence to the equilibrium positions depends on the energy
threshold for the electronic GS, in fact correct forces (required to move ions toward the
minimum) are obtained only when electrons are in their GS. Then a small threshold on
forces could not be satisfied, if you do not require an even smaller threshold on total
energy.

Let us now move to case 2: randomization of positions.
If you have relaxed the system or if the starting system is already in the equilibrium po-

sitions, then you need to displace ions from the equilibrium positions, otherwise they will not
move in a dynamics simulation. After the randomization you should bring electrons on the
GS again, in order to start a dynamic with the correct forces and with electrons in the GS.
Then you should switch off the ionic dynamics and activate the randomization for each species,
specifying the amplitude of the randomization itself. This could be done with the following
&IONS namelist:

&ions

ion_dynamics = ’none’,

tranp(1) = .TRUE.,

tranp(2) = .TRUE.,

amprp(1) = 0.01

amprp(2) = 0.01

/

In this way a random displacement (of max 0.01 a.u.) is added to atoms of species 1 and 2.
All other input parameters could remain the same. Note that the difference in the total energy
(etot) between relaxed and randomized positions can be used to estimate the temperature that
will be reached by the system. In fact, starting with zero ionic velocities, all the difference
is potential energy, but in a dynamics simulation, the energy will be equipartitioned between
kinetic and potential, then to estimate the temperature take the difference in energy (de),
convert it in Kelvins, divide for the number of atoms and multiply by 2/3. Randomization
could be useful also while we are relaxing the system, especially when we suspect that the ions
are in a local minimum or in an energy plateau.

9.3 CP dynamics

At this point after having minimized the electrons, and with ions displaced from their equi-
librium positions, we are ready to start a CP dynamics. We need to specify ’verlet’ both
in ionic and electronic dynamics. The threshold in control input section will be ignored, like

50

any parameter related to minimization strategy. The first time we perform a CP run after a
minimization, it is always better to put velocities equal to zero, unless we have velocities, from
a previous simulation, to specify in the input file. Restore the proper masses for the ions. In
this way we will sample the microcanonical ensemble. The input section changes as follow:

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’,

electron_velocities = ’zero’

/

&ions

ion_dynamics = ’verlet’,

ion_velocities = ’zero’

/

ATOMIC_SPECIES

C 12.0d0 c_blyp_gia.pp

H 1.00d0 h.ps

If you want to specify the initial velocities for ions, you have to set ion velocities

=’from input’, and add the IONIC VELOCITIES card, after the ATOMIC POSITION card,
with the list of velocities in atomic units.

NOTA BENE: in restarting the dynamics after the first CP run, remember to remove or
comment the velocities parameters:

&electrons

emass = 400.d0,

emass_cutoff = 2.5d0,

electron_dynamics = ’verlet’

! electron_velocities = ’zero’

/

&ions

ion_dynamics = ’verlet’

! ion_velocities = ’zero’

/

otherwise you will quench the system interrupting the sampling of the microcanonical ensemble.

Varying the temperature It is possible to change the temperature of the system or to
sample the canonical ensemble fixing the average temperature, this is done using the Nosé
thermostat. To activate this thermostat for ions you have to specify in namelist &IONS:

&ions

ion_dynamics = ’verlet’,

ion_temperature = ’nose’,

fnosep = 60.0,

tempw = 300.0

/

51

where fnosep is the frequency of the thermostat in THz, that should be chosen to be comparable
with the center of the vibrational spectrum of the system, in order to excite as many vibrational
modes as possible. tempw is the desired average temperature in Kelvin.

Note: to avoid a strong coupling between the Nosé thermostat and the system, proceed
step by step. Don’t switch on the thermostat from a completely relaxed configuration: adding
a random displacement is strongly recommended. Check which is the average temperature
via a few steps of a microcanonical simulation. Don’t increase the temperature too much.
Finally switch on the thermostat. In the case of molecular system, different modes have to
be thermalized: it is better to use a chain of thermostat or equivalently running different
simulations with different frequencies.

Nośe thermostat for electrons It is possible to specify also the thermostat for the
electrons. This is usually activated in metals or in systems where we have a transfer of energy
between ionic and electronic degrees of freedom. Beware: the usage of electronic thermostats
is quite delicate. The following information comes from K. Kudin:

”The main issue is that there is usually some ”natural” fictitious kinetic energy that electrons
gain from the ionic motion (”drag”). One could easily quantify how much of the fictitious energy
comes from this drag by doing a CP run, then a couple of CG (same as BO) steps, and then
going back to CP. The fictitious electronic energy at the last CP restart will be purely due to
the drag effect.”

”The thermostat on electrons will either try to overexcite the otherwise ”cold” electrons, or
it will try to take them down to an unnaturally cold state where their fictitious kinetic energy
is even below what would be just due pure drag. Neither of this is good.”

”I think the only workable regime with an electronic thermostat is a mild overexcitation of
the electrons, however, to do this one will need to know rather precisely what is the fictitious
kinetic energy due to the drag.”

9.4 Advanced usage

9.4.1 Self-interaction Correction

The self-interaction correction (SIC) included in the CP package is based on the Constrained
Local-Spin-Density approach proposed my F. Mauri and coworkers (M. D’Avezac et al. PRB
71, 205210 (2005)). It was used for the first time in Quantum ESPRESSO by F. Baletto, C.
Cavazzoni and S.Scandolo (PRL 95, 176801 (2005)).

This approach is a simple and nice way to treat ONE, and only one, excess charge. It
is moreover necessary to check a priori that the spin-up and spin-down eigenvalues are not
too different, for the corresponding neutral system, working in the Local-Spin-Density Ap-
proximation (setting nspin = 2). If these two conditions are satisfied and you are interest in
charged systems, you can apply the SIC. This approach is a on-the-fly method to correct the
self-interaction with the excess charge with itself.

Briefly, both the Hartree and the XC part have been corrected to avoid the interaction of
the excess charge with tself.

For example, for the Boron atoms, where we have an even number of electrons (valence
electrons = 3), the parameters for working with the SIC are:

&system

nbnd= 2,

52

total_magnetization=1,

sic_alpha = 1.d0,

sic_epsilon = 1.0d0,

sic = ’sic_mac’,

force_pairing = .true.,

&ions

ion_dynamics = ’none’,

ion_radius(1) = 0.8d0,

sic_rloc = 1.0,

ATOMIC_POSITIONS (bohr)

B 0.00 0.00 0.00 0 0 0 1

The two main parameters are:

force pairing = .true., which forces the paired electrons to be the same;
sic=’sic mac’, which instructs the code to use Mauri’s correction.

Remember to add an extra-column in ATOMIC POSITIONS with ”1” to activate SIC for those
atoms.

Warning: This approach has known problems for dissociation mechanism driven by excess
electrons.

Comment 1: Two parameters, sic alpha and sic epsilon’, have been introduced follow-
ing the suggestion of M. Sprik (ICR(05)) to treat the radical (OH)-H2O. In any case, a complete
ab-initio approach is followed using sic alpha=1, sic epsilon=1.

Comment 2: When you apply this SIC scheme to a molecule or to an atom, which are
neutral, remember to add the correction to the energy level as proposed by Landau: in a
neutral system, subtracting the self-interaction, the unpaired electron feels a charged system,
even if using a compensating positive background. For a cubic box, the correction term due to
the Madelung energy is approx. given by 1.4186/Lbox − 1.047/(Lbox)

3, where Lbox is the linear
dimension of your box (=celldm(1)). The Madelung coefficient is taken from I. Dabo et al.
PRB 77, 115139 (2007). (info by F. Baletto, francesca.baletto@kcl.ac.uk)

9.4.2 ensemble-DFT

The ensemble-DFT (eDFT) is a robust method to simulate the metals in the framework of
”ab-initio” molecular dynamics. It was introduced in 1997 by Marzari et al.

The specific subroutines for the eDFT are in CPV/ensemble dft.f90 where you define all the
quantities of interest. The subroutine CPV/inner loop cold.f90 called by cg sub.f90, control
the inner loop, and so the minimization of the free energy A with respect to the occupation
matrix.

To select a eDFT calculations, the user has to set:

calculation = ’cp’

occupations= ’ensemble’

tcg = .true.

passop= 0.3

maxiter = 250

53

to use the CG procedure. In the eDFT it is also the outer loop, where the energy is minimized
with respect to the wavefunction keeping fixed the occupation matrix. While the specific
parameters for the inner loop. Since eDFT was born to treat metals, keep in mind that we
want to describe the broadening of the occupations around the Fermi energy. Below the new
parameters in the electrons list, are listed.

• smearing: used to select the occupation distribution; there are two options: Fermi-Dirac
smearing=’fd’, cold-smearing smearing=’cs’ (recommended)

• degauss: is the electronic temperature; it controls the broadening of the occupation
numbers around the Fermi energy.

• ninner: is the number of iterative cycles in the inner loop, done to minimize the free
energy A with respect the occupation numbers. The typical range is 2-8.

• conv thr: is the threshold value to stop the search of the ’minimum’ free energy.

• niter cold restart: controls the frequency at which a full iterative inner cycle is done.
It is in the range 1÷ninner. It is a trick to speed up the calculation.

• lambda cold: is the length step along the search line for the best value for A, when
the iterative cycle is not performed. The value is close to 0.03, smaller for large and
complicated metallic systems.

NOTE: degauss is in Hartree, while in PWscfis in Ry (!!!). The typical range is 0.01-0.02 Ha.
The input for an Al surface is:

&CONTROL

calculation = ’cp’,

restart_mode = ’from_scratch’,

nstep = 10,

iprint = 5,

isave = 5,

dt = 125.0d0,

prefix = ’Aluminum_surface’,

pseudo_dir = ’~/UPF/’,

outdir = ’/scratch/’

ndr=50

ndw=51

/

&SYSTEM

ibrav= 14,

celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0,

celldm(4)= 0.0d0, celldm(5)= 0.0d0, celldm(6)= 0.0d0,

nat= 96,

ntyp= 1,

nspin=1,

ecutwfc= 15,

nbnd=160,

input_dft = ’pbe’

54

occupations= ’ensemble’,

smearing=’cs’,

degauss=0.018,

/

&ELECTRONS

orthogonalization = ’Gram-Schmidt’,

startingwfc = ’random’,

ampre = 0.02,

tcg = .true.,

passop= 0.3,

maxiter = 250,

emass_cutoff = 3.00,

conv_thr=1.d-6

n_inner = 2,

lambda_cold = 0.03,

niter_cold_restart = 2,

/

&IONS

ion_dynamics = ’verlet’,

ion_temperature = ’nose’

fnosep = 4.0d0,

tempw = 500.d0

/

ATOMIC_SPECIES

Al 26.89 Al.pbe.UPF

NOTA1 remember that the time step is to integrate the ionic dynamics, so you can choose
something in the range of 1-5 fs.
NOTA2 with eDFT you are simulating metals or systems for which the occupation number is
also fractional, so the number of band, nbnd, has to be chosen such as to have some empty
states. As a rule of thumb, start with an initial occupation number of about 1.6-1.8 (the more
bands you consider, the more the calculation is accurate, but it also takes longer. The CPU
time scales almost linearly with the number of bands.)
NOTA3 the parameter emass cutoff is used in the preconditioning and it has a completely
different meaning with respect to plain CP. It ranges between 4 and 7.

All the other parameters have the same meaning in the usual CP input, and they are discussed
above.

9.4.3 Free-energy surface calculations

Once CP is patched with PLUMED plug-in, it becomes possible to turn-on most of the PLUMED
functionalities running CP as: ./cp.x -plumed plus the other usual CP arguments. The
PLUMED input file has to be located in the specified outdir with the fixed name plumed.dat.

9.4.4 Treatment of USPPs

The cutoff ecutrho defines the resolution on the real space FFT mesh (as expressed by nr1,
nr2 and nr3, that the code left on its own sets automatically). In the USPP case we refer

55

to this mesh as the ”hard” mesh, since it is denser than the smooth mesh that is needed to
represent the square of the non-norm-conserving wavefunctions.

On this ”hard”, fine-spaced mesh, you need to determine the size of the cube that will
encompass the largest of the augmentation charges - this is what nr1b, nr2b, nr3b are. hey
are independent of the system size, but dependent on the size of the augmentation charge
(an atomic property that doesn’t vary that much for different systems) and on the real-space
resolution needed by augmentation charges (rule of thumb: ecutrho is between 6 and 12 times
ecutwfc).

The small boxes should be set as small as possible, but large enough to contain the core of
the largest element in your system. The formula for estimating the box size is quite simple:

nr1b = 2Rc/Lx× nr1

and the like, where Rcut is largest cut-off radius among the various atom types present in the
system, Lx is the physical length of your box along the x axis. You have to round your result
to the nearest larger integer. In practice, nr1b etc. are often in the region of 20-24-28; testing
seems again a necessity.

The core charge is in principle finite only at the core region (as defined by some Rrcut)
and vanishes out side the core. Numerically the charge is represented in a Fourier series which
may give rise to small charge oscillations outside the core and even to negative charge density,
but only if the cut-off is too low. Having these small boxes removes the charge oscillations
problem (at least outside the box) and also offers some numerical advantages in going to higher
cut-offs.” (info by Nicola Marzari)

10 Performances

10.1 Execution time

Since v.4.2 Quantum ESPRESSO prints real (wall) time instead of CPU time.
The following is a rough estimate of the complexity of a plain scf calculation with pw.x,

for NCPP. USPP and PAW give raise additional terms to be calculated, that may add from a
few percent up to 30-40% to execution time. For phonon calculations, each of the 3Nat modes
requires a time of the same order of magnitude of self-consistent calculation in the same system
(possibly times a small multiple). For cp.x, each time step takes something in the order of
Th + Torth + Tsub defined below.

The time required for the self-consistent solution at fixed ionic positions, Tscf , is:

Tscf = NiterTiter + Tinit

where Niter = number of self-consistency iterations (niter), Titer = time for a single iteration,
Tinit = initialization time (usually much smaller than the first term).

The time required for a single self-consistency iteration Titer is:

Titer = NkTdiag + Trho + Tscf

where Nk = number of k-points, Tdiag = time per Hamiltonian iterative diagonalization, Trho

= time for charge density calculation, Tscf = time for Hartree and XC potential calculation.

56

The time for a Hamiltonian iterative diagonalization Tdiag is:

Tdiag = NhTh + Torth + Tsub

where Nh = number of Hψ products needed by iterative diagonalization, Th = time per Hψ
product, Torth = CPU time for orthonormalization, Tsub = CPU time for subspace diagonaliza-
tion.

The time Th required for a Hψ product is

Th = a1MN + a2MN1N2N3log(N1N2N3) + a3MPN.

The first term comes from the kinetic term and is usually much smaller than the others. The
second and third terms come respectively from local and nonlocal potential. a1, a2, a3 are
prefactors (i.e. small numbers O(1)), M = number of valence bands (nbnd), N = number of
PW (basis set dimension: npw), N1, N2, N3 = dimensions of the FFT grid for wavefunctions
(nr1s, nr2s, nr3s; N1N2N3 ∼ 8N), P = number of pseudopotential projectors, summed on
all atoms, on all values of the angular momentum l, and m = 1, ..., 2l + 1.

The time Torth required by orthonormalization is

Torth = b1NM
2
x

and the time Tsub required by subspace diagonalization is

Tsub = b2M
3
x

where b1 and b2 are prefactors, Mx = number of trial wavefunctions (this will vary between M
and 2÷ 4M , depending on the algorithm).

The time Trho for the calculation of charge density from wavefunctions is

Trho = c1MNr1Nr2Nr3log(Nr1Nr2Nr3) + c2MNr1Nr2Nr3 + Tus

where c1, c2, c3 are prefactors, Nr1, Nr2, Nr3 = dimensions of the FFT grid for charge density
(nr1, nr2, nr3; Nr1Nr2Nr3 ∼ 8Ng, where Ng = number of G-vectors for the charge density,
ngm), and Tus = time required by PAW/USPPs contribution (if any). Note that for NCPPs
the FFT grids for charge and wavefunctions are the same.

The time Tscf for calculation of potential from charge density is

Tscf = d2Nr1Nr2Nr3 + d3Nr1Nr2Nr3log(Nr1Nr2Nr3)

where d1, d2 are prefactors.
The above estimates are for serial execution. In parallel execution, each contribution may

scale in a different manner with the number of processors (see below).

10.2 Memory requirements

A typical self-consistency or molecular-dynamics run requires a maximum memory in the order
of O double precision complex numbers, where

O = mMN + PN + pN1N2N3 + qNr1Nr2Nr3

with m, p, q = small factors; all other variables have the same meaning as above. Note that if
the Γ−point only (k = 0) is used to sample the Brillouin Zone, the value of N will be cut into
half.

The memory required by the phonon code follows the same patterns, with somewhat larger
factors m, p, q.

57

10.3 File space requirements

A typical pw.x run will require an amount of temporary disk space in the order of O double
precision complex numbers:

O = NkMN + qNr1Nr2Nr3

where q = 2× mixing ndim (number of iterations used in self-consistency, default value = 8) if
disk io is set to ’high’; q = 0 otherwise.

10.4 Parallelization issues

pw.x and cp.x can run in principle on any number of processors. The effectiveness of par-
allelization is ultimately judged by the ”scaling”, i.e. how the time needed to perform a job
scales with the number of processors, and depends upon:

• the size and type of the system under study;

• the judicious choice of the various levels of parallelization (detailed in Sec.3.2);

• the availability of fast interprocess communications (or lack of it).

Ideally one would like to have linear scaling, i.e. T ∼ T0/Np for Np processors, where T0 is
the estimated time for serial execution. In addition, one would like to have linear scaling of
the RAM per processor: ON ∼ O0/Np, so that large-memory systems fit into the RAM of each
processor.

As a general rule, image parallelization:

• may give good scaling, but the slowest image will determine the overall performances
(”load balancing” may be a problem);

• requires very little communications (suitable for ethernet communications);

• does not reduce the required memory per processor (unsuitable for large-memory jobs).

Parallelization on k-points:

• guarantees (almost) linear scaling if the number of k-points is a multiple of the number
of pools;

• requires little communications (suitable for ethernet communications);

• does not reduce the required memory per processor (unsuitable for large-memory jobs).

Parallelization on PWs:

• yields good to very good scaling, especially if the number of processors in a pool is a
divisor of N3 and Nr3 (the dimensions along the z-axis of the FFT grids, nr3 and nr3s,
which coincide for NCPPs);

• requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most,
specialized communication hardware needed for 8 or more processors);

• yields almost linear reduction of memory per processor with the number of processors in
the pool.

58

A note on scaling: optimal serial performances are achieved when the data are as much as
possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better
than linear) scaling, thanks to the increase in serial speed coming from the reduction of data
size (making it easier for the machine to keep data in the cache).

VERY IMPORTANT: For each system there is an optimal range of number of processors on
which to run the job. A too large number of processors will yield performance degradation. If
the size of pools is especially delicate: Np should not exceed N3 and Nr3, and should ideally be
no larger than 1/2÷ 1/4N3 and/or Nr3. In order to increase scalability, it is often convenient
to further subdivide a pool of processors into ”task groups”. When the number of processors
exceeds the number of FFT planes, data can be redistributed to ”task groups” so that each
group can process several wavefunctions at the same time.

The optimal number of processors for ”linear-algebra” parallelization, taking care of mul-
tiplication and diagonalization of M × M matrices, should be determined by observing the
performances of cdiagh/rdiagh (pw.x) or ortho (ćp.x) for different numbers of processors in
the linear-algebra group (must be a square integer).

Actual parallel performances will also depend on the available software (MPI libraries) and
on the available communication hardware. For PC clusters, OpenMPI (http://www.openmpi.org/)
seems to yield better performances than other implementations (info by Kostantin Kudin). Note
however that you need a decent communication hardware (at least Gigabit ethernet) in order
to have acceptable performances with PW parallelization. Do not expect good scaling with
cheap hardware: PW calculations are by no means an ”embarrassing parallel” problem.

Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one
memory bus for all processors. This dramatically slows down any code doing massive access to
memory (as most codes in the Quantum ESPRESSO distribution do) that runs on processors
of the same motherboard.

11 Troubleshooting

Almost all problems in Quantum ESPRESSO arise from incorrect input data and result in
error stops. Error messages should be self-explanatory, but unfortunately this is not always
true. If the code issues a warning messages and continues, pay attention to it but do not assume
that something is necessarily wrong in your calculation: most warning messages signal harmless
problems.

11.1 pw.x problems

pw.x says ’error while loading shared libraries’ or ’cannot open shared object file’
and does not start Possible reasons:

• If you are running on the same machines on which the code was compiled, this is a library
configuration problem. The solution is machine-dependent. On Linux, find the path to
the missing libraries; then either add it to file /etc/ld.so.conf and run ldconfig (must
be done as root), or add it to variable LD LIBRARY PATH and export it. Another
possibility is to load non-shared version of libraries (ending with .a) instead of shared
ones (ending with .so).

• If you are not running on the same machines on which the code was compiled: you need
either to have the same shared libraries installed on both machines, or to load statically all

59

libraries (using appropriate configure or loader options). The same applies to Beowulf-
style parallel machines: the needed shared libraries must be present on all PCs.

errors in examples with parallel execution If you get error messages in the example
scripts – i.e. not errors in the codes – on a parallel machine, such as e.g.: run example: -n:
command not found you may have forgotten the ” ” in the definitions of PARA PREFIX and
PARA POSTFIX.

pw.x prints the first few lines and then nothing happens (parallel execution) If
the code looks like it is not reading from input, maybe it isn’t: the MPI libraries need to be
properly configured to accept input redirection. Use pw.x -inp and the input file name (see
Sec.3.2), or inquire with your local computer wizard (if any). Since v.4.2, this is for sure the
reason if the code stops at Waiting for input....

pw.x stops with error while reading data There is an error in the input data, typically
a misspelled namelist variable, or an empty input file. Unfortunately with most compilers the
code just reports Error while reading XXX namelist and no further useful information. Here
are some more subtle sources of trouble:

• Out-of-bound indices in dimensioned variables read in the namelists;

• Input data files containing ˆM (Control-M) characters at the end of lines, or non-ASCII
characters (e.g. non-ASCII quotation marks, that at a first glance may look the same
as the ASCII character). Typically, this happens with files coming from Windows or
produced with ”smart” editors.

Both may cause the code to crash with rather mysterious error messages. If none of the above
applies and the code stops at the first namelist (&CONTROL) and you are running in parallel,
see the previous item.

pw.x mumbles something like cannot recover or error reading recover file You are
trying to restart from a previous job that either produced corrupted files, or did not do what
you think it did. No luck: you have to restart from scratch.

pw.x stops with inconsistent DFT error As a rule, the flavor of DFT used in the
calculation should be the same as the one used in the generation of pseudopotentials, which
should all be generated using the same flavor of DFT. This is actually enforced: the type of
DFT is read from pseudopotential files and it is checked that the same DFT is read from all
PPs. If this does not hold, the code stops with the above error message. Use – at your own
risk – input variable input dft to force the usage of the DFT you like.

pw.x stops with error in cdiaghg or rdiaghg Possible reasons for such behavior are not
always clear, but they typically fall into one of the following cases:

• serious error in data, such as bad atomic positions or bad crystal structure/supercell;

• a bad pseudopotential, typically with a ghost, or a USPP giving non-positive charge
density, leading to a violation of positiveness of the S matrix appearing in the USPP
formalism;

60

• a failure of the algorithm performing subspace diagonalization. The LAPACK algorithms
used by cdiaghg (for generic k-points) or rdiaghg (for Γ−only case) are very robust and
extensively tested. Still, it may seldom happen that such algorithms fail. Try to use
conjugate-gradient diagonalization (diagonalization=’cg’), a slower but very robust
algorithm, and see what happens.

• buggy libraries. Machine-optimized mathematical libraries are very fast but sometimes
not so robust from a numerical point of view. Suspicious behavior: you get an error
that is not reproducible on other architectures or that disappears if the calculation is
repeated with even minimal changes in parameters. Known cases: HP-Compaq alphas
with cxml libraries, Mac OS-X with system BLAS/LAPACK. Try to use compiled BLAS
and LAPACK (or better, ATLAS) instead of machine-optimized libraries.

pw.x crashes with no error message at all This happens quite often in parallel execu-
tion, or under a batch queue, or if you are writing the output to a file. When the program
crashes, part of the output, including the error message, may be lost, or hidden into error files
where nobody looks into. It is the fault of the operating system, not of the code. Try to run
interactively and to write to the screen. If this doesn’t help, move to next point.

pw.x crashes with segmentation fault or similarly obscure messages Possible rea-
sons:

• too much RAM memory or stack requested (see next item).

• if you are using highly optimized mathematical libraries, verify that they are designed for
your hardware.

• If you are using aggressive optimization in compilation, verify that you are using the
appropriate options for your machine

• The executable was not properly compiled, or was compiled on a different and incompat-
ible environment.

• buggy compiler or libraries: this is the default explanation if you have problems with the
provided tests and examples.

pw.x works for simple systems, but not for large systems or whenever more RAM
is needed Possible solutions:

• increase the amount of RAM you are authorized to use (which may be much smaller than
the available RAM). Ask your system administrator if you don’t know what to do. In
some cases the stack size can be a source of problems: if so, increase it with command
limits or ulimit).

• reduce nbnd to the strict minimum, or reduce the cutoffs, or the cell size , or a combination
of them

• use conjugate-gradient (diagonalization=’cg’: slow but very robust): it requires less
memory than the default Davidson algorithm. If you stick to the latter, use diago david ndim=2.

61

• in parallel execution, use more processors, or use the same number of processors with less
pools. Remember that parallelization with respect to k-points (pools) does not distribute
memory: parallelization with respect to R- (and G-) space does.

• buggy or weird-behaving compiler.

pw.x crashes with error in davcio davcio is the routine that performs most of the I/O
operations (read from disk and write to disk) in pw.x; error in davcio means a failure of an
I/O operation.

• If the error is reproducible and happens at the beginning of a calculation: check if you
have read/write permission to the scratch directory specified in variable outdir. Also:
check if there is enough free space available on the disk you are writing to, and check your
disk quota (if any).

• If the error is irreproducible: your might have flaky disks; if you are writing via the
network using NFS (which you shouldn’t do anyway), your network connection might be
not so stable, or your NFS implementation is unable to work under heavy load

• If it happens while restarting from a previous calculation: you might be restarting from
the wrong place, or from wrong data, or the files might be corrupted.

• If you are running two or more instances of pw.x at the same time, check if you are using
the same file names in the same temporary directory. For instance, if you submit a series
of jobs to a batch queue, do not use the same outdir and the same prefix, unless you
are sure that one job doesn’t start before a preceding one has finished.

pw.x crashes in parallel execution with an obscure message related to MPI errors
Random crashes due to MPI errors have often been reported, typically in Linux PC clusters.
We cannot rule out the possibility that bugs in Quantum ESPRESSO cause such behavior,
but we are quite confident that the most likely explanation is a hardware problem (defective
RAM for instance) or a software bug (in MPI libraries, compiler, operating system).

Debugging a parallel code may be difficult, but you should at least verify if your problem is
reproducible on different architectures/software configurations/input data sets, and if there is
some particular condition that activates the bug. If this doesn’t seem to happen, the odds are
that the problem is not in Quantum ESPRESSO. You may still report your problem, but
consider that reports like it crashes with...(obscure MPI error) contain 0 bits of information
and are likely to get 0 bits of answers.

pw.x stops with error message the system is metallic, specify occupations You did
not specify state occupations, but you need to, since your system appears to have an odd number
of electrons. The variable controlling how metallicity is treated is occupations in namelist
&SYSTEM. The default, occupations=’fixed’, occupies the lowest (N electrons)/2 states
and works only for insulators with a gap. In all other cases, use ’smearing’ (’tetrahedra’
for DOS calculations). See input reference documentation for more details.

62

pw.x stops with internal error: cannot bracket Ef Possible reasons:

• serious error in data, such as bad number of electrons, insufficient number of bands,
absurd value of broadening;

• the Fermi energy is found by bisection assuming that the integrated DOS N(E) is an in-
creasing function of the energy. This is not guaranteed for Methfessel-Paxton smearing of
order 1 and can give problems when very few k-points are used. Use some other smearing
function: simple Gaussian broadening or, better, Marzari-Vanderbilt ’cold smearing’.

pw.x yields internal error: cannot bracket Ef message but does not stop This may
happen under special circumstances when you are calculating the band structure for selected
high-symmetry lines. The message signals that occupations and Fermi energy are not correct
(but eigenvalues and eigenvectors are). Remove occupations=’tetrahedra’ in the input data
to get rid of the message.

pw.x runs but nothing happens Possible reasons:

• in parallel execution, the code died on just one processor. Unpredictable behavior may
follow.

• in serial execution, the code encountered a floating-point error and goes on producing
NaNs (Not a Number) forever unless exception handling is on (and usually it isn’t). In
both cases, look for one of the reasons given above.

• maybe your calculation will take more time than you expect.

pw.x yields weird results If resutls are really weird (as opposed to misinterpreted):

• if this happens after a change in the code or in compilation or preprocessing options, try
make clean, recompile. The make command should take care of all dependencies, but do
not rely too heavily on it. If the problem persists, recompile with reduced optimization
level.

• maybe your input data are weird.

FFT grid is machine-dependent Yes, they are! The code automatically chooses the small-
est grid that is compatible with the specified cutoff in the specified cell, and is an allowed value
for the FFT library used. Most FFT libraries are implemented, or perform well, only with
dimensions that factors into products of small numers (2, 3, 5 typically, sometimes 7 and 11).
Different FFT libraries follow different rules and thus different dimensions can result for the
same system on different machines (or even on the same machine, with a different FFT). See
function allowed in Modules/fft scalar.f90.

As a consequence, the energy may be slightly different on different machines. The only
piece that explicitly depends on the grid parameters is the XC part of the energy that is
computed numerically on the grid. The differences should be small, though, especially for LDA
calculations.

Manually setting the FFT grids to a desired value is possible, but slightly tricky, using
input variables nr1, nr2, nr3 and nr1s, nr2s, nr3s. The code will still increase them if not

63

acceptable. Automatic FFT grid dimensions are slightly overestimated, so one may try very
carefully to reduce them a little bit. The code will stop if too small values are required, it will
waste CPU time and memory for too large values.

Note that in parallel execution, it is very convenient to have FFT grid dimensions along z
that are a multiple of the number of processors.

pw.x does not find all the symmetries you expected pw.x determines first the symmetry
operations (rotations) of the Bravais lattice; then checks which of these are symmetry operations
of the system (including if needed fractional translations). This is done by rotating (and
translating if needed) the atoms in the unit cell and verifying if the rotated unit cell coincides
with the original one.

Assuming that your coordinates are correct (please carefully check!), you may not find all
the symmetries you expect because:

• the number of significant figures in the atomic positions is not large enough. In file
PW/eqvect.f90, the variable accep is used to decide whether a rotation is a symmetry
operation. Its current value (10−5) is quite strict: a rotated atom must coincide with
another atom to 5 significant digits. You may change the value of accep and recompile.

• they are not acceptable symmetry operations of the Bravais lattice. This is the case
for C60, for instance: the Ih icosahedral group of C60 contains 5-fold rotations that are
incompatible with translation symmetry.

• the system is rotated with respect to symmetry axis. For instance: a C60 molecule in the
fcc lattice will have 24 symmetry operations (Th group) only if the double bond is aligned
along one of the crystal axis; if C60 is rotated in some arbitrary way, pw.x may not find
any symmetry, apart from inversion.

• they contain a fractional translation that is incompatible with the FFT grid (see next
paragraph). Note that if you change cutoff or unit cell volume, the automatically com-
puted FFT grid changes, and this may explain changes in symmetry (and in the number
of k-points as a consequence) for no apparent good reason (only if you have fractional
translations in the system, though).

• a fractional translation, without rotation, is a symmetry operation of the system. This
means that the cell is actually a supercell. In this case, all symmetry operations containing
fractional translations are disabled. The reason is that in this rather exotic case there is no
simple way to select those symmetry operations forming a true group, in the mathematical
sense of the term.

Warning: symmetry operation # N not allowed This is not an error. If a symmetry
operation contains a fractional translation that is incompatible with the FFT grid, it is discarded
in order to prevent problems with symmetrization. Typical fractional translations are 1/2 or 1/3
of a lattice vector. If the FFT grid dimension along that direction is not divisible respectively
by 2 or by 3, the symmetry operation will not transform the FFT grid into itself.

64

Self-consistency is slow or does not converge at all Bad input data will often result in
bad scf convergence. Please carefully check your structure first, e.g. using XCrySDen.

Assuming that your input data is sensible :

1. Verify if your system is metallic or is close to a metallic state, especially if you have few
k-points. If the highest occupied and lowest unoccupied state(s) keep exchanging place
during self-consistency, forget about reaching convergence. A typical sign of such behavior
is that the self-consistency error goes down, down, down, than all of a sudden up again,
and so on. Usually one can solve the problem by adding a few empty bands and a small
broadening.

2. Reduce mixing beta to ∼ 0.3÷ 0.1 or smaller. Try the mixing mode value that is more
appropriate for your problem. For slab geometries used in surface problems or for elon-
gated cells, mixing mode=’local-TF’ should be the better choice, dampening ”charge
sloshing”. You may also try to increase mixing ndim to more than 8 (default value).
Beware: this will increase the amount of memory you need.

3. Specific to USPP: the presence of negative charge density regions due to either the
pseudization procedure of the augmentation part or to truncation at finite cutoff may
give convergence problems. Raising the ecutrho cutoff for charge density will usually
help.

I do not get the same results in different machines! If the difference is small, do not
panic. It is quite normal for iterative methods to reach convergence through different paths
as soon as anything changes. In particular, between serial and parallel execution there are
operations that are not performed in the same order. As the numerical accuracy of computer
numbers is finite, this can yield slightly different results.

It is also normal that the total energy converges to a better accuracy than its terms, since
only the sum is variational, i.e. has a minimum in correspondence to ground-state charge
density. Thus if the convergence threshold is for instance 10−8, you get 8-digit accuracy on
the total energy, but one or two less on other terms (e.g. XC and Hartree energy). It this
is a problem for you, reduce the convergence threshold for instance to 10−10 or 10−12. The
differences should go away (but it will probably take a few more iterations to converge).

Execution time is time-dependent! Yes it is! On most machines and on most operating
systems, depending on machine load, on communication load (for parallel machines), on various
other factors (including maybe the phase of the moon), reported execution times may vary quite
a lot for the same job.

Warning : N eigenvectors not converged This is a warning message that can be safely
ignored if it is not present in the last steps of self-consistency. If it is still present in the last
steps of self-consistency, and if the number of unconverged eigenvector is a significant part of
the total, it may signal serious trouble in self-consistency (see next point) or something badly
wrong in input data.

Warning : negative or imaginary charge..., or ...core charge ..., or npt with
rhoup< 0... or rho dw< 0... These are warning messages that can be safely ignored unless

65

the negative or imaginary charge is sizable, let us say of the order of 0.1. If it is, something
seriously wrong is going on. Otherwise, the origin of the negative charge is the following. When
one transforms a positive function in real space to Fourier space and truncates at some finite
cutoff, the positive function is no longer guaranteed to be positive when transformed back to
real space. This happens only with core corrections and with USPPs. In some cases it may
be a source of trouble (see next point) but it is usually solved by increasing the cutoff for the
charge density.

Structural optimization is slow or does not converge or ends with a mysterious
bfgs error Typical structural optimizations, based on the BFGS algorithm, converge to the
default thresholds (etot conv thr and forc conv thr) in 15-25 BFGS steps (depending on the
starting configuration). This may not happen when your system is characterized by ”floppy”
low-energy modes, that make very difficult (and of little use anyway) to reach a well converged
structure, no matter what. Other possible reasons for a problematic convergence are listed
below.

Close to convergence the self-consistency error in forces may become large with respect to
the value of forces. The resulting mismatch between forces and energies may confuse the line
minimization algorithm, which assumes consistency between the two. The code reduces the
starting self-consistency threshold conv thr when approaching the minimum energy configura-
tion, up to a factor defined by upscale. Reducing conv thr (or increasing upscale) yields a
smoother structural optimization, but if conv thr becomes too small, electronic self-consistency
may not converge. You may also increase variables etot conv thr and forc conv thr that
determine the threshold for convergence (the default values are quite strict).

A limitation to the accuracy of forces comes from the absence of perfect translational in-
variance. If we had only the Hartree potential, our PW calculation would be translationally
invariant to machine precision. The presence of an XC potential introduces Fourier components
in the potential that are not in our basis set. This loss of precision (more serious for gradient-
corrected functionals) translates into a slight but detectable loss of translational invariance (the
energy changes if all atoms are displaced by the same quantity, not commensurate with the
FFT grid). This sets a limit to the accuracy of forces. The situation improves somewhat by
increasing the ecutrho cutoff.

pw.x stops during variable-cell optimization in checkallsym with non orthogonal
operation error Variable-cell optimization may occasionally break the starting symmetry of
the cell. When this happens, the run is stopped because the number of k-points calculated for
the starting configuration may no longer be suitable. Possible solutions:

• start with a nonsymmetric cell;

• use a symmetry-conserving algorithm: the Wentzcovitch algorithm (cell dynamics=’damp-w’)
should not break the symmetry.

11.2 Compilation problems with PLUMED

xlc compiler If you get an error message like:

Operation between types "char**" and "int" is not allowed.

66

change in file clib/metadyn.h

#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(ptr)) calloc(nelem, sizeof(*(ptr))))

#define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,(nelem)*sizeof(*(ptr)))

with

#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) calloc(nelem, sizeof(*(ptr))))

#define srenew(ptr,nelem) (ptr)= (void*) realloc(ptr,(nelem)*sizeof(*(ptr)))

Calling C from fortran PLUMED assumes that fortran compilers add a single at the end
of C routines. You may get an error message as :

ERROR: Undefined symbol: .init_metadyn

ERROR: Undefined symbol: .meta_force_calculation

eliminate the from the definition of init metadyn and meta force calculation, i. e. change at
line 529

void meta_force_calculation_(real *cell, int *istep, real *xxx, real *yyy, real *zzz,

with

void meta_force_calculation(real *cell, int *istep, real *xxx, real *yyy, real *zzz,

, and at line 961

void init_metadyn_(int *atoms, real *ddt, real *mass,

void init_metadyn_(int *atoms, real *ddt, real *mass,

11.3 Compilation problems with YAMBO

If simply typing make yambo produces un error such as :

undefined reference to ‘MAIN__’

you need to run the YAMBO configure by yourself specifying ./configure -nofor main for intel
compiler of ./configure -Mnomain for PGI. If you do not manage to solve the problem go to
YAMBO official web site (http://www.yambo-code.org) for specific information.

11.4 PostProc

Some postprocessing codes complain that they do not find some files For Linux
PC clusters in parallel execution: in at least some versions of MPICH, the current directory
is set to the directory where the executable code resides, instead of being set to the directory
where the code is executed. This MPICH weirdness may cause unexpected failures in some
postprocessing codes that expect a data file in the current directory. Workaround: use symbolic
links, or copy the executable to the current directory.

error in davcio in postprocessing codes Most likely you are not reading the correct data
files, or you are not following the correct procedure for postprocessing. In parallel execution:
if you did not set wf collect=.true., the number of processors and pools for the phonon run
should be the same as for the self-consistent run; all files must be visible to all processors.

67

11.5 ph.x errors

ph.x stops with error reading file The data file produced by pw.x is bad or incomplete
or produced by an incompatible version of the code. In parallel execution: if you did not set
wf collect=.true., the number of processors and pools for the phonon run should be the
same as for the self-consistent run; all files must be visible to all processors.

ph.x mumbles something like cannot recover or error reading recover file You have
a bad restart file from a preceding failed execution. Remove all files recover* in outdir.

ph.x says occupation numbers probably wrong and continues You have a metallic or
spin-polarized system but occupations are not set to ’smearing’.

ph.x does not yield acoustic modes with zero frequency at q = 0 This may not be
an error: the Acoustic Sum Rule (ASR) is never exactly verified, because the system is never
exactly translationally invariant as it should be. The calculated frequency of the acoustic mode
is typically less than 10 cm−1, but in some cases it may be much higher, up to 100 cm−1. The
ultimate test is to diagonalize the dynamical matrix with program dynmat.x, imposing the
ASR. If you obtain an acoustic mode with a much smaller ω (let us say < 1cm−1) with all
other modes virtually unchanged, you can trust your results.

”The problem is [...] in the fact that the XC energy is computed in real space on a discrete
grid and hence the total energy is invariant (...) only for translation in the FFT grid. Increasing
the charge density cutoff increases the grid density thus making the integral more exact thus
reducing the problem, unfortunately rather slowly...This problem is usually more severe for
GGA than with LDA because the GGA functionals have functional forms that vary more
strongly with the position; particularly so for isolated molecules or system with significant
portions of ”vacuum” because in the exponential tail of the charge density a) the finite cutoff
(hence there is an effect due to cutoff) induces oscillations in rho and b) the reduced gradient
is diverging.”(info by Stefano de Gironcoli, June 2008)

ph.x yields really lousy phonons, with bad or negative frequencies or wrong sym-
metries or gross ASR violations Possible reasons

• if this happens only for acoustic modes at q = 0 that should have ω = 0: Acoustic Sum
Rule violation, see the item before this one.

• wrong data file read.

• wrong atomic masses given in input will yield wrong frequencies (but the content of file
fildyn should be valid, since the force constants, not the dynamical matrix, are written
to file).

• convergence threshold for either SCF (conv thr) or phonon calculation (tr2 ph) too large:
try to reduce them.

• maybe your system does have negative or strange phonon frequencies, with the approx-
imations you used. A negative frequency signals a mechanical instability of the chosen
structure. Check that the structure is reasonable, and check the following parameters:

68

– The cutoff for wavefunctions, ecutwfc

– For USPP: the cutoff for the charge density, ecutrho

– The k-point grid, especially for metallic systems.

Note that ”negative” frequencies are actually imaginary: the negative sign flags eigenvalues of
the dynamical matrix for which ω2 < 0.

Wrong degeneracy error in star q Verify the q-vector for which you are calculating
phonons. In order to check whether a symmetry operation belongs to the small group of
q, the code compares q and the rotated q, with an acceptance tolerance of 10−5 (set in routine
PW/eqvect.f90). You may run into trouble if your q-vector differs from a high-symmetry point
by an amount in that order of magnitude.

12 Frequently Asked Questions (FAQ)

12.1 General

If you search information on Quantum ESPRESSO, the best starting point is the web site
html://www.quantum-espresso.org. See in particular the links “learn” for documentation,
“contacts” if you need somebody to talk with. The mailing list pw forum is the typical place
where to ask questions about Quantum ESPRESSO.

12.2 Installation

Most installation problems have obvious origins and can be solved by reading error messages
and acting accordingly. Sometimes the reason for a failure is less obvious. In such a case, you
should look into Sec.2.2, and into the pw forum archive to see if a similar problem (with solution)
is described. If you get really weird error messages during installation, look for them with your
preferred Internet search engine (such as Google): very often you will find an explanation and
a workaround.

What Fortran compiler do I need to compile Quantum ESPRESSO? Any non-buggy,
or not-too-buggy, fortran-95 compiler should work, with minimal or no changes to the code.
configuremay not be able to recognize your system, though.

Why is configure saying that I have no fortran compiler? Because you haven’t one
(really!); or maybe you have one, but it is not in your execution path; or maybe it has been given
an unusual name by your system manager. Install a compiler if you have none; if you have one,
fix your execution path, or define an alias if it has a strange name. Do not pass an executable
with the path as an argument to configure, as in e.g. ./configure F90=/some/strange/f95:
it doesn’t work.

Why is configure saying that my fortran compiler doesn’t work? Because it doesn’t
work (really!); more exactly, configure has tried to compile a small test program and didn’t
succeed. Your compiler may not be properly installed. For Intel compiler on PC’s: you may
have forgotten to run the required initialization script for the compiler. See also above.

69

configure doesn’t recognize my system, what should I do? If compilation/linking
works, never mind, Otherwise, try to supply a suitable supported architecture, or/and manually
edit the make.sys file. Detailed instructions in Sec.2.2.

Why doesn’t configure recognize that I have a parallel machine? You need a properly
configured complete parallel environment. If any piece is missing, configure will revert to serial
compilation. Detailed instructions in Sec.2.2.

Compilation fails with internal error, what should I do? Any message during com-
pilation saying something like internal compiler error and the like means that your compiler
is buggy. You should report the problem to the compiler maker – especially if you paid real
money for it. Sometimes reducing the optimization level, or rearranging the code in a strategic
place, will make the problem disappear. In other cases you will need to move to a different
compiler, or to a less buggy version (or buggy in a different way that doesn’t bug you) of the
same compiler.

Compilation fails at linking stage: symbol ... not found If the missing symbols (i.e.
routines that are called but not found) are in the code itself: most likely the fortran-to-C
conventions used in file include/c defs.h are not appropriate. Edit this file and retry.

If the missing symbols are in external libraries (BLAS, LAPACK, FFT, MPI libraries):
there is a name mismatch between what the compiler expects and what the library provides.
See Sec.2.2).

If the missing symbols aren’t found anywhere either in the code or in the libraries: they are
system library symbols. i) If they are called by external libraries, you need to add a missing
system library, or to use a different set of external libraries, compiled with the same compiler
you are using. ii) If you are using no external libraries and still getting missing symbols, your
compiler and compiler libraries are not correctly installed.

12.3 Pseudopotentials

Can I mix USPP/NCPP/PAW ? Yes, you can (if implemented, of course: a few kinds
of calculations are not available with USPP, a few more are not for PAW). A small restrictions
exists in cp.x, expecting atoms with USPP listed before those with NCPP, which in turn are
expected before local PP’s (if any). A further restriction, that can be overriden, is that all PP’s
should be generated with the same XC. Otherwise, you can mix and match. Note that it is the
hardest atom that determines the cutoff.

Where can I find pseudopotentials for atom X? First, a general rule: when you ask for
a pseudopotential, you should always specify which kind of PP you need (NCPP, USPP PAW,
full- or scalar-relativistic, for which XC functional, and, for many elements, with how many
electrons in valence). If you do not find anything suitable in the “pseudo” page of the web site,
we have bad news for you: you have to produce it by yourself. See 4.4 for more.

Where can I find pseudopotentials for rare-earth X? Please consider first if DFT is
suitable for your system! In many cases, it isn’t (at least “plain” DFT: GGA and the like). If
you are still convinced that it is, see above.

70

Is there a converter from format XYZ to UPF? What is available (no warranty) is in
directory upftools/. You are most welcome to contribute a new converter.

12.4 Input data

A large percentage of the problems reported to the mailing list are caused by incorrect input
data. Before reporting a problem with strange crashes or strange results, please have a look
at your structure with XCrySDen. XCrySDen can directly visualise the structure from both
PWscf input data:

xcrysden --pwi "input-data-file"

and from PWscf output as well:

xcrysden --pwo "output-file".

Unlike most other visualizers, XCrySDen is periodicity-aware: you can easily visualize period-
ically repeated cells. You are advised to always use XCrySDen to check your input data!

Where can I find the crystal structure/atomic positions of XYZ? The following site
contains a lot of crystal structures: http://cst-www.nrl.navy.mil/lattice.
”Since this seems to come up often, I’d like to point out that the American Mineralogist Crystal
Structure Database (http://rruff.geo.arizona.edu/AMS/amcsd) is another excellent place
to find structures, though you will have to use it in conjunction with the Bilbao crystallography
server (http://www.cryst.ehu.es), and have some understanding of space groups and Wyckoff
positions”. See also: http://cci.lbl.gov/cctbx/index.html.

How can I generate a supercell? If you need to create a supercell and are too lazy to
create a small program to translate atoms, you can

• “use the ’spacegroup’ program in EXCITING package (http://exciting-code.org) to gen-
erate the supercell, use ’fropho’ (http://fropho.sourceforge.net) to check the symmetry”
(Kun Yin, April 2009)

• “use the PHON code: http://www.homepages.ucl.ac.uk/˜ucfbdxa/” (Eyvaz Isaev, April
2009).

Where can I find the Brillouin Zone/high-symmetry points/irreps for XYZ? ”You
might find this web site useful: http://www.cryst.ehu.es/cryst/get kvec.html” (info by
Cyrille Barreteau, nov. 2007). Or else: in textbooks, such as e.g. The mathematical theory of
symmetry in solids by Bradley and Cracknell.

Where can I find Monkhorst-Pack grids of k-points? Auxiliary code kpoints.x, found
in pwtools/ and produced by make tools, generates uniform grids of k-points that are equiv-
alent to Monkhorst-Pack grids.

71

12.5 Parallel execution

Effective usage of parallelism requires some basic knowledge on how parallel machines work and
how parallelism is implemented in Quantum ESPRESSO. If you have no experience and no
clear ideas (or not idea at all), consider reading Sec.3.

How do I choose the number of processors/how do I setup my parallel calculation?
Please see above.

Why is my parallel job running in such a lousy way? A frequent reason for lousy
parallel performances is a conflict between MPI parallelization (implemented in Quantum
ESPRESSO) and the autoparallelizing feature of MKL libraries. Set the environment variable
OPEN MP THREADS to 1. See Sec.3 for more info.

Why is my parallel job crashing when reading input data / doing nothing? If the
same data work in serial execution, use code -inp input file instead of code < input file.
Some MPI libraries do not properly handle input redirection.

The code stops with an error reading namelist xxxx Most likely there is a misspelled
variable in namelist xxxx. If there isn’t any (have you looked carefully? really?? REALLY???),
beware control characters like DOS control-M: they can confuse the namelist-reading code. If
this happens to the first namelist to be read (usually ”&CONTROL”) in parallel execution, see
above.

Why is my parallel job crashing with mysterious errors? Mysterious, unpredictable,
erratic errors in parallel execution are almost always coming from bugs in the compiler or/and
in the MPI libraries and sometimes even to flacky hardware. Sorry, not our fault.

12.6 Frequent errors during execution

Why is the code saying Wrong atomic coordinates? Because they are: two or more
atoms in the list of atoms have overlapping, or anyway too close, positions. Can’t you see why?
look better (or use XCrySDen: see above) and remember that the code checks periodic images
as well.

The code stops with an error in davcio Possible reasons: disk is full; outdir is not
writable for any reason; you changed some parameter(s) in the input (like wf collect, or the
number of processors/pools) without doing a bit of cleanup in your temporary files; you were
running more than one instance of pw.x in the same temporary directory with the same file
names.

The code stops with a wrong charge error In most cases: you are treating a metallic
system as if it were insulating.

72

The code stops with a mysterious error in IOTK IOTK is a toolkit that reads/writes
XML files. There are frequent reports of mysterious errors with IOTK not finding some variable
in the XML data file. If this error has no obvious explanation (e.g. the file is properly written
and read, the searched variable is present, etc) and if it appears to be erratic or irreproducible
(e.g. it occurs only with version X of compiler Y), it is almost certainly due to a compiler bug.
Try to reduce optimization level, or use a different compiler. If you paid real money for your
compiler, complain with the vendor.

12.7 Self Consistency

What are the units for quantity XYZ? Unless otherwise specified, all PWscf input and
output quantities are in atomic ”Rydberg” units, i.e. energies in Ry, lengths in Bohr radii, etc..
Note that CP uses instead atomic ”Hartree” units: energies in Ha, lengths in Bohr radii.

Self-consistency is slow or does not converge at all In most cases: your input data is
bad, or else your system is metallic and you are treating it as an insulator. If this is not the
case: reduce mixing beta to ∼ 0.3 ÷ 0.1 or smaller, try the mixing mode value that is more
appropriate for your problem.

What is the difference between total and absolute magnetization? The total mag-
netization is the integral of the magnetization in the cell:

MT =
∫

(nup − ndown)d3r.

The absolute magnetization is the integral of the absolute value of the magnetization in the
cell:

MA =
∫
|nup − ndown|d3r.

In a simple ferromagnetic material they should be equal (except possibly for an overall sign)‘.
In simple antiferromagnets (like FeO, NiO) MT is zero and MA is twice the magnetization of
each of the two atoms. (info by Stefano de Gironcoli)

How can I calculate magnetic moments for each atom? There is no ’right’ way of
defining the local magnetic moment around an atom in a multi-atom system. However an
approximate way to define it is via the projected density of states on the atomic orbitals (code
projwfc.x, see example08 for its use as a postprocessing tool). This code generate many files
with the density of states projected on each atomic wavefunction of each atom and a BIG
amount of data on the standard output, the last few lines of which contain the decomposition
of Lowdin charges on angular momentum and spin component of each atom.

What is the order of Ylm components in projected DOS / projection of atomic
wavefunctions? See input data documentation for projwfc.x.

Why is the sum of partial Lowdin charges not equal to the total charge? ”Lowdin
charges (as well as other conventional atomic charges) do not satisfy any sum rule. You can
easily convince yourself that ths is the case because the atomic orbitals that are used to cal-
culate them are arbitrary to some extent. If yu like, you can think that the missing charge is

73

”delocalized” or ”bonding” charge, but this would be another way of naming the conventional
(to some extent) character of Lowdin charge.” (Stefano Baroni, Sept. 2008).

See also the definition of ”spilling parameter”: Sanchez-Portal et al., Sol. State Commun.
95, 685 (1995). The spilling parameter measures the ability of the basis provided by the pseudo-
atomic wfc to represent the PW eigenstates, by measuring how much of the subspace of the
Hamiltonian eigenstates falls outside the subspace spanned by the atomic basis.

I cannot find the Fermi energy, where is it? It is printed in the output. If not, the
information on Gaussian smearing, needed to calculate a sensible Fermi energy, was not provided
in input. In this case, pw.x prints instead the highest occupied and lowest unoccupied levels.
If not, the number of bands to be calculated was not provided in input and pw.x calculates
occupied bands only.

What is the reference level for Kohn-Sham energies? Why do I get positive values
for Kohn-Sham levels? The reference level is an ill-defined quantity in calculations in solids
with periodic boundary conditions. Absolute values of Kohn-Sham eigenvalues are meaningless.

Why do I get a strange value of the Fermi energy? ”The value of the Fermi energy (as
well as of any energy, for that matter) depends of the reference level. What you are referring to
is probably the ”Fermi energy referred to the vacuum level” (i.e. the work function). In order
to obtain that, you need to know what the vacuum level is, which cannot be said from a bulk
calculation only” (Stefano Baroni, Sept. 2008).

Why I don’t get zero pressure/stress at equilibrium? It depends. If you make a
calculation with fixed cell parameters, you will never get exactly zero pressure/stress, unless
you use the cell that yields perfect equilibrium for your pseudopotentials, cutoffs, k-points,
etc.. Such cell will anyway be slightly different from the experimental one. Note however that
pressures/stresses in the order of a few KBar correspond to very small differences in terms of
lattice parameters.

If you obtain the equilibrium cell from a variable-cell optimization, do not forget that the
pressure/stress calculated with the modified kinetic energy functional (very useful for variable-
cell calculations) slightly differ from those calculated without it. Also note that the PW basis
set used during variable-cell calculations is determined by the given cutoff and the initial cell.
If you make a calculation with the final geometry at the same cutoff, you may get slightly
different results. The difference should be small, though, unless you are using a too low cutoff
for your system.

Why do I get negative starting charge? Self-consistency requires an initial guess for the
charge density in order to bootstrap the iterative algorithm. This first guess is usually built
from a superposition of atomic charges, constructed from pseudopotential data.

More often than not, this charges are a slightly too hard to be expanded very accurately in
PWs, hence some aliasing error will be introduced. Especially if the unit cell is big and mostly
empty, some local low negative charge density will be produced.

”This is NOT harmful at all, the negative charge density is handled properly by the code
and will disappear during the self-consistent cycles”, but if it is very high (let’s say more than

74

0.001*number of electrons) it may be a symptom that your charge density cutoff is too low.
(L. Paulatto - November 2008)

How do I calculate the work function? Work function = (average potential in the vac-
uum) - (Fermi Energy). The former is estimated in a supercell with the slab geometry, by
looking at the average of the electrostatic potential (typically without the XC part). See the
example in examples/WorkFct example.

12.8 Phonons

Is there a simple way to determine the symmetry of a given phonon mode? A
symmetry analyzer was added in v.3.2 by Andrea Dal Corso. Other packages that perform
symmetry analysis of phonons and normal modes:
ISOTROPY package: http://stokes.byu.edu/iso/isotropy.html
ACKJ, ACMI packages: http://www.cpc.cs.qub.ac.uk.

I am not getting zero acoustic mode frequencies, why? Because the Acoustic Sum
Rule (ASR), i.e. the translational invariance, is violated in approximated calculations. In PW
calculations, the main and most irreducible violation comes from the discreteness of the FFT
grid. There may be other reasons, though, notably insufficient convergence: ”Recently I found
that the parameters tr2 ph for the phonons and conv thr for the ground state can affect the
quality of the phonon calculation, especially the ”vanishing” frequencies for molecules.” (Info
from Katalyn Gaal-Nagy). Anyway: if the nonzero frequencies are small, you can impose the
ASR to the dynamical matrix, usually with excellent results.

Nonzero frequencies for rotational modes of a molecule are a fictitious effect of the finite
supercell size, or else, of a less than perfect convergence of the geometry of the molecule.

Why do I get negative phonon frequencies? ”Negative” frequencies actually are ”imag-
inary” frequencies (ω2 < 0). If these occur for acoustic frequencies at Gamma point, or for
rotational modes of a molecule, see above. In all other cases: it depends. It may be a problem
of bad convergence (see above), or it may signal a real instability.

Why do I get a message no elec. field with metals? If you want to calculate
the contribution of macroscopic electric fields to phonons – a quantity that is well-defined in
insulators only — you cannot use smearing in the scf calculation, or else the code will complain.

How can I calculate Raman/IR coefficients in metals? You cannot: they are well
defined only for insulators.

How can I calculate the electron-phonon coefficients in insulators? You cannot: the
current implementation is for metals only.

75

	Introduction
	What can Quantum ESPRESSO do
	People
	Contacts
	Guidelines for posting to the mailing list

	Terms of use

	Installation
	Download
	Prerequisites
	configure
	Manual configuration

	Libraries
	If optimized libraries are not found

	Compilation
	Running examples
	Installation tricks and problems
	All architectures
	Cray XT machines
	IBM AIX
	IBM BlueGene
	Linux PC
	Linux PC clusters with MPI
	Intel Mac OS X
	SGI, Alpha

	Parallelism
	Understanding Parallelism
	Running on parallel machines
	Parallelization levels
	Understanding parallel I/O

	Tricks and problems

	Using Quantum ESPRESSO
	Input data
	Data files
	Format of arrays containing charge density, potential, etc.
	Pseudopotential files

	Using PWscf
	Electronic structure calculations
	Optimization and dynamics
	Direct interface with CASINO

	NEB calculations
	Phonon calculations
	Single-q calculation
	Calculation of interatomic force constants in real space
	Calculation of electron-phonon interaction coefficients
	Distributed Phonon calculations

	Post-processing
	Plotting selected quantities
	Band structure, Fermi surface
	Projection over atomic states, DOS
	Wannier functions
	Other tools

	Using CP
	Reaching the electronic ground state
	Relax the system
	CP dynamics
	Advanced usage
	 Self-interaction Correction
	 ensemble-DFT
	Free-energy surface calculations
	Treatment of USPPs

	Performances
	Execution time
	Memory requirements
	File space requirements
	Parallelization issues

	Troubleshooting
	pw.x problems
	Compilation problems with PLUMED
	Compilation problems with YAMBO
	PostProc
	ph.x errors

	Frequently Asked Questions (FAQ)
	General
	Installation
	Pseudopotentials
	Input data
	Parallel execution
	Frequent errors during execution
	Self Consistency
	 Phonons

