Algorithm 8xx: SuiteSparseQR, a multifrontal
multithreaded sparse QR factorization package
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SuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Par-
allelism is exploited both in the BLAS and across different frontal matrices using Intel’s Threading
Building Blocks, a shared-memory programming model for modern multicore architectures. It can
obtain a substantial fraction of the theoretical peak performance of a multicore computer. The
package is written in C++ with user interfaces for MATLAB, C, and C++.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
linear systems (direct methods), sparse and very large systems; G.4 [Mathematics of Comput-
ing]: Mathematical Software—algorithm analysis, efficiency

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: QR factorization, least-square problems, sparse matrices

1. INTRODUCTION

The algorithms used in SuiteSparseQR are discussed in a companion paper, [Davis
2008]. The multifrontal method breaks the factorization of a large sparse matrix
into a sequence of small dense frontal matrices. These frontal matrices are related
to one another in a tree, which provides one of the levels of parallelism exploited
by the method. Within each dense frontal matrix, LAPACK [Anderson et al. 1999]
and the Level-3 BLAS [Dongarra et al. 1990] provide another layer for parallelism
and also allow for efficient use of modern memory hierarchies.

2. USING SUITESPARSEQR IN MATLAB

The simplest way to use SuiteSparseQR is via MATLAB. Its syntax includes every
feature of the MATLAB gr in version R2008b and earlier [Gilbert et al. 1992], plus
additional features not available in MATLAB. It is also a replacement for x=A\b
for least-squares problems and underdetermined systems. In addition to substantial
gains in performance (100x is not uncommon), SuiteSparseQR adds new capabilities
that are not present in MATLAB.
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New features for use in MATLAB

The matrix Q can be returned as a matrix just like the current MATLAB qr
syntax, but the matrix form of Q can be very costly to store in terms of memory
and the time needed to compute it. SuiteSparseQR provides an alternative: a
more efficient representation of Q as a MATLAB struct, with a set of House-
holder vectors, Q.H, coefficients Q.Tau, and a permutation Q.P. It is often the
case that nnz (Q.H) is less than nnz(R).

The MATLAB statement x=A\b when A is underdetermined computes a basic
solution. SuiteSparseQR can do this too, but it can also compute a minimum
2-norm solution far more efficiently than MATLAB can. With the MATLAB
gr this can only be done with Q in its matrix form, which is costly.

If A can be permuted into the form A*P=[A11 A12 ; 0 A22] where A11 is upper
triangular with diagonal entries above a given tolerance, then SuiteSparseQR
quickly finds this permutation, leading to a large reduction in time and memory
as compared to the MATLAB sparse qr. The submatrices A11 and A12 become
the first rows of R, with no numerical work.

MATLAB uses only one fill-reducing ordering within x=A\b when A is rectangu-
lar (COLMMD). SuiteSparseQR provides interfaces to ordering methods that
are faster and give better orderings: AMD, COLAMD, and METIS. The default
ordering is to use COLAMD when A22 has twice as many rows as columns, or
fewer. Otherwise, AMD is tried. If the fill-in and flop count from AMD is low,
the AMD ordering is used. Otherwise, METIS is tried (if installed) and the
best of AMD and METIS is used. Other alternatives include trying all three,
or just the two minimum degree variants, and taking the best ordering found
(the one with the least nnz(R)).

For rank-deficient matrices, R=qr (A) returns R in a “squeezed” form that can be
difficult to use in subsequent MATLAB operations. Let r be the estimated rank.
SuiteSparseQR can return R in upper trapezoidal form as [R11 R12 ; 0 0]
where R11 is r-by-r with diagonal elements all greater in magnitude than a
given tolerance. For example, condest (R(1:r,1:r)) can be easily computed
if R is upper trapezoidal; this cannot be done with the squeezed R.
SuiteSparseQR . fully supports sparse complex rectangular matrices; the MAT-
LAB gr and x=A\b do not.

Finally, SuiteSparseQR. exploits parallelism, whereas the existing MATLAB
methods cannot (neither qr (A) nor x=A\b when A is sparse and rectangular).

2.2 MATLAB Syntax

There are five basic syntaxes available with the function spqr that replace the
MATLAB qr:

(1)
(2)

3)

R=spqr (A) finds the R factor, discarding Q.

[Q,R]=spqr (A) returns both R and Q, where Q can be in matrix form or House-
holder form.

[Q,R,P]=spqr (A) performs the factorization A*P=Q*R, where Q can be in matrix
form, Householder form, or discarded (an empty matrix), and where P is a fill-
reducing ordering. Note that this is the same syntax as [Q,R,P]=qr (A) when
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A is full, except that for full case the columns are pivoted according to their
2-norm, not for sparsity as is the case for spqr.

(4) [C,Rl=spqr(A,B) is the same as R=spqr (A) but also returns C=Q’*B, discarding
Q.

(5) [C,R,P]=spqr(A,B) factorizes A*P=Q*R and returns both R and C=Q’*B, dis-
carding Q.

The function x=spqr_solve(A,b) is a replacement for and extension of x=A\Db
when A is sparse and rectangular. The function spqr_gmult (Q,x) takes the House-
holder form of Q and applies it to a sparse or full matrix x (either Q*x, Q’*x, x*Q,
or x*Q?).

Each of these syntaxes allow for the use of a final optional input parameter
opts. If opts is a scalar equal to 0, the economy QR is computed, just like the
existing MATLAB qr. Otherwise, it is a struct that can be used to set non-default
parameters. If not present, defaults are used. With opts, the user can:

(1) change the rank-detection tolerance tol,

(2) request the return of the complete QR, the “economy QR,” (where R has
min(m,n) rows and Q has min(m,n) columns) or the “rank-sized QR” (where R
has r rows and Q has r columns, with r being the estimated rank of A).

(3) change the default ordering (COLAMD, AMD, METIS, and meta-strategies
where one or more orderings are tried and the one with the least nnz(R) is
chosen),

(4) request P as a sparse permutation matrix or as a permutation vector,

(5) control the number of parallel threads used and the granularity of the parallel
tasks,

(6) and request spgr_solve to compute either the basic solution or minimum 2-
norm solution to an underdetermined system.

3. USING SUITESPARSEQR IN C AND C++

SuiteSparseQR relies on CHOLMOD for its basic sparse matrix data structure: a
compressed sparse column format. CHOLMOD provides interfaces to the AMD,
COLAMD, and METIS ordering methods, supernodal symbolic Cholesky factor-
ization (namely, symbfact in MATLAB), functions for converting between different
data structures, and for basic operations such as transpose, matrix multiply, reading
a matrix from a file, writing a matrix to a file, and many other functions.

3.1 C/C++ Example

The C++ interface is written using templates for handling both real and complex
matrices. The simplest function computes the MATLAB equivalent of x=A\b and
is almost as simple:

#include "SuiteSparse(QR.hpp"
X = SuiteSparseQR <double> (A, B, cc) ;

The C version of this function is almost identical:

#include "SuiteSparseQR_C.h"
X = SuiteSparseQR_C_backslash_default (A, B, cc) ;
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Below is a simple C++ program that illustrates the use of SuiteSparseQR. The
program reads in a least-squares problem from stdin in MatrixMarket format
[Boisvert et al. 1997], solves it, and prints the norm of the residual and the es-
timated rank of A. The comments reflect the MATLAB equivalent statements. The
C version of this program is identical except for the #include statement and call
to SuiteSparseQR which are replaced with the C version of the statement above,
and C-style comments.

#include "SuiteSparseQR.hpp"
int main (int argc, char **argv)
{
cholmod_common Common, *cc ;
cholmod_sparse *A ;
cholmod_dense *X, *B, *Residual ;
double rnorm, one [2] = {1,0}, minusone [2] = {-1,0} ;
int mtype ;

// start CHOLMOD
cc = &Common ;
cholmod_1_start (cc) ;

// load A
A = (cholmod_sparse *)
cholmod_1_read_matrix (stdin, 1, &mtype, cc) ;

// B = ones (size (A,1),1)
B = cholmod_l_ones (A->nrow, 1, A->xtype, cc) ;

// X = A\B
X = SuiteSparseQR <double> (A, B, cc) ;

// rnorm = norm (B-A*X)

Residual cholmod_1_copy_dense (B, cc) ;
cholmod_1_sdmult (A, O, minusone, one, X, Residual, cc) ;
rnorm = cholmod_1_norm_dense (Residual, 2, cc) ;

printf ("2-norm of residual: %8.le\n", rnorm) ;

printf ("rank %1ld\n", cc->SPQR_istat [4]) ;

// free everything and finish CHOLMOD
cholmod_1_free_dense (&Residual, cc) ;
cholmod_1_free_sparse (&A, cc) ;
cholmod_1_free_dense (&X, cc) ;
cholmod_1_free_dense (&B, cc) ;
cholmod_1_finish (cc) ;

return (0) ;

}
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3.2 C++ Syntax

All features available to the MATLAB user are also available to both the C and
C++ interfaces using a syntax that is not much more complicated than the MAT-
LAB syntax. Additional features not available via the MATLAB interface include
the ability to compute the symbolic and numeric factorizations separately (for mul-
tiple matrices with the same nonzero pattern but different numerical values). The
following is a list of user-callable C++ functions and what they can do:

(1) SuiteSparseQR: an overloaded function that provides functions equivalent to
spqr and spqr_solve in the SuiteSparseQR MATLAB interface.

(2) SuiteSparseQR_factorize: performs both the symbolic and numeric factor-
izations and returns a QR factorization object such that A*P=QxR. It always
exploits singletons.

(3) SuiteSparseQR_symbolic: performs the symbolic factorization and returns a
QR factorization object to be passed to SuiteSparseQR_numeric. It does not
exploit singletons.

(4) SuiteSparseQR_numeric: performs the numeric factorization on a QR factor-
ization object, either one constructed by SuiteSparseQR_symbolic, or reusing
one from a prior call to SuiteSparseQR_numeric for a matrix A with the same
pattern as the first one, but with different numerical values.

(5) SuiteSparseQR_solve: solves a linear system x=R\b, x=P*R\b, x=R’\b, or
x=R’\ (P’ *Db), using the object returned by SuiteSparseQR_factorize or
SuiteSparseQR_numeric.

(6) SuiteSparseQR_gmult: provides the same function as spqr_gmult in the MAT-
LAB interface, computing Q*x, Q’*x, x*Q, or x*Q’. It uses either a QR factor-
ization in conventional sparse matrix format, or the QR factorization object
returned by SuiteSparseQR_factorize or SuiteSparseQR_numeric.

(7) SuiteSparseQR_min2norm: finds the minimum 2-norm solution to an under-
determined linear system.

(8) SuiteSparseQR_free: frees the QR factorization object.

4. REQUIREMENTS AND AVAILABILITY

SuiteSparseQR requires four prior Collected Algorithms of the ACM: CHOLMOD
[Chen et al. 2009; Davis and Hager 2009] (version 1.7 or later), AMD [Amestoy et al.
1996; 2004], and COLAMD [Davis et al. 2004a; 2004b] for its ordering/analysis
phase and for its basic sparse matrix data structure, and the BLAS [Dongarra
et al. 1990] for dense matrix computations on its frontal matrices; also required is
LAPACK [Anderson et al. 1999] for its Householder reflections. An efficient im-
plementation of the BLAS is strongly recommended, either vendor-provided (such
as the Intel MKL, the AMD ACML, or the Sun Performance Library) or other
high-performance BLAS such as those of [Goto and van de Geijn 2008].

The use of Intel’s Threading Building Blocks is optional [Reinders 2007], but
without it, only parallelism within the BLAS can be exploited (if available). Suite-
SparseQR can optionally use METIS 4.0.1 [Karypis and Kumar 1998] and two
constrained minimum degree ordering algorithms, CCOLAMD and CAMD [Chen
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et al. 2009], for its fill-reducing ordering options. SuiteSparseQR can be compiled
without these ordering methods.

In addition to appearing as Collected Algorithm 8xx of the ACM, SuiteSparseQR.
is available at http://www.cise.ufl.edu/research/sparse and at MATLAB Central
(http://www.mathworks.com/matlabcentral) in the user-contributed File Exchange.
SuiteSparseQR is licensed under the GNU GPL.
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